
Transforming Data by Calculation

J.N. Oliveira

Ref. [Ol08a] — 2008

J.N. Oliveira. Transforming Data by Calculation. In GTTSE 2007, volume 5235 of LNCS, pages 134–192, 2008.

Transforming Data by Calculation

José N. Oliveira

CCTC, Universidade do Minho, 4700-320 Braga, Portugal

jno@di.uminho.pt

Abstract. This paper addresses the foundations of data-model transformation. A

catalog of data mappings is presented which includes abstraction and representa-

tion relations and associated constraints. These are justified in an algebraic style

via the pointfree-transform, a technique whereby predicates are lifted to binary

relation terms (of the algebra of programming) in a two-level style encompassing

both data and operations. This approach to data calculation, which also includes

transformation of recursive data models into “flat” database schemes, is offered

as alternative to standard database design from abstract models. The calculus is

also used to establish a link between the proposed transformational style and bidi-

rectional lenses developed in the context of the classical view-update problem.

Keywords: Theoretical foundations, mapping scenarios, transformational design,

refinement by calculation.

1 Introduction

Watch yourself using a pocket calculator: every time a digit key is pressed, the corre-

sponding digit is displayed on the LCD display once understood by the calculator, a

process which includes representing it internally in binary format:

digits

input

��
binary

display

��

This illustrates the main ingredients of one’s everyday interaction with machines: the

abstract objects one has in mind (eg. digits, numbers, etc) need to be represented inside

the machine before this can perform useful calculations, eg. square root, as displayed

in the diagram below.

digits digits

input

��
binary

display

��

binary

√
��

However, it may happen that our calcu-

lator is faulty. For instance, sometimes the

digit displayed is not the one whose key was

just pressed; or nothing at all is displayed; or

even the required operation (such as triggered

by the square root key) is not properly com-

puted. It is the designer’s responsibility to

ensure that the machine we are using never

misbehaves and can thus be trusted.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 134–195, 2008.

c© Springer-Verlag Berlin Heidelberg 2008

Transforming Data by Calculation 135

When using machines such as computers or calculators, one is subcontracting

mechanical services. Inside the machine, the same subcontracting process happens

again and again: complex routines accomplish their tasks by subcontracting (simpler)

routines, and so on and so forth. So, the data representation process illustrated above for

the (interaction with a) pocket calculator happens inside machines every time a routine

is called: input data are to be made available in the appropriate format to the subcon-

tracted routine, the result of which may need to change format again before it reaches

its caller.

Such data represent/retrieve processes (analogue to the input/display process

above) happen an uncountable number of times even in simple software systems. Sub-

contracting thus being the essence of computing (as it is of any organized society),

much trouble is to be expected once represent/retrieve contracts fail: the whole ser-

vice as subcontracted from outside is likely to collapse.

Three kinds of fault have been identified above: loss of data, confusion among data

and wrong computation. The first two have to do with data representation and the third

with data processing. Helping in preventing any of these from happening in software

designs is the main aim of this paper.

We will see that most of the work has to do with data transformation, a technique

which the average programmer is often unaware of using when writing, most often in

an ‘ad hoc’ way, middleware code to “bridge the gap” between two different technology

layers. The other part of the story — ensuring the overall correctness of software sub-

contracts — has to do with data refinement, a well established branch of the software

sciences which is concerned with the relationship between (stepwise) specification and

implementation.

Structure of the paper. This paper is organized as follows. Section 2 presents the over-

all spirit of the approach and introduces a simple running example. Section 3 reviews

the binary relation notation and calculus, referred to as the pointfree (PF) transform.

Section 4 shows how to denote the meaning of data in terms of such unified notation.

Section 5 expresses data impedance mismatch in the PF-style. While sections 6 to 8

illustrate the approach in the context of (database) relational modeling, recursive data

modeling is addressed from section 9 onwards. Then we show how to handle cross-

paradigm impedance by calculation (section 10) and how to transcribe operations from

recursive to flat data models (section 11). Section 12 addresses related work. In particu-

lar, it establishes a link between data mappings and bidirectional lenses developed in the

context of the view-update problem and reviews work on a library for data transforma-

tions (2LT) which is strongly related to the current paper. Finally, section 13 concludes

and points out a number of research directions in the field.

Technical sketch of the paper. This text puts informal, technology dependent approaches

to data transformation together with data calculation formalisms which are technology

agnostic. It is useful to anticipate how such schools of thought are related along the

paper, while pinpointing the key formal concepts involved.

The main motivation for data calculation is the need for data-mappings as introduced

in section 2: one needs to ensure that data flow unharmed across the boundaries of

software layers which use different technologies and/or adopt different data models. On

136 J.N. Oliveira

the technical side, this is handled (in section 2) by ordering data formats by degree of

abstraction and writing A ≤ B wherever format A is safely implemented by format

B. Technically, ≤ is a preorder and ≤-facts are witnessed by relations telling how data

should flow back and forth between formats A and B.

The need for handling such relations in a compositional, calculational way leads to

the relational calculus and the pointfree transform. The whole of section 3 is devoted

to providing a summary of the required background, whose essence lies in a number of

laws which can be used to calculate with relations directly (instead of using set theory

to indirectly convey the same results). The fact that all relations are binary is not a hand-

icap: they can be thought of as arrows of the form A
R ��B which express data flow

in a natural way and can be composed with each other to express more complex data

flows. Data filtering is captured by relations of a particular kind, known as coreflexives,

which play a prominent role throughout the whole calculus.

The bridge between formal and informal data structuring becomes more apparent

from section 4 onwards, where typical data structures are shown to be expressible not

only in terms of abstract constructs such as Cartesian product (A × B), disjoint sum

(A + B) and equations thereof (as in the case of recursive types), but also in terms

of typed finite relations, thus formalizing the way data models are recorded by entity-

relationship diagrams or UML class diagrams, for instance.

Further to structure, constraints (also known as invariants) are essential to data mod-

eling, making it possible to enforce semantic properties on data. Central to such data

constraints is membership, a relation of type A TA
∈�� which is able to tell which

data elements can be found in a particular data structure of shape T. The key ingredient

at this point is the fact that set-theoretic membership can be extended to data containers

other than sets.

Sections 5 and 6 are central to the whole paper: they show how to calculate complex

data mappings by combining a number of ≤-rules which are proposed and justified

using (pointfree) relation calculus. Compositionality is achieved in two ways: by tran-

sitivity, suitably typed ≤-rules can be chained; by monotonicity, they can be promoted

from the parameters of a parametric type T to the whole type, for instance by inferring

TA ≤ TB from A ≤ B. The key of the latter result consists in regarding T as a relator,

a concept which traverses relation calculus from beginning to end and explains, in the

current paper, data representation techniques such as those involving dynamic heaps

and pointer dereferencing. On the practical side, a number of ≤-facts are shown to be

applicable to calculating database schemata from abstract models (sections 6 and 7) and

reasoning about entity-relationship diagrams (section 8).

Abstract (and language-based) data models often involve recursive data which pose

challenges of their own to data mapping formalization. Sections 9 to 11 show how the

calculus of fixpoint solutions to relational equations (known as hylomorphisms) offers

a basis for refining recursive data structures. This framework is set to work in section

10 where it is applied to the paper’s running example, the PTree recursive model

of pedigree trees, which is eventually mapped onto a flat, non-recursive model, after

stepping through a pointer-based representation. The layout of calculations not only

captures the ≤ relationships among source, intermediate and target data models, but

Transforming Data by Calculation 137

also the abstraction and representation relations implicit in each step, which altogether

synthesize two overall ‘map forward” and “map backward” data transformations.

Section 11 addresses the transcription level, the third component of a mapping sce-

nario. This has to do with refining operations whose input and output data formats have

changed according to such big-step ‘map forward” and “map backward” transforma-

tions. Technically, this can be framed into the discipline of data refinement. The exam-

ples given, which range from transcribing a query over PTree downto the level of its

flat version (obtained in section 10) to calculating low level operations handling heaps

and pointers, show once again the power of data calculation performed relationally, and

in particular the usefulness of so-called fusion-properties.

Finally, section 12 includes a sketch of how ≤-diagrams can be used to capture bidi-

rectional (asymmetric) transformations known as lenses and their properties.

2 Context and Motivation

On data representation. The theoretical foundation of data representation can be writ-

ten in few words: what matters is the no loss/no confusion principle hinted above. Let

us explain what this means by writing c R a to denote the fact that datum c represents

datum a (assuming that a and c range over two given data types A and C, respectively)

and the converse fact a R◦ c to denote that a is the datum represented by c. The use of

definite article “the” instead of “a” in the previous sentence is already a symptom of the

no confusion principle — we want c to represent only one datum of interest:

〈∀ c, a, a′ :: c R a ∧ c R a′ ⇒ a = a′〉 (1)

The no loss principle means that no data are lost in the representation process. Put in

other words, it ensures that every datum of interest a is representable by some c:

〈∀ a :: 〈∃ c :: c R a〉〉 (2)

Above we mention the converse R◦ of R, which is the relation such that a(R◦)c
holds iff c R a holds. Let us use this rule in re-writing (1) in terms of F = R◦:

〈∀ c, a, a′ :: a F c ∧ a′ F c ⇒ a = a′〉 (3)

This means that F , the converse of R, can be thought of as an abstraction relation

which is functional (or deterministic): two outputs a, a′ for the same input c are bound

to be the same.

