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Motivation

In Artificial Intelligence and Software Engineering it is often a challenge
to cope with modelling contexts in which bivalent logic is not enough,
entailing the need to capture

• lack of information (vagueness or uncertainty)

• excess of information (potential inconsistency)

Potentially contradictory information arrises in a number of scenarios.
(e.g. knowledge representation, data integration, etc.)
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Motivation

and even on articulating different perspectives on complex information:

local consistency global inconsistency
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Motivation
Information (reality?) is not what we thought it was ...

M. C. Escher, Ascending and descending
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Two such scenarios

Analysis of social networks dynamics to model citizen participation
in the context of the United Nations University

Operational Unit on Policy-driven Digital Governance, Guimarães,
Portugal, since 2014
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Two such scenarios

Logics for quantum computing
in the context of the High-Assurance Software Lab INESC TEC
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Motivation: Logics for quantum programs

... doing things right from the outset

• Logic plays in quantum computation the same essential role it plays
in the classical case, namely in specification and verification

• Need to incorporate the non-classical dynamics of quantum
information
cf Smets & Baltag’s work on dynamic logics for reasoning about
(concrete) quantum programs e.g.

• LQP: The dynamic logic of quantum information (2006)
– the quantum ’version’ of propositional dynamic logic

• PLQP & Company: decidable logics for quantum algorithms
(2014)
– with a probability modality to capture the success of a test,
allowing to go beyond ’qualitative’ properties.
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Motivation: Logics for NISQ quantum programs

but current NISQ programs put a different challenge ...
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Motivation: Logics for NISQ quantum programs

but current NISQ programs put a different challenge ...

• Need to deal with quibit coherence/decoherence times,

• and noisy gates

Combining gate inherent noise with coherence/decoherence times of the
qubits upon which it acts at a particular computation stage, one gets, for
each gate in the circuit, experimentally computed pairs consisting of

• a possible coherence weight

• a possible decoherence weight

which are not ’complementary’ in any sense.

Somehow both these values have to be taken into consideration to
compute the quality of the computation.
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A role for paraconsistency?

... entails the need to deal with contradictory information ...

Is there a role for paraconsistency?

• Paraconsistent logic treats inconsistent information as potentially
informative
(originally developed in Latin America in 50’s, mainly by F. Asenjo
and Newton da Costa)

• Applications to quantum mechanics and quantum information
theory
(cf work from D. Chiara and W. Carnielli)
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A role for paraconsistency?

Agenda

• Paraconsistent structures:
introducing a semantics over a iMTL-algebra and a modal logic

• Labelled paraconsistent transition systems:
introducing a category, compositional operators, bisimulation and a
multimodal, process logic
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PART 1

PARACONSISTENT STRUCTURES

and their modal logic
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Paraconsistent structures

The approach

• Transition systems with both positive and negative accessibility
relations, with non complementary weights:

• one weighting the possibility of a transition to be present
(e.g. the state remaining coherent),

• the other weighting the possibility of being absent
(i.e. becoming unstable)

• used as Kripke frames for a modal logic
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The structure
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• Paraconsistency:
regards inconsistent information as potentially informative.
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How is information weighted?

Underlying semantic structure

• A residuated lattice, i.e. a bounded lattice 〈A,u,t, 1, 0, 〉 equipped
with a monoid 〈A,�, e〉 such that � has a right adjoint,

a� b ≤ c ⇔ b ≤ a⇀ c

• st the monoidal operation coincides with meet, � is u

• plus a prelinearity condition:

(a⇀ b) t (b ⇀ a) = 1

(iMTL-algebra, after integral monoidal t-norm based logic)
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Some examples

