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Context

In this project we are extending Alloy to make it a more
comprehensive modelling tool for trustworthy software design.

One direction is to be able to quantify faulty behaviour in
software models, in a probabilistic way.

We thought of extending Alloy’s underlying Boolean matrices to
stochastic matrices and of adapting the notion of contract
validity accordingly.

This talk will present and discuss a linear algebra approach to
”measuring” contract validity.

http://haslab.github.io/TRUST
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Alloy

Relational composition:

• The Swiss army knife of Alloy

• It subsumes function application and “field selection”

• Encourages a navigational (point-free) style based on pattern
x .(R.S).

• Example:

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
me.parent.parent = {(P4)}
Person.parent = {(P2),(P3),(P4)}
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Alloy
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Alloy

Relations are Boolean matrices:

Note how me, me.parent etc are all at most Person 1
!◦oo ,

where ! = 1 (the everywhere-1 function).



Prelude Probabilism Pobabilistic contracts References

Functions are Boolean matrices

A relation B A
Voo is said to be a vector if either A or B are

the singleton type 1.

Relation 1 A
Voo is said to be a row-vector; clearly, V ⊆ !

Relation B 1
Voo is said to be a column-vector; clearly, V ⊆ !◦

Functions are Boolean matrices f such that

! · f = ! (1)

for instance
[
1 1

]
·
[

1 0 1
0 1 0

]
=
[
1 1 1

]
NB: mind the two polymorphic copies of ! : A→ 1 in (1).
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Evolution

Alloy’s ”dot-join” r · s generalizes function composition

(f · g) x = f (g x)

to relation composition,

y (R · S) x ⇔ 〈∃ z :: y R z ∧ z S x〉

itself generalizable to matrix composition (“multiplication”)

y (M · N) x = 〈
∑

z :: (y M z)× (z N x)〉

where the infix y M z linking to relational notation is intentional.

In my view, any modelling tool should live peacefully with this
function→ relation→ matrix evolution in expressiveness.
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The evolution

Determinism (functions):

• Functional programming (FP)

• Imperative programming (if restricted)

Non-determinism (relations):

• Logic programming

• Relational modelling

Probabilism (matrices):

• Probabilistic modelling

• Quantum programming
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Probabilistic functions

Function

��

f =

1 0 0 0
0 1 0 1
0 0 1 0



Probabilistic function

b·c

��

g =

1 0 0.5 0.1
0 0.7 0 0.9
0 0.3 0.5 0



Relation

��

d·e

hh

R = bgc =

1 0 1 1
0 1 0 1
0 1 1 0


Matrix

Both f and g satisfy (1) ; moreover, dRe =

1 0 0.5 0.5
0 0.5 0 0.5
0 0.5 0.5 0


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Probabilistic functions vs relations

Galois connection

bf c ⊆ R ⇔ f 6 dRe (2)

such that

bdRec = R

— that is, d e is injective and b c is surjective.

This enables us to regard the latter (supports) as a relational
abstract interpretation of probabilistic functions (PF).

The preorder (6) ranks PFs according to (lack of) uniformity.
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Monoidal categories

Every stage in the hierarchy forms a monoidal category whose
composition has been given already, and whose tensor is based
on pairing:

M ⊗ N = (M · fst) O (N · snd) (3)

Pairing is a weak product for PFs:

k = M O N ⇒
{

fst · k = M
snd · k = N

A A× B
fstoo snd // B

C

MON

OO

N

<<

M

bb

For pure functions this becomes a full categorial product.
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Probabilistic pairing (Khatri-Rao)

In summary: weak product still grants the cancellation rule,

fst · (M O N) = M ∧ snd · (M O N) = N

cf. e.g.

2 2× 3
fst=

[
1 1 1 0 0 0
0 0 0 1 1 1

]
oo

snd=

[
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

]
// 3

4

MON=


0.15 0.12 0 0
0.35 0.06 0 0.75
0 0.12 0 0

0.15 0.28 0.1 0
0.35 0.14 0.2 0.25
0 0.28 0.7 0



OO

N=

[
0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

]

;;

M=

[
0.5 0.3 0 0.75
0.5 0.7 1 0.25

]

cc
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Probabilistic pairing (entanglement)

... but reconstruction

X = (fst · X ) O (snd · X )

doesn’t hold in general, cf. e.g.