Before going further, note the notation convention of writing the outputs of F on

the left hand side and its inputs on the right hand side, as suggested by the usual way

of declaring functions in ordinary mathematics, y = f x, where y ranges over outputs

(cf. the vertical axis of the Cartesian plane) and x over inputs (cf. the other, horizontal

axis). This convention is adopted consistently throughout this text and is extended to

relations, as already seen above 1.

1 The fact that a F c is written instead of a = F c reflects the fact that F is not a total function,

in general. See more details about notation and terminology in section 3.

138 J.N. Oliveira

Expressed in terms of F , (2) becomes

〈∀ a :: 〈∃ c :: a F c〉〉 (4)

meaning that F is surjective: every abstract datum a is reachable by F . In general, it

is useful to let the abstraction relation F to be larger that R◦, provided that it keeps

properties (3,4) — being functional and surjective, respectively — and that it stays

connected to R. This last property is written as

〈∀ a, c :: c R a ⇒ a F c〉

or, with less symbols, as

R◦ ⊆ F (5)

by application of the rule which expresses relational inclusion:

R ⊆ S ≡ 〈∀ b, a :: b R a ⇒ b S a〉 (6)

(Read R ⊆ S as “R is at most S”, meaning that S is either more defined or less

deterministic than R.)

To express the fact that (R, F) is a connected representation/abstraction pair we draw

a diagram of the form

A

R

		
≤ C

F

�� (7)

where A is the datatype of data to be represented and C is the chosen datatype of

representations 2. In the data refinement literature, A is often referred to as the abstract

type and C as the concrete one, because C contains more information than A, which is

ignored by F (a non-injective relation in general). This explains why F is referred to as

the abstraction relation in a (R, F) pair.

Layered representation. In general, it will make sense to chain several layers of ab-

straction as in, for instance,

I

R

		
≤ M

F

R′

		
≤ D

F ′

�� (8)

where letters I , M and D have been judiciously chosen so as to suggest the words

interface, middleware and dataware, respectively.

2 Diagrams such as (7) should not be confused with commutative diagrams expressing properties

of the relational calculus, as in eg. [11], since the ordering ≤ in the diagram is an ordering on

objects and not on arrows.

Transforming Data by Calculation 139

���
���

���

���

���

���

DI M

R′

R

F ′

F

Fig. 1. Layered software architecture

In fact, data become “more concrete” as

they go down the traditional layers of soft-

ware architecture: the contents of interactive,

handy objects at the interface level (often pic-

tured as trees, combo boxes and the like) be-

come pointer structures (eg. in C++/C#) as

they descend to the middleware, from where

they are channeled to the data level, where

they live as persistent database records. A

popular picture of diagram (8) above is given

in figure 1, where layers I, M and D are rep-

resented by concentric circles.

As an example, consider an interface (I)

providing direct manipulation of pedigree

trees, common in genealogy websites:

Margaret, b. 1923 Luigi, b. 1920

Mary, b. 1956 Joseph, b. 1955

�����
�����

Peter, b. 1991

�����
�����

(9)

Trees — which are the users’ mental model of recursive structures — become pointer

structures (figure 2a) once channeled to the middleware (M). For archival purposes,

such structures are eventually buried into the dataware level (D) in the form of very

concrete, persistent records of database files (cf. figure 2b).

Modeling pedigree trees will be our main running example throughout this paper.

Mapping scenarios. Once materialized in some technology (eg. XML, C/C++/Java,

SQL, etc), the layers of figure 1 stay apart from each other in different programming

paradigms (eg. markup languages, object-orientated databases, relational databases,

etc) each requiring its own skills and programming techniques.

As shown above, different data models can be compared via abstraction/represen-

tation pairs. These are expected to be more complex once the two models under com-

parison belong to different paradigms. This kind of complexity is a measure of the

impedance mismatches between the various data-modeling and data-processing para-

digms 3, in the words of reference [42] where a thorough account is given of the many

problems which hinder software technology in this respect. Still quoting [42]:

Whatever programming paradigm for data processing we choose, data has the

tendency to live on the other side or to eventually end up there. (...) This myriad

of inter- and intra-paradigm data models calls for a good understanding of

techniques for mappings between data models, actual data, and operations on

data. (...)

3 According to [3], the label impedance mismatch was coined in the early 1990’s to capture (by

analogy with a similar situation in electrical circuits) the technical gap between the object and

relational technologies. Other kinds of impedance mismatch are addressed in [42, 67].

140 J.N. Oliveira

Given the fact that IT industry is fighting with various impedance mismatches

and data-model evolution problems for decades, it seems to be safe to start a

research career that specifically addresses these problems.

The same reference goes further in identifying three main ingredients (levels) in map-

ping scenarios:

– The type-level mapping of a source data model to a target data model;
– Two maps (“map forward” and “map backward”) between source / target data;
– The transcription level mapping of source operations into target operations.

Clearly, diagram (7) can be seen as a succinct presentation of the two first ingredi-

ents, the former being captured by the ≤-ordering on data models and the latter by the

(R, F) pair of relations. The third can easily be captured by putting two instances of

(7) together, in a way such that the input and output types of a given operation, say O,

are wrapped by forward and backward data maps:

A

R

		

O

��

≤ C

F

��

P

��
B

R′

		
≤ D

F ′

��

(10)

The (safe) transcription of O into P can be formally stated by ensuring that the picture

is a commutative diagram. A typical situation arises when A and B are the same (and

so are C and D), and O is regarded as a state-transforming operation of a software

component, eg. one of its CRUD (“Create, Read, Update and Delete”) operations. Then

the diagram will ensure correct refinement of such an operation across the change of

state representation.

Data refinement. The theory behind diagrams such as (10) is known as data refinement.

It is among the most studied formalisms in software design theory and is available from

several textbooks — see eg. [20, 38, 49].

The fact that state-of-the-art software technologies don’t enforce such formal de-

sign principles in general leads to the unsafe technology which we live on today, which

is hindered by permanent cross-paradigm impedance mismatch, loose (untyped) data

mappings, unsafe CRUD operation transcription, etc. Why is this so? Why isn’t data

refinement widespread? Perhaps because it is far too complex a discipline for most

software practitioners, a fact which is mirrored on its prolific terminology — cf. down-

ward, upward refinement [31], forwards, backwards refinement [31, 48, 70], S,SP,SC-

refinement [21] and so on. Another weakness of these theories is their reliance on invent

& verify (proof) development strategies which are hard to master and get involved once

facing “real-sized” problems. What can we do about this?

The approach we propose to follow in this paper is different from the standard in two

respects: first, we adopt a transformational strategy as opposed to invention-followed-

by-verification; second, we adopt a calculational approach throughout our data trans-

formation steps. What do we mean by “calculational”?

Transforming Data by Calculation 141

• Margaret

1923

NIL

NIL

Mary

1956

NIL

NIL

Joseph

1955

•

•

Peter

1991

•

•

Luigi

1920

NIL

NIL

ID Name Birth

1 Joseph 1955

2 Luigi 1920

3 Margaret 1923

4 Mary 1956

5 Peter 1991

ID Ancestor ID

5 Father 1

5 Mother 4

1 Father 2

1 Mother 3

(a) (b)

Fig. 2. Middleware (a) and dataware (b) formats for family tree sample data (9)

Calculational techniques. Let us briefly review some background. The idea of using

mathematics to reason about and transform programs is an old one and can be traced

back to the times of McCarthy’s work on the foundations of computer programming

[46] and Floyd’s work on program meaning [26]. A so-called program transformation

school was already active in the mid 1970s, see for instance references [16, 19]. But pro-

gram transformation becomes calculational only after the inspiring work of J. Backus

in his algebra of (functional) programs [7] where the emphasis is put on the calculus of

functional combinators rather than on the λ-notation and its variables, or points. This is

why Backus’ calculus is said to be point-free.

Intensive research on the (pointfree) program calculation approach in the last thirty

years has led to the algebra of programming discipline [5, 11]. The priority of this

discipline has been, however, mostly on reasoning about algorithms rather than data

structures. Our own attempts to set up a calculus of data structures date back to

[51, 52, 53] where the ≤-ordering and associated rules are defined. The approach, how-

ever, was not agile enough. It is only after its foundations are stated in the pointfree

style [54, 56] that succinct calculations can be performed to derive data representations.

142 J.N. Oliveira

Summary. We have thus far introduced the topic of data representation framed in two

contexts, one practical (data mapping scenarios) and the other theoretical (data refine-

ment). In the remainder of the paper the reader will be provided with strategies and tools

for handling mapping scenarios by calculation. This is preceded by the section which

follows, which settles basic notation conventions and provides a brief overview of the

binary relational calculus and the pointfree-transform, which is essential to understand-

ing data calculations to follow. Textbook [11] is recommended as further reading.

3 Introducing the Pointfree Transform

By pointfree transform [60] (“PF-transform” for short) we essentially mean the conver-

sion of predicate logic formulæ into binary relations by removing bound variables and

quantifiers — a technique which, initiated by De Morgan in the 1860s [61], eventually

led to what is known today as the algebra of programming [5, 11]. As suggested in

[60], the PF-transform offers to the predicate calculus what the Laplace transform [41]

offers to the differential/integral calculus: the possibility of changing the underlying

mathematical space in a way which enables agile algebraic calculation.