3 = 〈{⊥, u,>},∧3,∨3,>,⊥,→3〉

∨3 ⊥ u >
⊥ ⊥ u >
u u u >
> > > >

∧3 ⊥ u >
⊥ ⊥ ⊥ ⊥
u ⊥ u u
> ⊥ u >→3 ⊥ u >

⊥ > > >
u ⊥ > >
> ⊥ u >

G̈ = 〈0..1,min,max , 0, 1,→〉 (Gödel)

a→ b =

{
1, if a ≤ b

b, otherwise
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Properties

Some properties

a⇀ (b ⇀ c) = (b u a)⇀ c

b ⇀ (l

i

ai
)
=

l

i

(b ⇀ ai )(⊔
i

ai
)⇀ b =

l

i

(ai ⇀ b)

b ⇀ (⊔
i

ai
)
=
⊔
i

(
b ⇀ ai

)
(l

i

ai
)⇀ b =

⊔
i

(
ai ⇀ b

)

(1, 0)

(1, 1) (0, 0)

(0, 1)

Belnap-Dunn FOUR
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Examples

Examples over G̈
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How is information weighted?

... endowed with a metric d : A× A→ R+

Examples

2 and 3
2 3

d(x , y) =

{
0 if x = y

1 otherwise

d ⊥ u >
⊥ 0 1 2
u 1 0 1
> 2 1 0

G̈ (Gödel)
G̈ = 〈[0, 1],min,max , 0, 1,→, e〉

where e(x , y) =
√

(x − y)2
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How is information weighted?

(paraconsistent): ∆P = {(a, b)|D((a, b), (1, 1)) ≤ D((a, b), (0, 0))}
(consistent): ∆C = {(a, b)|D((a, b), (0, 0)) ≤ D((a, b), (1, 1))}
(strictly consistent): ∆ = ∆P ∩ ∆C

0 1

0

1
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Computing with pairs of weights

A2 = 〈A× A, ∧∧,
∨
∨,=⇒,¬,D〉

(to compute with pairs of weights: twisted structures with a metric)

• (a, b) ∨
∨ (c , d) = (a t c , b u d)

• (a, b) ∧
∧ (c , d) = (a u c , b t d)

• (a, b) =⇒ (c , d) = ((a⇀ c) u (d ⇀ b), a u d)

• ¬(a, b) = (b, a)

• D((a, b), (c , d)) =
√
d(a, c)2 + d(b, d)2

and ≤ lifts from A generalizing Belnap-Dun truth order:

(a, b) 4 (c , d) iff a ≤ c and b ≥ d
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Computing with pairs of weights

The rationale for the operators is that elements of a twist-structure are
regarded as classical complementary sentences

Clearly, =⇒ is not residuated in A2 as

(a, b) ∧
∧ (c , d) 4 (e, f ) iff (c , d) 4 (a, b) =⇒ (e, f ) fails:

e.g. (a, b) = (0.8, 0.4), (c, d) = (0.5, 0.2) and (e, f ) = (0.6, 0.3),

(a, b) ∧
∧
(c, d) = (min{0.8, 0.5},max{0.4, 0.2}) = (0.5, 0.4)

(a, b) =⇒ (e, f ) = (min(0.8 → 0.6, 0.3 → 0.4),min{0.8, 0.3}) = (0.6, 0.3)

Thus,
(0.5, 0.4) 4 (0.6, 0.3) but (0.5, 0.2)/4(0.6, 0.3)
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Computing with pairs of weights

However, the adjunction is recovered replacing ∧
∧ by

(a, b)⊗(c , d) = (a u c , a→ d u c → b)

entailing

(a, b)⊗(c , d) 4 (e, f ) iff (a, b) 4 (c , d)⇒ (e, f )
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The logic L(A)

Syntax

ϕ := p | ⊥ | ¬ϕ | ϕ∧ϕ|ϕ∨ϕ | ϕ→ ϕ | ϕ | ♦ϕ | /ϕ | /♦ϕ | ◦ϕ

where p ∈ Prop

Semantics
A model over A = 〈A,t,u, 1, 0,⇀, d〉 is a

• PTS (W ;R ⊆W × A× A×W ) often expressed as (R+,R−)

• and a valuation V : Prop×W → A× A
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The logic L(A)

Satisfaction

• (w |= p) = V (p,w)

• (w |= ⊥) = (0, 1)

• (w |= ¬ϕ) = ¬(w |= ϕ)