X : 2→ 2× 3

X =


0 0.4

0.2 0
0.2 0.1
0.6 0.4
0 0
0 0.1


(fst · X ) O (snd · X ) =


0.24 0.4
0.08 0
0.08 0.1
0.36 0.4
0.12 0
0.12 0.1


X is not recoverable from its projections: Khatri-Rao not surjective.

(Entangled distributions on pairs fall outside the range of the
Khatri-Rao product.)
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Illustration

Example adapted from

[ https://en.wikipedia.org/wiki/Bayesian_network ]

Control a sprinkler to wet the grass in case it does not rain.

https://en.wikipedia.org/wiki/Bayesian_network
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Functional (deterministic) model

S = R = G = 2

sprinkler : R → S
sprinkler r = ¬ r

grass : S × R → G
grass (s, r) = s ∨ r

rain ∈ {0, 1}

G × (S × R)

S × R

grassOid
OO

R

sprinklerOid
OO

1

rain

OO

Grass always wet:

grass (sprinkler r , r) = ¬ r ∨ r = T

Altogether, two possible states {(1, (1, 0)), (1, (0, 1))} of type:

G × (S × R) 1
stateoo = (grass O id) · (sprinkler O id) · rain
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Bayesian networks

Previous model is not realistic — the picture actually found on
Wikipedia is:
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Bayesian network (probabilistic model)

Let

S = R = G = 2

S R
sprinkleroo =

[
0.60 0.99
0.40 0.01

]
R 1

rainoo =

[
0.80
0.20

]
G S × R

grassoo =

[
1.00 0.20 0.10 0.01

0 0.80 0.90 0.99

]

G × (S × R)

S × R

grassOid
OO

R

sprinklerOid
OO

1

rain

OO

The “same” state arrow

G × (S × R) 1
stateoo = (grass O id) · (sprinkler O id) · rain

but over a different category (next slide).
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Bayesian network (probabilistic model)

G × (S × R) 1
stateoo =

G S R

dry
off

no 0.4800
yes 0.0396

on
no 0.0320
yes 0.0000

wet
off

no 0.0000
yes 0.1584

on
no 0.2880
yes 0.0020

Moreover, we can define

1 G × (S × R)
grass wetoo = [0 1] · fst

1 G × (S × R)
rainingoo = [0 1] · snd · snd

etc. to obtain e.g. Pstate(grass wet) = grass wet · state = 44.84%.
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Bayesian network querying

Conditional probabilities over state distribution δ:

Pδ(a | b) =
(a× b) · δ

b · δ
where 1 S

a,boo 1
δoo (4)

Boolean vectors a and b describe event sets.

Recall

G × (S × R)

grass wet,raining
��

R
(grassOid)·(sprinklerOid)oo

1 1

rain

OO
δ

ll

(grass wet×raining)·δ
grass wet·δ

oo

Forwards: Pδ(grass wet | raining) = 80.19%

Backwards: Pδ(raining | grass wet) = 35.77%
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By the way

Bayes theorem:

P(a | b) = P(b | a)
P(a)

P(b)
(5)

cf. (assuming δ : 1→ S):

Pδ(a | b) = Pδ(b | a)
Pδ(a)

Pδ(b)

⇔ { trivial }

Pδ(a | b) Pδ(b) = Pδ(b | a) Pδ(a)

⇔ { (4) twice }

(a× b) · δ = (b × a) · δ
�
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Towards probabilistic contracts

Pδ(raining | grass wet) = 35.77% — backwards reasoning — is
suggestive of (weakest) precondition validation — in a sense, it tells
how important raining is as cause for the grass to be wet (effect).

Note that probabilistic function

f : R → S × G

f = (fst O grass) · (sprinkler O id)

that is,

f =

no yes

off
dry 0.6 0.198
wet 0 0.792

on
dry 0.04 0.010
wet 0.36 0.001

describes a system that reacts to raining.
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Towards probabilistic contracts

In what sense — measure? — can we say that some f satisfies the
contract

grass wet raining
foo (6)

and what does (6) mean?

Back to pure function f : Y ← X :

q p
foo ⇔ 〈∀ x : x ∈ X : p x ⇒ q (f x)〉

or, if you wish,

q p
foo ⇔ ¬ 〈∃ x : x ∈ X : p x ∧ ¬ q (f x)〉
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Towards probabilistic contracts

That is, model checking q p
foo means finding those x ∈ X

that violate the contract.