Theories “refactored” via the PF-transform become more general, more structured

and simpler [58, 59, 60]. Elegant expressions replace lengthy formulæ and easy-to-

follow calculations replace pointwise proofs with lots of “· · ·” notation, case analyses

and natural language explanations for “obvious” steps.

The main principle of the PF-transform is that “everything is a binary relation” once

logical expressions are PF-transformed; one thereafter resorts to the powerful calculus

of binary relations [5, 11] until proofs are discharged or solutions are found for the

original problem statements, which are mapped back to logics if required.

Relations. Let arrow B A
R�� denote a binary relation on datatypes A (source) and

B (target). We will say that B A�� is the type of R and write b R a to mean that

pair (b, a) is in R. Type declarations B A
R�� and A

R ��B will mean the same.

R ∪ S (resp. R ∩ S) denotes the union (resp. intersection) of two relations R and S.

⊤ is the largest relation of its type. Its dual is ⊥, the smallest such relation (the empty

one). Two other operators are central to the relational calculus: composition (R · S)

and converse (R◦). The latter has already been introduced in section 2. Composition is

defined in the usual way: b(R · S)c holds wherever there exists some mediating a such

that bRa ∧ aSc. Thus we get one of the kernel rules of the PF-transform:

b(R · S)c ≡ 〈∃ a :: bRa ∧ aSc〉 (11)

Note that converse is an involution

(R◦)◦ = R (12)

and commutes with composition:

(R · S)◦ = S◦ · R◦ (13)

Transforming Data by Calculation 143

All these relational operators are ⊆-monotonic, where ⊆ is the inclusion partial order

(6). Composition is the basis of (sequential) factorization. Everywhere T = R ·S holds,

the replacement of T by R·S will be referred to as a “factorization” and that of R·S by T

as “fusion”. Every relation B A
R�� allows for two trivial factorizations, R = R · idA

and R = idB ·R where, for every X , idX is the identity relation mapping every element

of X onto itself. (As a rule, subscripts will be dropped wherever types are implicit or

easy to infer.) Relational equality can be established by ⊆-antisymmetry:

R = S ≡ R ⊆ S ∧ S ⊆ R (14)

Coreflexives and orders. Some standard terminology arises from the id relation: a

(endo) relation A A
R�� (often called an order) will be referred to as reflexive iff

id ⊆ R holds and as coreflexive iff R ⊆ id holds. Coreflexive relations are fragments

of the identity relation which model predicates or sets. They are denoted by uppercase

Greek letters (eg. Φ, Ψ) and obey a number of interesting properties, among which we

single out the following, which prove very useful in calculations:

Φ · Ψ = Φ ∩ Ψ = Ψ · Φ (15)

Φ◦ = Φ (16)

The PF-transform of a (unary) predicate p is the coreflexive Φp such that

b Φp a ≡ (b = a) ∧ (p a)

that is, the relation that maps every a which satisfies p (and only such a) onto itself. The

PF-meaning of a set S is Φλa.a∈S , that is, b ΦS a means (b = a) ∧ a ∈ S.

Preorders are reflexive and transitive relations, where R is transitive iff R · R ⊆
R holds. Partial orders are anti-symmetric preorders, where R being anti-symmetric

means R ∩ R◦ ⊆ id. A preorder R is an equivalence if it is symmetric, that is, if

R = R◦.

Taxonomy. Converse is of paramount importance in establishing a wider taxonomy of

binary relations. Let us first define two important notions: the kernel of a relation R,

ker R
def
= R◦ ·R and its dual, img R

def
= R ·R◦, the image of R 4. From (12, 13) one

immediately draws

ker (R◦) = img R (17)

img (R◦) = ker R (18)

Kernel and image lead to the following terminology:

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

(19)

4 As explained later on, these operators are relational extensions of two concepts familiar from

set theory: the image of a function f , which corresponds to the set of all y such that 〈∃ x ::
y = f x〉, and the kernel of f , which is the equivalence relation b(ker f)a ≡ f b = f a .

(See exercise 3.)

144 J.N. Oliveira

In words: a relation R is said to be entire (or total) iff its kernel is reflexive and to be

simple (or functional) iff its image is coreflexive. Dually, R is surjective iff R◦ is entire,

and R is injective iff R◦ is simple.

Recall that part of this terminology has already been mentioned in section 2. In this

context, let us check formula (1) against the definitions captured by (19) as warming-up

exercise in pointfree-to-pointwise conversion:

〈∀ c, a, a′ :: c R a ∧ c R a′ ⇒ a = a′〉

≡ { rules of quantification [5] and converse }

〈∀ a, a′ : 〈∃ c :: a R◦ c ∧ c R a′〉 : a = a′〉

≡ { (11) and rules of quantification }

〈∀ a, a′ :: a(R◦ · R)a′ ⇒ a = a′〉

≡ { (6) and definition of kernel }

ker R ⊆ id

Exercise 1. Derive (2) from (19). �

Exercise 2. Resort to (17,18) and (19) to prove the following four rules of thumb:

– Converse of injective is simple (and vice-versa)

– Converse of entire is surjective (and vice-versa)

– Smaller than injective (simple) is injective (simple)

– Larger than entire (surjective) is entire (surjective) �

A relation is said to be a function iff it is both simple and entire. Following a

widespread convention, functions will be denoted by lowercase characters (eg. f , g, φ)

or identifiers starting with lowercase characters. Function application will be denoted

by juxtaposition, eg. f a instead of f(a). Thus bfa means the same as b = f a.

The overall taxonomy of binary relations is pictured in figure 3 where, further to the

standard classes, we add representations and abstractions. As seen already, these are

the relation classes involved in ≤-rules (7). Because of ⊆-antisymmetry, img F = id

wherever F is an abstraction and ker R = id wherever R is a representation.

Bijections (also referred to as isomorphisms) are functions, abstractions and rep-

resentations at the same time. A particular bijection is id, which also is the smallest

equivalence relation on a particular data domain. So, b id a means the same as b = a.

Functions and relations. The interplay between functions and relations is a rich part

of the binary relation calculus [11]. For instance, the PF-transform rule which follows,

involving two functions (f, g) and an arbitrary relation R

b(f◦ · R · g)a ≡ (f b)R(g a) (20)

plays a prominent role in the PF-transform [4]. The pointwise definition of the kernel

of a function f , for example,

b(ker f)a ≡ f b = f a (21)

Transforming Data by Calculation 145

binary relation

�������������
��

�
��

�
���������������

injective
��

entire
��

� ���
simple

��
�

���

surjective
		

	

representation
��

function
��

�
��

�
abstraction

injection
��

surjection
���

bijection

Fig. 3. Binary relation taxonomy

stems from (20), whereby it is easy to see that ⊤ is the kernel of every constant function,

1 A
!�� included. (Function ! — read “!” as “bang” — is the unique function of its

type, where 1 denotes the singleton data domain.)

Exercise 3. Given a function B A
f�� , calculate the pointwise version (21) of ker f

and show that img f is the coreflexive associated to predicate p b=〈∃ a :: b=f a〉.�

Given two preorders ≤ and ⊑, one may relate arguments and results of pairs of suitably

typed functions f and g in a particular way,

f◦· ⊑ = ≤ · g (22)

in which case both f, g are monotone and said to be Galois connected. Function f (resp.

g) is referred to as the lower (resp. upper) adjoint of the connection. By introducing

variables in both sides of (22) via (20), we obtain, for all a and b

(f b) ⊑ a ≡ b ≤ (g a) (23)

Quite often, the two adjoints are sections of binary operators. Given a binary operator

θ, its two sections (aθ) and (θb) are unary functions f and g such that, respectively:

f = (aθ) ≡ f b = a θ b (24)

g = (θb) ≡ g a = a θ b (25)

Galois connections in which the two preorders are relation inclusion (≤,⊑ := ⊆,⊆)

and whose adjoints are sections of relational combinators are particularly interesting

because they express universal properties about such combinators. Table 1 lists connec-

tions which are relevant for this paper.

It is easy to recover known properties of the relation calculus from table 1. For in-

stance, the entry marked “shunting rule” leads to

h · R ⊆ S ≡ R ⊆ h◦ · S (26)

for all h, R and S. By taking converses, one gets another entry in table 1, namely

R · h◦ ⊆ S ≡ R ⊆ S · h (27)

146 J.N. Oliveira

Table 1. Sample of Galois connections in the relational calculus. The general formula given on

top is a logical equivalence universally quantified on S and R. It has a left part involving lower

adjoint f and a right part involving upper adjoint g.

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

converse ()◦ ()◦

shunting rule (h·) (h◦·) h is a function

“converse” shunting rule (·h◦) (·h) h is a function

domain δ (⊤·) left ⊆ restricted to coreflexives

range ρ (·⊤) left ⊆ restricted to coreflexives

difference (− R) (R ∪)

These equivalences are popularly known as “shunting rules” [11]. The fact that at most

and equality coincide in the case of functions

f ⊆ g ≡ f = g ≡ f ⊇ g (28)

is among many beneficial consequences of these rules (see eg. [11]).