• (w |= ϕ1 ∧ϕ2) = (w |= ϕ1) ∧
∧ (w |= ϕ2)

• (w |= ϕ1 ∨ϕ2) = (w |= ϕ1) ∨
∨ (w |= ϕ2)

• (w |= ϕ1 → ϕ2) = (w |= ϕ1) =⇒ (w |= ϕ2)

• (w |= ◦ϕ) =

{
(1, 0) if (w |= ϕ) ∈ ∆C

(0, 1) otherwise
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The logic L(A)

Satisfaction

• (w |= ϕ) = (�(w , ϕ+),♦+(w , ϕ−))

• (w |= ♦ϕ) = (♦+(w , ϕ+),�(w , ϕ−))

• (w |= /ϕ) = (♦−(w , ϕ−),�(w , ϕ+))

• (w |= /♦ϕ) = (�(w , ϕ−),♦−(w , ϕ+))

where

• �(w , ϕ∗) =
d

w ′∈R[w ](R
+(w ,w ′)⇀ (w ′ |= ϕ)∗)

• �(w , ϕ∗) =
d

w ′∈R[w ](R
−(w ,w ′)⇀ (w ′ |= ϕ)∗)

• ♦+(w , ϕ∗) =
⊔

w ′∈R[w ](R
+(w ,w ′) u (w ′ |= ϕ)∗)

• ♦−(w , ϕ∗) =
⊔

w ′∈R[w ](R
−(w ,w ′) u (w ′ |= ϕ)∗)
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Negation and duality

Interpretation of (w |= ¬ϕ) as ¬(w |= ϕ)

• turns ¬ into an involution,

• satisfying ¬ψ ≤ ¬φ if φ ≤ ψ as

¬(a ′, b ′) 4 ¬(a, b) if (a, b) 4 (a ′, b ′)

≡ (b ′, a ′) 4 (b, a) if (a, b) 4 (a ′, b ′)

≡ b ′ ≤ b and a ′ ≥ a if a ≤ a ′ and b ≥ b ′

Thus, De Morgan laws hold,
However,

(a, b) ∧
∧ ¬(a, b) = (a, b) ∧

∧ (b, a) = (a u b, b t a)

which does not coincide with (0, 1), the interpretation of ⊥, even if, in a
sense, it ‘gets closer’ by descending in the underlying lattice.
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Modalities are dual

The two pairs of modalities quantify over the positive and the negative
component of the accessibility relation.

Thus, it assigns an existential, ‘diamond-like’ behaviour to / , and dually
a universal, ‘box-like’ behaviour to /♦.

¬ϕ ≡ ¬♦ϕ /¬ϕ ≡ ¬/♦ϕ

♦¬ϕ ≡ ¬ ϕ /♦¬ϕ ≡ ¬/ϕ
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Modalities are dual

(w |= /¬ϕ)

= { definition of |= }

(♦−(w, (¬ϕ)
−
),�(w, (¬ϕ)

+
))

= { definition of �, ♦− } ⊔
w ′∈W

{R−
(w,w ′

) u (w ′
|= ¬ϕ)

−
},

l

w ′∈W

{R−
(w,w ′

) ⇀ (w ′
|= ¬ϕ)

+
}


= { definition of |= } ⊔

w ′∈W

{R−
(w,w ′

) u (¬(w ′
|= ϕ))

−
},

l

w ′∈W

{R−
(w,w ′

) ⇀ (¬(w ′
|= ϕ))

+
}


= { definition of ¬ } ⊔

w ′∈W

{R−
(w,w ′

) u (w ′
|= ϕ)

+
},

l

w ′∈W

{R−
(w,w ′

) ⇀ (w ′
|= ϕ)

−
}


= { definition of ♦− and � }

(♦−(w, ϕ+
),�(w, ϕ−

))

= { definition of ¬ }

¬(�(w, ϕ−
),♦−(w, ϕ+

)) = (w |= ¬/♦ϕ)
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PART 2

PARACONSISTENT LABELLED

TRANSITION SYSTEMS

as a concrete modelling tool
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Going multimodal