In a probabilistic setting, such x ∈ X are captured by a
distribution vector δ : 1→ X .

Term q (f x) will then correspond to scalar 1 1
q·f ·δoo — a

probability.

But first we have to regard f as a (kind of) probabilistic relation,
as in the Bayesian network above.

That is, we need to have access to the I/O behaviour of f .
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Towards probabilistic contracts

Recall that a probabilistic function f : A→ B (PF) is half way
between pure functions and relations: ! · f = ! holds and their
support bf c is a relation of the same type A→ B.

Below we will take PF

f =

a1 a2 a3
b1 0.7 0.01 1
b2 0.3 0.99 0

as example, with support

bf c =

a1 a2 a3
b1 1 1 1
b2 1 1 0

This support (a
relation) can be
mapped back to the PF

a1 a2 a3
b1 0.5 0.5 1
b2 0.5 0.5 0

as seen before.
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Towards probabilistic contracts

The I/O behaviour of f
knowing the distribution δ
of the inputs is given by γ
in

1

δ
��

γ

||
B × A A

f Oidoo

Example (f as before):

δ =

A

a1 0.1
a2 0.2
a3 0.7

Then

γ =

B × A

(b1, a1) 0.070
(b1, a2) 0.002
(b1, a3) 0.700
(b2, a1) 0.030
(b2, a2) 0.198
(b2, a3) 0



Prelude Probabilism Pobabilistic contracts References

Measuring probabilistic contracts

Let us define:

[[ q p
foo ]]δ = Pγ(q · fst | p · snd) (7)

where γ = (f O id) · δ — check the diagram below:

1

δ
��

γ

||
B × A

fst
��

snd

;; A
f Oidoo

fqq

p

��
B

q

;; 1

In the next slide we show that (7) simplifies
to

[[ q p
foo ]]δ = (q · f × p) · δ

p · δ
(8)

where × is the Hadamard product.
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Measuring probabilistic contracts

[[ q p
foo ]]δ

= { definition (7) }

P(f Oid)·δ(q · fst | p · snd)

= { definitions (4) and (13); snd · (f O id) = id }

(q on p) · (f O id) · δ
p · δ

= { (12) }

(q · f × p) · δ

p · δ

Case p = true simplifies to [[ q true
foo ]]δ = q · f · δ.
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Measuring probabilistic contracts

Going pointwise:

[[ q p
foo ]]δ =

〈
∑

b, a : q b ∧ p a : (b f a) (δ a)〉
〈
∑

a : p a : δ a〉

Useful LA properties:

(M O N)◦ · (P O Q) = (M◦ · P)× (N◦ · Q) (9)

(P on Q)◦ = P◦ O Q◦ (10)

(M on N) · (P ⊗ Q) = M · P on N · Q (11)

(P on Q) · (F O G ) = (P · F )× (Q · G ) (12)

P on Q = (P · fst)× (Q · snd) (13)
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Measuring probabilistic contracts

Example, recalling

f =

a1 a2 a3
b1 0.7 0.01 1
b2 0.3 0.99 0

and input δ =
a1 0.1
a2 0.2
a3 0.7

Then, for instance,

{b2} {a1, a2}foo = 76%

{b2} {a3}foo = 0%

{b2} true
foo = 22.8%

true {a1, a2}foo = 100%

etc
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Model checking probabilistic contracts

In Alloy, given

assert contract { all a:A | p[a] => q[a.f] }

by executing

check contract for ... A

the tool will try and find a such that p a ∧ ¬ q (f a) holds.

Now let f be probabilistic. In the future one may imagine
submitting something like

check contract >= 80% for ... A

hoping the tool cannot find δ such that [[ q p
foo ]]δ < 0.8.
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Towards a Probabilistic Alloy

Under the finite scope assumption, this boils down to solving classical
systems of inequations:

[[ p q
foo ]]δ < k

⇔ { recall q on p = (q · fst)× (p · snd) (13) }

(q on p) · (f O id) · δ
p · δ

< k

⇔ { as before, re-arranging }

〈
∑

b, a : q b ∧ p a : (b f a) (δ a)〉< 〈
∑

a : p a : k δ a〉

Example: find δ such that [[ {b2} {a1, a2}
foo ]]δ < 0.8 (next slide):
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Towards a Probabilistic Alloy

b2 f a1︸ ︷︷ ︸
0.3

δ a1︸︷︷︸
x

+ b2 f a2︸ ︷︷ ︸
0.99

δ a2︸︷︷︸
y

<0.8 δ a1︸︷︷︸
x

+0.8 δ a2︸︷︷︸
y

⇔ { trivia }

0.19 y < 0.5 x

⇔ { x + y = 1 choosing δ a3 = 0 }

0.19 (1− x)< 0.5 x

⇔ { solving }

0.19

0.69
< x

�

Choose e.g. δ =

0.30.7
0

 and get [[ {b2} {a1, a2}
foo ]]δ = 0.783.
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How I have worked thus far...

”Oldie but goodie”
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Calculating probabilistic contracts

I didn’t make a full sanity check of contract validity yet, but some
expected laws are easy to check, cf. e.g.

[[ true p
foo ]]δ

= { unfold definition, true = > (1s everywhere) }

(>× p · snd) · (f O id) · δ
p · δ

= { Hadamard product: >×M = M, snd · (f O id) = id }

p · δ
p · δ

= { trivia }

1

�
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Calculating probabilistic contracts

But note that

[[ p false
goo ]]δ =

(p · fst ×⊥ · snd) · (g O id) · δ
⊥ · δ

=
0

0

is mathematically undetermined...

Now let us have a look at the sequence q r
f ·goo of two

contracts q p
foo and p r

goo .

To begin with, let us handle the special case q true
foo and

p true
goo . We calculate (next slide):
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Calculating probabilistic contracts

[[ p true
goo ]]δ 6 1

⇒ { multliply both sides by the same validity }

(q · f · g · δ)× [[ p true
goo ]]δ 6 q · f · g · δ

⇔ { associativity }

(q · f · (g · δ))× [[ p true
goo ]]δ 6 q · (f · g) · δ

⇔ { definition (twice) }

[[ q true
foo ]]g ·δ × [[ p true

goo ]]δ 6 [[ q true
f ·goo ]]δ
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Calculating probabilistic contracts

This suggests the generic inference rule:

[[ q p
foo ]]g ·δ × [[ p r

goo ]]δ 6 [[ q r
f ·goo ]]δ

Example: f is as before and

g =

c1 c2 c3
a1 0.4 0.2 0
a2 0 0.8 0
a3 0.6 0 1

for input δ =
c1 0.1
c2 0.2
c3 0.7

We have {a1, a2} {c2, c3}
goo = 22% for such δ.
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Calculating probabilistic contracts
Because f receives outputs from g , the distribution of its inputs will be

g · δ =
a1 0.08
a2 0.16
a3 0.76

We measure {b2} {a1, a2}
foo = 76% for g · δ, the same by

coincidence.

So the joint probability of both contracts holding is

[[ {b2} {a1, a2}
foo ]]g ·δ × [[ {a1, a2} {c2, c3}

goo ]]δ
= 0.22× 0.76

= 16.72%

This is smaller than the probability of the composite contract holding:

[[ {b2} {c2, c3}
f ·goo ]]δ = 18.93%.
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Calculating probabilistic contracts

However, this rule does not always hold (!), as the following
counter-example shows:

[[ {b2} {c1}
f ·goo ]]δ︸ ︷︷ ︸
12%

< [[ {b2} {a1, a2}
foo ]]g·δ︸ ︷︷ ︸

76%

× [[ {a1, a2} {c1}
goo ]]δ︸ ︷︷ ︸

40%

This recalls a similar problem identified long ago by McIver and
Morgan (2005): probabilistic Hoare triples not compositional in
general...

But our setting here is simpler (e.g. no demonic choice).
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Current work

Currently checking this and other rules (calculating side
conditions).

Further to (McIver and Morgan, 2005), there is recent work in the
literature about conditioning in probabilistic programming, see
e.g. (Gretz et al., 2015), which can be of help.

Also algorithms that use ideas from program analysis in
probabilistic programming, see e.g. (Nori et al., 2014).

Carroll’s suggestion at the meeting: McIver et al. (2008)
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Afterthought

Recall matrix
supports.

Can the current
Alloy relational
engine help in
finding the
counter-example
distributions, as a
kind of AI?

f = b c, g = d e
etc.
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