It should be mentioned that some rules in table 1 appear in the literature under dif-

ferent guises and usually not identified as GCs 5. For a thorough presentation of the

relational calculus in terms of GCs see [1, 5]. There are many advantages in such an

approach: further to the systematic tabulation of operators (of which table 1 is just a

sample), GCs have a rich algebra of properties, namely:

– Both adjoints f and g in a GC are monotonic;
– Lower adjoint f commutes with join and upper-adjoint g commutes with meet,

wherever these exist;
– Two cancellation laws hold, b ≤ g(f b) and f (g a) ⊑ a , respectively known as

left-cancellation and right-cancellation.

It may happen that a cancellation law holds up to equality, for instance f (g a) = a, in

which case the connection is said to be perfect on the particular side [1].

Simplicity. Simple relations (that is, partial functions) will be particularly relevant in

the sequel because of their ubiquity in software modeling. In particular, they will be

used in this paper to model data identity and any kind of data structure “embodying a

functional dependency” [58] such as eg. relational database tables, memory segments

(both static and dynamic) and so on.

In the same way simple relations generalize functions (figure 3), shunting rules (26,

27) generalize to

S · R ⊆ T ≡ (δ S) · R ⊆ S◦ · T (29)

R · S◦ ⊆ T ≡ R · δ S ⊆ T · S (30)

5 For instance, the shunting rule is called cancellation law in [70].

Transforming Data by Calculation 147

for S simple. These rules involve the domain operator (δ) whose GC, as mentioned in

table 1, involves coreflexives on the lower side:

δ R ⊆ Φ ≡ R ⊆ ⊤ · Φ (31)

We will draw harpoon arrows B A
R� or A

R �B to indicate that R is simple.

Later on we will need to describe simple relations at pointwise level. The notation we

shall adopt for this purpose is borrowed from VDM [38], where it is known as mapping

comprehension. This notation exploits the applicative nature of a simple relation S by

writing b S a as a ∈ dom S ∧ b = S a, where ∧ should be understood non-strict

on the right argument 6 and dom S is the set-theoretic version of coreflexive δ S above,

that is,

δ S = Φdom S (32)

holds (cf. the isomorphism between sets and coreflexives). In this way, relation S itself

can be written as {a �→ S a | a ∈ dom S} and projection f · S · g◦ as

{g a �→ f(S a) | a ∈ dom S} (33)

provided g is injective (thus ensuring simplicity).

Exercise 4. Show that the union of two simple relations M and N is simple iff the

following condition holds:

M · N◦ ⊆ id (34)

(Suggestion: resort to universal property (R ∪ S) ⊆ X ≡ R ⊆ X ∧ S ⊆ X .)

Furthermore show that (34) converts to pointwise notation as follows,

〈∀ a :: a ∈ (dom M ∩ dom N) ⇒ (M a) = (N a)〉

— a condition known as (map) compatibility in VDM terminology [25]. �

Exercise 5. It will be useful to order relations with respect to how defined they are:

R � S ≡ δ R ⊆ δ S (35)

From ⊤ = ker ! draw another version of (35), R � S ≡ ! · R ⊆ ! · S, and use it to

derive

R · f◦ � S ≡ R � S · f (36)

�

Operator precedence. In order to save parentheses in relational expressions, we define

the following precedence ordering on the relational operators seen so far:

◦ > {δ , ρ } > (·) > ∩ > ∪

Example: R · δ S◦ ∩ T ∪ V abbreviates ((R · (δ (S◦))) ∩ T) ∪ V .

6 VDM embodies a logic of partial functions (LPF) which takes this into account [38].

148 J.N. Oliveira

Summary. The material of this section is adapted from similar sections in [59, 60],

which introduce the reader to the essentials of the PF-transform. While the notation

adopted is standard [11], the presentation of the associated calculus is enhanced via

the use of Galois connections, a strategy inspired by two (still unpublished) textbooks

[1, 5]. There is a slight difference, perhaps: by regarding the underlying mathematics

as that of a transform to be used wherever a “hard” formula 7 needs to be reasoned

about, the overall flavour is more practical and not that of a fine art only accessible to

the initiated — an aspect of the recent evolution of the calculus already stressed in [40].

The table below provides a summary of the PF-transform rules given so far, where

left-hand sides are logical formulæ (ψ) and right-hand sides are the corresponding PF

equivalents ([[ψ]]):

ψ [[ψ]]

〈∀ a, b :: b R a ⇒ b S a〉 R ⊆ S

〈∀ a :: f a = g a〉 f ⊆ g

〈∀ a :: a R a〉 id ⊆ R

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a

b R a ∨ b S a b (R ∪ S) a

(f b) R (g a) b(f◦ · R · g)a
TRUE b ⊤ a

FALSE b ⊥ a

(37)

Exercise 6. Prove that relational composition preserves all relational classes in the tax-

onomy of figure 3. �

4 Data Structures

One of the main difficulties in studying data structuring is the number of disparate (inc.

graphic) notations, programming languages and paradigms one has to deal with. Which

should one adopt? While graphical notations such as the UML [15] are gaining adepts

everyday, it is difficult to be precise in such notations because their semantics are, as a

rule, not formally defined.

Our approach will be rather minimalist: we will map such notations to the PF-

notation whose rudiments have just been presented. By the word “map” we mean a

light-weight approach in this paper: presenting a fully formal semantics for the data

structuring facilities offered by any commercial language or notation would be more

than one paper in itself.

The purpose of this section is two fold: on the one hand, to show how overwhelming

data structuring notations can be even in the case of simple data models such as our

family tree (running) example; on the other hand, to show how to circumvent such dis-

parity by expressing the same models in PF-notation. Particular emphasis will be put

on describing Entity-relationship diagrams [30]. Later on we will go as far as capturing

recursive data models by least fixpoints over polynomial types. Once again we warn the

7 To use the words of Kreyszig [41] in his appreciation of the Laplace transform.

Transforming Data by Calculation 149

Individual

ID: String

Name: String

Birth: Date

0..2

Parent

(a) (b)

Individual

ID

Name Birth

Parent

0:nof

0:2is

Fig. 4. ER and UML diagrams proposed for genealogies. Underlined identifiers denote keys.

reader that types and data modeling constructs in current programming languages are

rather more complex than their obvious cousins in mathematics. For the sake of sim-

plicity, we deliberately don’t consider aspects such as non-strictness, lazy-evaluation,

infinite data values [65] etc.

Back to the running example. Recall the family tree displayed in (9) and figure 2. Sup-

pose requirements ask us to provide CRUD operations on a genealogy database col-

lecting such family trees. How does one go about describing the data model underlying

such operations?

The average database designer will approach the model via entity-relationship (ER)

diagrams, for instance that of figure 4(a). But many others will regard this notation too

old-fashioned and will propose something like the UML diagram of figure 4(b) instead.

Uncertain of what such drawings actually mean, many a programmer will prefer to

go straight into code, eg. C

typedef struct Gen {

char *name /* name is a string */

int birth /* birth year is a number */

struct Gen *mother; /* genealogy of mother (if known) */

struct Gen *father; /* genealogy of father (if known) */

} ;

— which matches with figure 2a — or XML, eg.

<!-- DTD for genealogical trees -->
<!ELEMENT tree (node+)>
<!ELEMENT node (name, birth, mother?, father?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>
<!ELEMENT mother EMPTY>
<!ELEMENT father EMPTY>
<!ATTLIST tree

ident ID #REQUIRED>

150 J.N. Oliveira

<!ATTLIST mother
refid IDREF #REQUIRED>

<!ATTLIST father
refid IDREF #REQUIRED>

— or plain SQL, eg. (fixing some arbitrary sizes for datatypes)

CREATE TABLE INDIVIDUAL (
ID NUMBER (10) NOT NULL,
Name VARCHAR (80) NOT NULL,
Birth NUMBER (8) NOT NULL,
CONSTRAINT INDIVIDUAL_pk PRIMARY KEY(ID)

);

CREATE TABLE ANCESTORS (
ID VARCHAR (8) NOT NULL,
Ancestor VARCHAR (8) NOT NULL,
PID NUMBER (10) NOT NULL,
CONSTRAINT ANCESTORS_pk PRIMARY KEY (ID,Ancestor)

);

— which matches with figure 2b.

What about functional programmers? By looking at pedigree tree (9) where we

started from, an inductive data type can be defined, eg. in Haskell,

data PTree = Node {
name :: [Char],
birth :: Int ,
mother :: Maybe PTree,
father :: Maybe PTree
}

(38)

whereby (9) would be encoded as data value

Node
{name = "Peter", birth = 1991,
mother = Just (Node

{name = "Mary", birth = 1956,
mother = Nothing,
father = Nothing}),

father = Just (Node
{name = "Joseph", birth = 1955,
mother = Just (Node

{name = "Margaret", birth = 1923,
mother = Nothing, father = Nothing}),
father = Just (Node

{name = "Luigi", birth = 1920,
mother = Nothing, father = Nothing})})}

Of course, the same tree can still be encoded in XML notation eg. using DTD

<!-- DTD for genealogical trees -->
<!ELEMENT tree (name, birth, tree?, tree?)>

Transforming Data by Calculation 151

<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>

As well-founded structures, these trees can be pretty-printed as in (9). However,

how can one ensure that the same print-family-tree operation won’t loop forever while

retrieving data from eg. figure 2b? This would clearly happen if, by mistake, record

1 Father 2 in figure 2b were updated to 1 Father 5 : Peter would become

a descendant of himself!

Several questions suggest themselves: are all the above data models “equivalent”? If

so, in what sense? If not, how can they be ranked in terms of “quality”? How can we

tell apart the essence of a data model from its technology wrapping?