Paraconsitent Labelled Transition Systems

• Introduce labels from a set of identifiers Act and an initial state

• Define morphism to organise PLTSinto a category

• Derive an algebra, to get new PLTS from old, from the underlying
categorical structure
(... possibly leading to a language and a dynamic logic)

• Develop a multimodal logic (à la Hennessy-Milner) for
paraconsistent processes
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Paraconsitent Labelled Transition Systems - PLTS

A PLTS over a iMTL-algebra AAA, and a set of atomic actions Act is a
structure 〈W , i ,R〉 where,

• W is a non-empty set of states

• i ∈W is the initial state

• R = (Ra : W ×W → A× A)a∈Act is an Act-indexed family of
functions.

Ra(w1,w2) = (α,β)

with α weighting evidence of the transition through a and β its absence.
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Paraconsitent Labelled Transition Systems - PLTS

Morphism: 〈W , i ,R〉 → 〈W ′, i ′,R ′〉

• σ : W →W ′

• λ : Act →⊥ Act ′

st σ(i) = i ′ and for any a ∈ Act,

Ra(w ,w
′) 4 R ′

⊥
λ(a)(σ(w), σ(w ′))

where R⊥ = R ∪ R⊥ with R⊥(w ,w) = (1, 0) for any state w ∈W
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Example

h = {w1 7→ v1,w2 7→ v2,w3 7→ v3,w4 7→ v4}

w1

w2 w3

w4

a|(0.7, 0.2)
b|(0.3, 0.5)

c |(0.2, 0.3)
d |(0.5, 0.8)

v1

v2 v3

v4

v5

a|(0.9, 0.1)
b|(0.5, 0.2)

c |(0.6, 0.1)
c |(0.8, 0.4)

a|(0.4, 0.7)
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New PLTS from old

... exploring the underlying categorical structure of PtA

Restriction and relableling
... for λ : Act ′ → Act an inclusion:
are

• T � λ is a Cartesian lifting in PtA

• T {λ} is a co-Cartesian lifting in PtA
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New PLTS from old

Parallel Composition
T1 × T2 is the categorical product in PtA:

T1 × T2 = 〈W1 ×W2, (i1, i2),R〉
over

Act1 ×⊥ Act2 = {(a,⊥) | a ∈ Act1} ∪ {(⊥, b) | b ∈ Act2} ∪ {(a, b) | a ∈ Act1, b ∈ Act2}

such that

R(a,b)((w1,w2), (v1, v2)) = (α, β) iff

(R1)
⊥
a (w1, v1) = (α1, β1) and

(R2)
⊥
b (w2, v2) = (α2, β2) and

(α, β) = (α1, α2) ∧
∧
(β1, β2)
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Example

i1 w
a|(0.7, 0.2)

i2 v
b|(0.4, 0.2)

(i1, i2) (w , i2)

(w , v)(i1, v)

(a,⊥)|(0.7, 0.2)

(⊥, b)|(0.4, 0.6)

(a, b)|(0.4, 0.2)
(⊥, b)|(0.4, 0.6)

(a,⊥)|(0.7, 0.2)
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New PLTS from old

Interleaving: T1 9 T2 = (T1 × T2) � λ
with the inclusion λ : {(a,⊥) | a ∈ Act1} ∪ {(⊥, b) | b ∈ Act2} → Act1 ×⊥ Act2

Synchronous product: T1 ⊗ T2 = (T1 × T2) � λ
taking {(a, b) | a ∈ Act1 and b ∈ Act2} as the domain of λ

(i1, i2) (w , i2)

(w , v)(i1, v)

(a,⊥)|(0.7, 0.2)

(⊥, b)|(0.4, 0.6)(⊥, b)|(0.4, 0.6)

(a,⊥)|(0.7, 0.2)

(i1, i2) (w , i2)

(w , v)(i1, v)

(a, b)|(0.4, 0.2)