To answer these questions we need to put some effort in describing the notations

involved in terms of a single, abstract (ie. technology free) unifying notation. But syntax

alone is not enough: the ability to reason in such a notation is essential, otherwise

different data models won’t be comparable. Thus the reason why, in what follows, we

choose the PF-notation as unifying framework 8.

Records are inhabitants of products. Broadly speaking, a database is that part of an

information system which collects facts or records of particular situations which are

subject to retrieving and analytical processing. But, what is a record?

Any row in the tables of figure 2b is a record, ie. records a fact. For instance, record

5 Peter 1991 tells: Peter, whose ID number is 5, was born in 1991. A mathemati-

cian would have written (5, P eter, 1991) instead of drawing the tabular stuff and would

have inferred (5, P eter, 1991) ∈ IN ×String× IN from 5 ∈ IN , Peter ∈ String and

1991 ∈ IN , where, given two types A and B, their (Cartesian) product A×B is the set

{(a, b) | a ∈ A ∧ b ∈ B}. So records can be regarded as tuples which inhabit products

of types.

Product datatype A × B is essential to information processing and is available in

virtually every programming language. In Haskell one writes (A,B) to denote A×B,

for A and B two given datatypes. This syntax can be decorated with names, eg.

data C = C { first :: A, second :: B }

as is the case of PTree (38). In the C programming language, the A × B datatype is

realized using “struct”’s, eg.

struct { A first; B second; };

The diagram below is suggestive of what product A × B actually means, where f

and g are functions, the two projections π1, π2 are such that

π1(a, b) = a ∧ π2(a, b) = b (39)

8 The “everything is a relation” motto implicit in this approach is also the message of Alloy [36],

a notation and associated model-checking tool which has been successful in alloying a number

of disparate approaches to software modeling, namely model-orientation, object-orientation,

etc. Quoting [36]: (...) “the Alloy language and its analysis are a Trojan horse: an attempt to

capture the attention of software developers, who are mired in the tar pit of implementation

technologies, and to bring them back to thinking deeply about underlying concepts”.

152 J.N. Oliveira

A A × B
π1�� π2 �� B

C

f

������������

〈f,g〉

��

g

������������

and function 〈f, g〉 (read: “f split g”) is defined

by 〈f, g〉c
def
= (f c, g c). The diagram expresses

the two cancellation properties, π1 · 〈f, g〉 = f

and π2 · 〈f, g〉 = f , which follow from a more

general (universal) property,

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (40)

which holds for arbitrary (suitably typed) functions f , g and k. This tells that, given

functions f and g, each producing inhabitants of types A and B, respectively, there is a

unique function 〈f, g〉 which combines f and g so as to produce inhabitants of product

type A×B. Read in another way: any function k delivering results into type A×B can

be uniquely decomposed into its two left and right components.

It can be easily checked that the definition of 〈f, g〉 given above PF-transforms to

〈f, g〉 = π◦
1 · f ∩ π◦

2 · g. (Just re-introduce variables and simplify, thanks to (39), (20),

etc.) This provides a hint on how to generalize the split combinator to relations 9:

〈R, S〉 = π◦
1 · R ∩ π◦

2 · S (41)

To feel the meaning of the extension we introduce variables in (41) and simplify:

〈R, S〉 = π◦
1 · R ∩ π◦

2 · S

≡ { introduce variables; (37) }

(a, b)〈R, S〉c ≡ (a, b)(π◦
1 · R)c ∧ (a, b)(π◦

2 · S)c

≡ { (20) twice }

(a, b)〈R, S〉c ≡ π1(a, b) R c ∧ π2(a, b) S c

≡ { projections (39) }

(a, b)〈R, S〉c ≡ a R c ∧ b S c

So, relational splits enable one to PF-transform logical formulæ involving more than

two variables.

A special case of split will be referred to as relational product:

R × S
def
= 〈R · π1, S · π2〉 (42)

So we can add two more entries to table (37):

ψ [[ψ]]

a R c ∧ b S c (a, b)〈R, S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

Finally note that binary product can be generalized to n-ary product A1×A2× . . .×
An involving projections {πi}i=1,n such that πi(a1, . . . , an) = ai.

9 Read more about this construct (which is also known as a fork algebra [28]) in section 7 and,

in particular, in exercise 27.

Transforming Data by Calculation 153

Exercise 7. Identify which types are involved in the following bijections:

flatr(a, (b, c))
def
= (a, b, c) (43)

flatl((b, c), d)
def
= (b, c, d) (44)

�

Exercise 8. Show that the side condition of the following split-fusion law 10

〈R, S〉 · T = 〈R · T, S · T 〉 ⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S (45)

can be dispensed with in (at least) the following situations: (a) T is simple; (b) R or S

are functions. �

Exercise 9. Write the following cancellation law with less symbols assuming that R �
S and S � R (35) hold:

π1 · 〈R, S〉 = R · δ S ∧ π2 · 〈R, S〉 = S · δ R (46)

�

Data type sums. The following is a declaration of a date type in Haskell which is

inhabited by either Booleans or error strings:

data X = Boo Bool | Err String

If one queries a Haskell interpreter for the types of the Boo and Err constructors, one

gets two functions which fit in the following diagram

Bool
i1 ��

Boo

������������������� Bool + String

[Boo ,Err]

��

String
i2��

Err

�������������������

X

where Bool+String denotes the sum (disjoint union) of types Bool and String, func-

tions i1, i2 are the necessary injections and [Boo , Err] is an instance of the “either”

relational combinator :

[R , S] = (R · i◦1) ∪ (S · i◦2) cf. A
i1 ��

R
�������������� A + B

[R ,S]

��

B
i2��

S
��������������

C

(47)

In pointwise notation, [R , S] means

c[R , S]x ≡ 〈∃ a :: c R a ∧ x = i1a〉 ∨ 〈∃ b :: c S a ∧ x = i2b〉

10 Theorem 12.30 in [1].

154 J.N. Oliveira

In the same way split was used above to define relational product R × S, either can

be used to define relational sums:

R + S = [i1 · R , i2 · S] (48)

As happens with products, A+B can be generalized to n-ary sum A1 +A2 + . . .+An

involving n injections {ii}i=1,n.

In most programming languages, sums are not primitive and need to be programmed

on purpose, eg. in C (using unions)

struct {
int tag; /* eg. 1,2 */
union {

A ifA;
B ifB;

} data;
};

where explicit integer tags are introduced so as to model injections i1, i2.

(Abstract) pointers. A particular example of a datatype sum is 1 + A, where A is an

arbitrary type and 1 is the singleton type. The “amount of information” in this kind of

structure is that of a pointer in C/C++: one “pulls a rope” and either gets nothing (1)

or something useful of type A. In such a programming context “nothing” above means

a predefined value NIL. This analogy supports our preference in the sequel for NIL as

canonical inhabitant of datatype 1. In fact, we will refer to 1 + A (or A + 1) as the

“pointer to A” datatype 11. This corresponds to the Maybe type constructor in Haskell.

Polynomial types, grammars and languages. Types involving arbitrary nesting of prod-

ucts and sums are called polynomial types, eg. 1 + A×B (the “pointer to struct” type).

These types capture the abstract contents of generative grammars (expressed in ex-

tended BNF notation) once non-terminal symbols are identified with types and terminal

symbols are filtered. The conversion is synthesized by the following table,

BNF NOTATION POLYNOMIAL NOTATION

α | β �→ α + β

αβ �→ α × β

ǫ �→ 1
a �→ 1

(49)

applicable to the right hand side of BNF-productions, where α, β range over sequences

of terminal or non-terminal symbols, ǫ stands for empty and a ranges over terminal

symbols. For instance, production X → ǫ | a A X (where X, A are non-terminals and

a is terminal) leads to equation

X = 1 + A × X (50)

11 Note that we are abstracting from the reference/dereference semantics of a pointer as under-

stood in C-like programming languages. This is why we refer to 1 + A as an abstract pointer.

The explicit introduction of references (pointers, keys, identities) is deferred to section 9.

Transforming Data by Calculation 155

which has A⋆ — the “sequence of A” datatype — as least solution. Since 1 + A × X

can also be regarded as instance of the “pointer to struct” pattern, one can encode the

same equation as the following (suitably sugared) type declaration in C:

typedef struct x {
A data;
struct x *next;

} Node;

typedef Node *X;

Recursive types. Both the interpretation of grammars [68] and the analysis of datatypes

with pointers [69] lead to systems of polynomial equations, that is, to mutually recursive

datatypes. For instance, the two typedef s above lead to Node = A × X and to X =
1 + Node. It is the substitution of Node by A ×X in the second equation which gives

raise to (50). There is a slight detail, though: in dealing with recursive types one needs

to replace equality of types by isomorphism of types, a concept to be dealt with later

on in section 5. So, for instance, the PTree datatype illustrated above in the XML and

Haskell syntaxes is captured by the equation

PTree ∼= Ind × (PTree + 1) × (PTree + 1) (51)

where Ind = Name × Birth packages the information relative to name and birth

year, which don’t participate in the recursive machinery and are, in a sense, parameters

of the model. Thus one may write PTree ∼= G(Ind, PTree), in which G abstracts the

particular pattern of recursion chosen to model family trees

G(X, Y)
def
= X × (Y + 1) × (Y + 1)

where X refers to the parametric information and Y to the inductive part 12.

Let us now think of the operation which fetches a particular individual from a given

PTree. From (51) one is intuitively led to an algorithm which either finds the individual

(Ind) at the root of the tree, or tries and finds it in the left sub-tree (PTree) or tries and

finds it in the right sub-tree (PTree). Why is this strategy “the natural” and obvious

one? The answer to this question leads to the notion of datatype membership which is

introduced below.

Membership. There is a close relationship between the shape of a data structure and

the algorithms which fetch data from it. Put in other words: every instance of a given

datatype is a kind of data container whose mathematical structure determines the par-

ticular membership tests upon which such algorithms are structured.

Sets are perhaps the best known data containers and purport a very intuitive notion

of membership: everybody knows what a ∈ S means, wherever a is of type A and

S of type PA (read: “the powerset of A”). Sentence a ∈ S already tells us that (set)

membership has type A PA
∈�� . Now, lists are also container types, the intuition

12 Types such as PTree, which are structured around another datatype (cf. G) which captures its

structural “shape” are often referred to as two-level types in the literature [66].

156 J.N. Oliveira

being that a belongs (or occurs) in list l ∈ A⋆ iff it can be found in any of its positions.

In this case, membership has type A A⋆∈�� (note the overloading of symbol ∈). But

even product A × A has membership too: a is a member of a pair (x, y) of type A× A

iff it can be found in either sides of that pair, that is a ∈ (x, y) means a = x ∨ a = y.

So it makes sense to define a generic notion of membership, able to fully explain the

overloading of symbol ∈ above.

Datatype membership has been extensively studied [11, 32, 59]. Below we deal with

polynomial type membership, which is what it required in this paper. A polynomial type

expression may involve the composition, product, or sum of other polynomial types,

plus the identity (Id X = X) and constant types (FX = K , where K is any basic

datatype, eg. the Booleans, the natural numbers, etc). Generic membership is defined,

in the PF-style, over the structure of polynomial types as follows:

∈K

def
= ⊥ (52)

∈Id

def
= id (53)

∈F×G

def
= (∈F · π1) ∪ (∈G · π2) (54)

∈F+G

def
= [∈F ,∈G] (55)

∈F·G
def
= ∈G · ∈F (56)

Exercise 10. Calculate the membership of type FX=X×X and convert it to pointwise

notation, so as to confirm the intuition above that a ∈ (x, y) holds iff a=x ∨ a=y. �

Generic membership will be of help in specifying data structures which depend on each

other by some form of referential integrity constraint. Before showing this, we need to

introduce the important notion of reference, or identity.

Identity. Base clause (53) above clearly indicates that, sooner or later, equality plays

its role when checking for polynomial membership. And equality of complex objects

is cumbersome to express and expensive to calculate. Moreover, checking two objects

for equality based on their properties alone may not work: it may happen that two

physically different objects have the same properties, eg. two employees with exactly

the same age, name, born in the same place, etc.

This identification problem has a standard solution: one associates to the objects in

a particular collection identifiers which are unique in that particular context, cf. eg.

identifier ID in figure 2b. So, instead of storing a collection of objects of (say) type A in

a set of (say) type PA, one stores an association of unique names to the original objects,

usually thought of in tabular format — as is the case in figure 2b.

However, thinking in terms of tabular relations expressed by sets of tuples where

particular attributes ensure unique identification13, as is typical of database theory [45],

is neither sufficiently general nor agile enough for reasoning purposes. References

[56, 58] show that relational simplicity 14 is what matters in unique identification. So

13 These attributes are known as keys.
14 Recall that a relation is simple wherever its image is coreflexive (19).

Transforming Data by Calculation 157

Book

ISBN

Title

Author[0-5]

Publisher

id: ISBN

Reserved

Date

Borrower

PID

Name

Address

Phone

id: PID

0:N 0:N

Fig. 5. Sample of GER diagram (adapted from [30]). Underlined identifiers denote keys.

it suffices to regard collections of uniquely identified objects A as simple relations of

type

K ⇀ A (57)

where K is a nonempty datatype of keys, or identifiers. For the moment, no special

requirements are put on K . Later on, K will be asked to provide for a countably infinite

supply of identifiers, that is, to behave such as natural number objects do in category

theory [47].

Below we show that simplicity and membership are what is required of our PF-

notation to capture the semantics of data modeling (graphical) notations such as Entity-

Relationship diagrams and UML class diagrams.

Entity-relationship diagrams. As the name tells, Entity-Relationship data modeling

involves two basic concepts: entities and relationships. Entities correspond to nouns in

natural language descriptions: they describe classes of objects which have identity and

exhibit a number of properties or attributes. Relationships can be thought of as verbs:

they record (the outcome of) actions which engage different entities.

A few notation variants and graphical conventions exist for these diagrams. For its

flexibility, we stick to the generic entity-relationship (GER) proposal of [30]. Figure 5

depicts a GER diagram involving two entities: Book and Borrower. The latter pos-

sesses attributes Name, Address, Phone and identity PID. As anticipated above where

discussing how to model object identity, the semantic model of Borrower is a simple

relation of type TPID ⇀ TName × TAddress × TPhone, where by Ta we mean the

type where attribute a takes values from. For notation economy, we will drop the T...

notation and refer to the type Ta of attribute a by mentioning a alone:

Borrowers
def
= PID ⇀ Name× Address × Phone

Entity Book has a multivalued attribute (Author) imposing at most 5 authors. The

semantics of such attributes can be also captured by (nested) simple relations:

Books
def
= ISBN ⇀ Title× (5 ⇀ Author) × Publisher (58)

Note the use of number 5 to denote the initial segment of the natural numbers (IN) up

to 5, that is, set {1, 2, ..., 5}.

158 J.N. Oliveira

Books can be reserved by borrowers and there is no limit to the number of books

the latter can reserve. The outcome of a reservation at a particular date is captured by

relationship Reserved. Simple relations also capture relationship formal semantics, this

time involving the identities of the entities engaged. In this case:

Reserved
def
= ISBN × PID ⇀ Date

Altogether, the diagram specifies datatype Db
def
= Books × Borrowers × Reserved

inhabited by triples of simple relations.

In summary, Entity-Relationship diagrams describe data models which are concisely

captured by simple binary relations. But we are not done yet: the semantics of the

problem include the fact that only existing books can be borrowed by known borrowers.

So one needs to impose a semantic constraint (invariant) on datatype Db which, written

pointwise, goes as follows

φ(M, N, R)
def
=

〈∀ i, p, d :: d R (i, p) ⇒ 〈∃ x :: x M i〉 ∧ 〈∃ y :: y M p〉〉 (59)

where i, p, d range over ISBN, PID and Date, respectively.

Constraints of this kind, which are implicitly assumed when interpreting relation-

ships in these diagrams, are known as integrity constraints. Being invariants at the se-

mantic level, they bring along with them the problem of ensuring their preservation by

the corresponding CRUD operations. Worse than this, their definition in the predicate

calculus is not agile enough for calculation purposes. Is there an alternative?

Space constraints preclude presenting the calculation which would show (59) equiv-

alent to the following, much more concise PF-definition:

φ(M, N, R)
def
= R · ∈◦ � M ∧ R · ∈◦ � N (60)

cf. diagram

ISBN

M

�

ISBN × PID

R

�

∈=π1�� ∈=π2 �� PID

N

�
T itle × (5 ⇀

Author) ×
Publisher

Date
Name×
Address×
Phone

To understand (60) and the diagram above, the reader must recall the definition of the

� ordering (35) — which compares the domains of two relations — and inspect the

types of the two memberships, ISBN ISBN × PID
∈=π1�� in the first instance and

PID ISBN × PID
∈=π2�� in the second. We check the first instance, the second being

similar:

ISBN ISBN × PID
∈��

Transforming Data by Calculation 159

= { polynomial decomposition, membership of product (54) }

(∈Id ·π1) ∪ (∈PID ·π2)

= { (52) and (53) }

id · π1 ∪ ⊥ · π2

= { trivia }

π1

Multiplicity labels 0:N in the diagram of figure 5 indicate that there is no limit to the

number of books borrowers can reserve. Now suppose the library decrees the following

rule: borrowers can have at most one reservation active. In this case, label 0:N on the

Book side must be restricted to 0:1. These so-called many-to-one relationships are once

again captured by simple relations, this time of a different shape:

Reserved
def
= PID ⇀ ISBN × Date (61)

Altogether, note how clever use of simple relations dispenses with explicit cardinality

invariants, which would put spurious weight on the data model. However, referential

integrity is still to be maintained. The required pattern is once again nicely built up

around membership, φ(M, N, R)
def
= (∈ · R)◦ � M ∧ R � N , see diagram:

ISBN

M

�

ISBN × Date
∈=π1�� PID

R�

N

�
T itle × (5 ⇀

Author) ×
Publisher

Name×
Address×
Phone

In retrospect, note the similarity in shape between these diagrams and the corre-

sponding Entity-Relationship diagrams. The main advantage of the former resides in

their richer semantics enabling formal reasoning, as we shall see in the sequel.

Name spaces and “heaps”. Relational database referential integrity can be shown to be

an instance of a more general issue which traverses computing from end to end: name

space referential integrity (NSRI). There are so many instances of NSRI that genericity

is the only effective way to address the topic 15. The issue is that, whatever programming

language is adopted, one faces the same (ubiquitous) syntactic ingredients: (a) source

code is made of units; (b) units refer to other units; (c) units need to be named.