T1 9 T2 T1 ⊗ T2



1.1 Paraconsistent structures 1.2 The logic L(A) 2.1 PLTS 2.2 ML(A): A multimodal logic for PLTS

New PLTS from old

Choice
T1 + T2 is the categorical coproduct in PtA:

T1 + T2 = 〈W , (i1, i2),R〉

over Act = Act1 ∪ Act2, where

• W = (W1 × {i2}) ∪ ({i1}×W2)

• Ra((w1,w2), (v1, v2)) = (α,β) iff
(R1)a(w1, v1) = (α,β) or (R2)a(w2, v2) = (α,β)

(i1, i2) (w , i2)(i1, v)
a|(0.7, 0.2)b|(0.4, 0.6)
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New PLTS from old

Other Operators

• Sequential composition as prefixing

• Functorial extension of operations from the underlying iMTL-algebra
(e.g. to operate on weights)

... leading to a sort of (paraconsistent) process algebra
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An application: Modelling quantum circuits

• Transitions are labelled by the tensor of the relevant gates
O1 ⊗ · · · ⊗ Om and weighted

• ... positively by the maximum of the longest qubit coherence times

• ... negatively by the minimum of the shortest qubit decoherence
times, both reduced of the gate execution time.
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An application: Modelling quantum circuits

s1

s2

s3

s4

s5

s6

s7

(H1 ⊗ H2, 1, 0)

(M3, 0.99, 0.31)

(M2, 0.98, 0.32)

(CX0,1, 0.58, 0.72)

(M1, 0.96, 0.33)

(M0, 0.94, 0.40)

r1

r2

r3

r4

r5

r6

r7

(H1 ⊗ H2, 1, 0)

(CX0,1, 0.6, 0.7)

(M3, 0.98, 32)

(M2, 0.97, 0.33)

(M1, 0.96, 0.34)

(M0, 0.94, 0.40)

〈[∗, ∗, ∗, ∗, ∗, ∗], 0.58, 0.72〉 ≤c 〈[∗, ∗, ∗, ∗, ∗, ∗], 0.6, 0.7〉
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Circuit optimization order

Weighted trace of a trace s

tw(s) = 〈π∗1 ,
l

(π∗2),
⊔

(π∗3)〉 (s)

Circuit optimization order
〈[a1, a2, ..., an], α, β〉 ≤c 〈[b1, b2, ..., bm], γ, δ〉 if

• sequence [b1, b2, ..., bm] is a prefix of [a1, a2, ..., an],

• and (α,β) � (γ, δ)
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The logic ML(A)

Given an iMTL-algebra AAA, a set of proposition symbols Prop and a set of
action symbols Act:

ϕ := ⊥ | p | ¬ϕ |ϕ∧ϕ | 〈a〉ϕ

where p ∈ Prop and a ∈ Act.
Abbreviations:

• > = ¬⊥

• ϕ∨ϕ ′ = ¬(¬ϕ∧ ¬ϕ ′)

• ϕ .ϕ ′ = ¬ϕ∨ϕ ′ = ¬(ϕ∧ ¬ϕ ′)

• [a]ϕ = ¬〈a〉¬ϕ.
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The logic ML(A)

Satisfaction: |= : M × Sen(Prop,Act) → A× A

(M |= ϕ) = ∧
∧

w∈W
(M,w |= ϕ)

• (M,w |= ⊥) = (0, 1)

• (M,w |= p) = V (w , p)

• (M,w |= ¬ϕ) = ¬(M,w |= ϕ)

• (M,w |= ϕ∧ϕ ′) = (M,w |= ϕ) ∧
∧ (M,w |= ϕ ′)

• (M,w |= 〈a〉ϕ) = ∨
∨

v∈W

(
Ra(w , v)⊗ (M, v |= ϕ)

)
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Example over the Gödel algebra

w v
a|(1, 0)

b|(1, 0.5) b|(0.5, 1)

V (w, p) = (1, 1), V (w, q) = V (v, p) = (0, 0.5), V (w, r) = V (v, r) = (0.5, 0.5), V (v, q) = (0, 0).