For instance, a software package is a (named) collection of modules, each module

being made of (named) collections of data type declarations, of variable declarations,

of function declarations etc. Moreover, the package won’t compile in case name spaces

don’t integrate with each other. Other examples of name spaces requiring NSRI are

XML DTDs, grammars (where nonterminals play the role of names), etc.

15 For further insight into naming see eg. Robin Milner’s interesting essay What’s in a name? (in

honour of Roger Needham) available from http://www.cl.cam.ac.uk/˜rm135.

160 J.N. Oliveira

In general, one is led to heterogeneous (typed) collections of (mutually dependent)

name spaces, nicely modeled as simple relations again

Ni ⇀ Fi(Ti, N1, . . . , Nj, . . . , Nni
)

where Fi is a parametric type describing the particular pattern which expresses how

names of type Ni depend on names of types Nj (j = 1, ni) and where Ti aggregates all

types which don’t participate in NSRI.

Assuming that all such Fi have membership, we can draw diagram

Ni

Si �

∈i,j ·Si

��																	 Fi(Ti, N1, . . . , Nj , . . . , Nni
)

∈i,j

��
Nj

where ∈i,j · Si is a name-to-name relation, or dependence graph. Overall NSRI will

hold iff

〈∀ i, j :: (∈i,j · Si)
◦ � Sj〉 (62)

which, once the definition order � (35) is spelt out, converts to the pointwise:

〈∀ n, m : n ∈ dom Si : m ∈i,j (Si n) ⇒ m ∈ dom Sj〉

Of course, (62) includes self referential integrity as a special case (i = j).

NSRI also shows up at low level, where data structures such as caches and heaps can

also be thought of as name spaces: at such a low level, names are memory addresses. For

instance, IN
H � F (T, IN) models a heap “of shape” F where T is some datatype

of interest and addresses are natural numbers (IN). A heap satisfies NSRI iff it has no

dangling pointers. We shall be back to this model of heaps when discussing how to deal

with recursive data models (section 9).

Summary. This section addressed data-structuring from a double viewpoint: the one

of programmers wishing to build data models in their chosen programming medium

and the one of the software analyst wishing to bridge between models in different no-

tations in order to eventually control data impedance mismatch. The latter entailed the

abstraction of disparate data structuring notations into a common unifying one, that of

binary relations and the PF-transform. This makes it possible to study data impedance

mismatch from a formal perspective.

5 Data Impedance Mismatch Expressed in the PF-Style

Now that both the PF-notation has been presented and that its application to describing

the semantics of data structures has been illustrated, we are better positioned to restate

and study diagram (7). This expresses the data impedance mismatch between two data

Transforming Data by Calculation 161

models A and B as witnessed by a connected representation/abstraction pair (R, F).
Formally, this means that:







– R is a representation (ker R = id)

– F is an abstraction (img F = id)

– R and S are connected: R ⊆ F ◦
(63)

The higher the mismatch between A and B the more complex (R, F) are. The least

impedance mismatch possible happens between a datatype and itself:

A

id

		
≤ A

id

�� (64)

Another way to read (64) is to say that the ≤-ordering on data models is reflexive. It

turns up that ≤ is also transitive,

A

R

		
≤ B

F

�� ∧ B

S

		
≤ C

G

�� ⇒ A

S·R
		

≤ C

F ·G

�� (65)

that is, data impedances compose. The calculation of (65) is immediate: composition

respects abstractions and representations (recall exercise 6) and (F · G, S · R) are con-

nected:

S · R ⊆ (F · G)◦

≡ { converses (13) }

S · R ⊆ G◦ · F ◦

⇐ { monotonicity }

S ⊆ G◦ ∧ R ⊆ F ◦

≡ { since S, G and R, F are assumed connected }

TRUE

Right-invertibility. A most beneficial consequence of (63) is the right-invertibility prop-

erty

F · R = id (66)

which, written in predicate logic, expands to

〈∀ a′, a :: 〈∃ b :: a′ F b ∧ b R a〉 ≡ a′ = a〉 (67)

The PF-calculation of (66) is not difficult:

F · R = id

162 J.N. Oliveira

≡ { equality of relations (14) }

F · R ⊆ id ∧ id ⊆ F · R

≡ { img F = id and ker R = id (63) }

F · R ⊆ F · F ◦ ∧ R◦ · R ⊆ F · R

≡ { converses }

F · R ⊆ F · F ◦ ∧ R◦ · R ⊆ R◦ · F ◦

⇐ { (F ·) and (R◦·) are monotone }

R ⊆ F ◦ ∧ R ⊆ F ◦

≡ { trivia }

R ⊆ F ◦

≡ { R and F are connected (63) }

TRUE

Clearly, this right-invertibility property matters in data representation: id ⊆ F · R en-

sures the no loss principle and F · R ⊆ id ensures the no confusion principle.

While (as we have just seen) F · R = id is entailed by (63), the converse entailment

does not hold: F · R = id ensures R a representation and F surjective, but not simple.

It may be also the case that F · R = id and R ⊆ F ◦ does not hold, as the following

counter-example shows: R = !◦ and ⊥ ⊂ F ⊂ !.

Exercise 11. The reader may be interested to compare the calculation just above with

the corresponding proof carried out at pointwise level using quantified logic expres-

sions. This will amount to showing that (67) is entailed by the pointwise statement of

(R, F) as a connected abstraction/ representation pair. �

Exercise 12. Consider two data structuring patterns: “pointer to struct” (A × B + 1)

and “pointer in struct” ((A + 1) × B). The question is: which of these data patterns

represents the other? We suggest the reader checks the validity of

A × B + 1

R
��

≤ (A + 1) × B

f

�� (68)

where R
def
= [i1 × id , 〈i2, !

◦〉] and f = R◦, that is, f satisfying clauses f(i1 a, b) =

i1(a, b) and f(i2 NIL, b) = i2 NIL, where NIL denotes the unique inhabitant of type 1.

�

Right-invertibility happens to be equivalent to (63) wherever both the abstraction and

the representation are functions, say f, r:

A

r

		
≤ C

f

�� ≡ f · r = id (69)

Transforming Data by Calculation 163

Let us show that f · r = id is equivalent to r ⊆ f◦ and entails f surjective and r

injective:

f · r = id

≡ { (28) }

f · r ⊆ id

≡ { shunting (26) }

r ⊆ f◦

⇒ { composition is monotonic }

f · r ⊆ f · f◦ ∧ r◦ · r ⊆ r◦ · f◦

≡ { f · r = id ; converses }

id ⊆ f · f◦ ∧ r◦ · r ⊆ id

≡ { definitions }

f surjective ∧ r injective

The right invertibility property is a handy way of spotting ≤ rules. For instance, the

following cancellation properties of product and sum hold [11]:

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (70)

[g , f] · i1 = g , [g , f] · i2 = f (71)

Suitable instantiations of f , g to the identity function in both lines above lead to

π1 · 〈id, g〉 = id , π2 · 〈f, id〉 = id

[id , f] · i1 = id , [g , id] · i2 = id

Thus we get — via (69) — the following ≤-rules

A

〈id,g〉
��

≤ A × B

π1

�� B

〈f,id〉
��

≤ A × B

π2

�� (72)

A

i1

��
≤ A + B

[id ,f]

�� B

i2

��
≤ A + B

[g ,id]

�� (73)

which tell the two projections surjective and the two injections injective (as expected).

At programming level, they ensure that adding entries to a struct or (disjoint) union
is a valid representation strategy, provided functions f, g are supplied by default [17].

Alternatively, they can be replaced by the top relation ⊤ (meaning a don’t care

164 J.N. Oliveira

representation strategy). In the case of (73), even ⊥ will work instead of f, g, leading,

for A = 1, to the standard representation of datatype A by a “pointer to A”:

A

i1

��
≤ A + 1

i◦1

��

Exercise 13. Show that [id ,⊥] = i◦1 and that [⊥ , id] = i◦2. �

Isomorphic data types. As instance of (69) consider f and r such that both

A

r

		
≤ C

f

�� ∧ C

f

		
≤ A

r

��

hold. This is equivalent to

r ⊆ f◦ ∧ f ⊆ r◦

≡ { converses ; (14) }

r◦ = f (74)

So r (a function) is the converse of another function f . This means that both are bijec-

tions (isomorphisms) — recall figure 3 — since

f is an isomorphism ≡ f◦ is a function (75)

In a diagram:

A

r=f◦

		∼= C

f=r◦

��

Isomorphism A ∼= C corresponds to minimal impedance mismatch between types A

and C in the sense that, although the format of data changes, data conversion in both

ways is wholly recoverable. That is, two isomorphic types A and C are “abstractly” the

same. Here is a trivial example

A × B

swap

��
∼= B × A

swap

�� (76)

where swap is the name given to polymorphic function 〈π2, π1〉. This isomorphism

establishes the commutativity of ×, whose translation into practice is obvious: one can

Transforming Data by Calculation 165

change the order in which the entries in a struct (eg. in C) are listed; swap the order

of two columns in a spreadsheet, etc.

The question arises: how can one be certain that swap is an isomorphism? A con-

structive, elegant way is to follow the advice of (75), which appeals to calculating the

converse of swap,

swap◦

= { (41) }

(π◦
1 · π2 ∩ π◦

2 · π1)
◦

= { converses }

π◦
2 · π1 ∩ π◦

1 · π2

= { (41) again }

swap

which is swap again. So swap is its own converse and therefore an isomorphism.