(M,w |= r . (p ∨ q)) = (M,w |= ¬r ∨ (p ∨ q))

= (M,w |= ¬(¬¬r ∧ ¬(p ∨ q)))

= ¬

(
M,w |= r ∧ ¬(p ∨ q)

)
= ¬

(
(M,w |= r) ∧

∧
(M,w |= ¬(p ∨ q))

)
= ¬

(
V (w, r) ∧

∧
�(M,w |= p ∨ q)

)
= ¬

(
V (w, r) ∧

∧
(M,w |= ¬p) ∧

∧
(M,w |= ¬q)

)
= ¬

(
V (w, r) ∧

∧
¬V (w, p) ∧

∧
¬V (w, q)

)
= ¬

(
(0.5, 0.5) ∧

∧
(1, 1) ∧

∧
(0.5, 0)

)
= ¬(0.5 ∧ 1 ∧ 0.5, 0.5 ∨ 1 ∨ 0) = ¬(0.5, 1)

= (1, 0.5)
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Simulation, Bisimulation & Invariance

The crisp case

• S ⊆W1 ×W2 is a simulation if, for any (w1,w2) ∈ S , a ∈ Act,

Ra(w1,w
′

1) = (α,β) then

∃w ′
2 ∈W2

∃γ,δ∈A. R(w2,w
′

2) = (δ, γ) and (w ′1 ,w
′

2) ∈ S and (α,β)4(δ, γ)〉

For all p ∈ Prop and (w , v) ∈ S , V1(w , p)4V2(v , p)

• 〈w1,w2〉 ∈ S entails (w1 |= ϕ) 4 (w2 |= ϕ) for ϕ ∈ Fm+♦, the
positive fragment of L(A)

• Bisimilarity ensures modal invariance, but is too strong; other
equivalences are useful in practice.
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Simulation, Bisimulation & Invariance

The graded case

• Are themselves positive,negative-weighted relations

• B : W ×W ′ → A× A is a graded bisimulation if

B(w ,w ′) 4 (V (w , p)⇔ V ′(w ′, p))

∃v ′ ∈W ′ (B(w ,w ′)⊗ Ra(w , v)) 4 (R ′a(w
′, v ′)⊗ B(v , v ′))

∃v ∈W (B(w ,w ′)⊗ R ′a(w
′, v ′)) 4 (Ra(w , v)⊗ B(v , v ′))

• Invariance result for graded bisimulation:

B(w ,w ′) 4

(
(M,w |= ϕ)⇔ (M ′,w ′ |= ϕ)

)
• The crisp case is not a particular case
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Simulation, Bisimulation & Invariance

w1

w2

w3

a|(1, 0.6)

a|(1, 0)
v1

v2

v3

a|(1, 0)

a|(1, 0.3)

(0.5, 1) (0.5, 0.8)

(1, 0.8)

(0.5, 0.8)

(1, 0.5)
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Concluding

A lot remains to be done ...

• Development of the logic’s proof-theoretic perspective, as a major
step towards (semi-)automatic support to reasoning about such
complex, often weird, but actually quite common phenomena

• Dynamic logics for paraconsistent programming

• with a particular instance for hybrid and noisy quantum programs
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Concluding

Where to read more ...

• Cruz, Madeira & Barbosa: A logic for paraconsistent transition systems
Non-Classical Logics: Theory and Applications, 2022.

• Cruz, Madeira & Barbosa: Paraconsistent transition systems
LSFA’22 (Logical and Semantic Frameworks with Applications) , 2022.

• Cunha, Madeira & Barbosa: Structured specification of paraconsistent
transition systems
FSEN’23 (Fundamentals of Software Engineering), 2023.

• Barbosa & Madeira: Capturing qubit decoherence through paraconsistent
transition systems
Engineering of Quantum Programming Workshop, IEEE 2023

• Cunha, Madeira & Barbosa: Paraconsistent transition structures: compositional
principles and a modal logic
Math. Struc. Comp. Sci., Elsevier (in print) 2023
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Concluding: Paraconsistency everywhere ...
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