Exercise 14. The calculation just above was too simple. To recognize the power of (75),

prove the associative property of disjoint union,

A + (B + C)

r
��

∼= (A + B) + C

f=[id+i1 ,i2·i2]

��
(77)

by calculating the function r which is the converse of f .

Appreciate the elegance of this strategy when compared to what is conventional in

discrete maths: to prove f bijective, one would have to either prove f injective and

surjective, or invent its converse f◦ and prove the two cancellations f · f◦ = id and

f◦ · f = id. �

Exercise 15. The following are known isomorphisms involving sums and products:

A × (B × C) ∼= (A × B) × C (78)

A ∼= A × 1 (79)

A ∼= 1 × A (80)

A + B ∼= B + A (81)

C × (A + B) ∼= C × A + C × B (82)

Guess the relevant isomorphism pairs. �

Exercise 16. Show that (75) holds, for f a function (of course). �

Relation transposes. Once again let us have a look at isomorphism pair (r, f) in (74),

this time to introduce variables in the equality:

r◦ = f

166 J.N. Oliveira

≡ { introduce variables }

〈∀ a, c :: c (r◦) a ≡ c f a〉

≡ { (20) }

〈∀ a, c :: r c = a ≡ c = f a〉

This is a pattern shared by many (pairs of) operators in the relational calculus, as is

the case of eg. (omitting universal quantifiers)

k = ΛR ≡ R = ∈ · k (83)

where Λ converts a binary relation into the corresponding set-valued function [11], of

k = tot S ≡ S = i◦1 · k
︸ ︷︷ ︸

untot k

(84)

where tot totalizes a simple relation S into the corresponding “Maybe-function” 16, and

of

k = curry f ≡ f = ap · (k × id)
︸ ︷︷ ︸

uncurry k

(85)

where curry converts a two-argument function f into the corresponding unary func-

tion, for ap(g, x) = g x.

These properties of Λ, tot and curry are normally referred to as universal proper-

ties, because of their particular pattern of universal quantification which ensures unique-

ness 17. Novice readers will find them less cryptic once further (quantified) variables are

introduced on their right hand sides:

k = ΛR ≡ 〈∀ b, a :: b R a ≡ b ∈ (k a)〉

k = tot S ≡ 〈∀ b, a :: b S a ≡ (i1b) = k a〉

k = curry f ≡ 〈∀ b, a :: f(b, a) = (k b)a〉

In summary, Λ, tot and curry are all isomorphisms. Here they are expressed by ∼=-

diagrams,

(PB)A

(∈·)
��

∼= A → B

Λ

�� (B + 1)A

untot=(i◦1 ·)
��

∼= A ⇀ B

tot

��

(BA)
C

uncurry

��
∼= BC×A

curry

��

(86)

where the exponential notation Y X describes the datatype of all functions from X to Y .

16 See [59]. This corresponds to the view that simple relations are “possibly undefined” (ie. par-

tial) functions. Also recall that A A + 1
i◦1�� is the membership of Maybe.

17 Consider, for instance, the right to left implication of (85): this tells that, given f , curry f is

the only function satisfying f = ap · (k × id).

Transforming Data by Calculation 167

Exercise 17. (For Haskell programmers) Inspect the type of flip lookup and re-

late it to that of tot. (NB: flip is available from GHC.Base and lookup from

GHC.ListA.) �

Exercise 18. The following is a well-known isomorphism involving exponentials:

(B × C)
A

〈(π1·),(π2·)〉
��

∼= BA × CA

〈 , 〉
��

(87)

Write down the universal property captured by (87). �

Exercise 19. Relate function (p2p p)b
def
= if b then (π1 p) else (π2 p) (read p2p

as “pair to power”) with isomorphism

A × A ∼= A2 (88)

�

Since exponentials are inhabited by functions and these are special cases of relations,

there must be combinators which express functions in terms of relations and vice versa.

Isomorphisms Λ and tot (83, 84) already establish relationships of this kind. Let us see

two more which will prove useful in calculations to follow.

“Relational currying”. Consider isomorphism

(C → A)
B

()◦

��
∼= B × C → A

()

��
(89)

and associated universal property,

k = R ≡ 〈∀ a, b, c :: a (k b) c ≡ a R (b, c)〉 (90)

where we suggest that R be read “R transposed”. R is thus a relation-valued function

which expresses a kind of selection/projection mechanism: given some particular b0,

R b0 selects the “sub-relation” of R of all pairs (a, c) related to b0.

This extension of currying to relations is a direct consequence of (83):

B × C → A

∼= { Λ/(∈·) (83, 86) }

(PA)
B×C

∼= { curry/uncurry }

((PA)C)
B

∼= { exponentials preserve isomorphisms }

(C → A)
B

168 J.N. Oliveira

The fact that, for simple relations, one could have resorted above to the Maybe-transpose

(84) instead of the power transpose (83), leads to the conclusion that relational “curry-

ing” preserves simplicity:

(C ⇀ A)
B

()◦

��
∼= B × C ⇀ A

()

��
(91)

Since all relations are simple in (91), we can use notation convention (33) in the follow-

ing pointwise definition of M (for M simple):

M b = {c �→ M(b′, c) | (b′, c) ∈ dom M ∧ b′ = b} (92)

This rule will play its role in multiple (foreign) key synthesis, see section 6.

Sets are fragments of “bang”. We have already seen that sets can be modeled by core-

flexive relations, which are simple. Characteristic functions are another way to repre-

sent sets:

2A

λp.{a∈A|p a}
��

∼= PA

λS.(λa.a∈S)

�� cf. p = (∈ S) ≡ S = {a | p a} (93)

Here we see the correspondence between set comprehension and membership testing

expressed by 2-valued functions, ie. predicates. By combining the tot/untot isomor-

phism (86) with (93) we obtain

PA

s2m

��
∼= A ⇀ 1

dom

�� (94)

where s2m S = ! · ΦS and dom is defined by (32). This shows that every fragment of

bang (!) models a set 18.

Exercise 20. Show that “obvious” facts such as S = {a|a ∈ S} and p x ≡ x ∈ {a|p a}
stem from (93). Investigate other properties of set-comprehension which can be drawn

from (93). �

Relators and ≤-monotonicity. A lesson learned from (69) is that right-invertible func-

tions (surjections) have a ≤-rule of their own. For instance, predicate f n
def
= n �= 0

over the integers is surjective (onto the Booleans). Thus Booleans can be represented

by integers, 2 ≤ ZZ — a fact C programmers know very well. Of course, one expects

this “to scale up”: any data structure involving the Booleans (eg. trees of Booleans) can

18 Relations at most bang (!) are referred to as right-conditions in [32].

Transforming Data by Calculation 169

be represented by a similar structure involving integers (eg. trees of integers). However,

what does the word “similar” mean in this context? Typically, when building such a

tree of integers, a C programmer looks at it and “sees” the tree with the same geometry

where the integers have been replaced by their f images.

In general, let A and B be such that A ≤ B and let GX denote a type parametric on

X . We want to be able to promote the A-into-B representation to structures of type G :

A

R

		
≤ B

F

�� ⇒ GA

G R

��
≤ GB

G F

��

The questions arise: does this hold for any parametric type G we can think of? and

what do relations GR and GF actually mean? Let us check. First of all, we investigate

conditions for (GF, GR) to be connected to each other:

GR ⊆ (GF)◦

⇐ { assume G(X◦) ⊆ (G X)◦, for all X }

GR ⊆ G(F ◦)

⇐ { assume monotonicity of G }

R ⊆ F ◦

≡ { R is assumed connected to F }

TRUE

Next, GR must be injective:

(GR)◦ · GR ⊆ id

⇐ { assume (G X)◦ ⊆ G(X◦) }

(GR◦) · GR ⊆ id

⇐ { assume (G R) · (G T) ⊆ G(R · T) }

G(R◦ · R) ⊆ id

⇐ { assume G id ⊆ id and monotonicity of G }

R◦ · R ⊆ id

≡ { R is injective }

TRUE

The reader eager to pursue checking the other requirements (R entire, F surjective, etc)

will find out that the wish list concerning G will end up being as follows:

G id = id (95)

G (R · S) = (GR) · (GS) (96)

170 J.N. Oliveira

G (R◦) = (GR)◦ (97)

R ⊆ S ⇒ GR ⊆ GS (98)

These turn up to be the properties of a relator [6], a concept which extends that of a

functor to relations: a parametric datatype G is said to be a relator wherever, given a

relation R from A to B, GR extends R to G-structures. In other words, it is a relation

from GA to GB, cf.

A

R

��

GA

G R

��
B GB

(99)

which obeys the properties above (it commutes with the identity, with composition and

with converse, and it is monotonic). Once R, S above are restricted to functions, the

behaviour of G in (95, 96) is that of a functor, and (97) and (98) become trivial —

the former establishing that G preserves isomorphisms and the latter that G preserves

equality (Leibniz).

It is easy to show that relators preserve all basic properties of relations as in figure 3.

Two trivial relators are the identity relator Id, which is such that Id R = R and the

constant relator K (for a given data type K) which is such that K R = idK . Relators

can also be multi-parametric and we have already seen two of these: product R×S (42)

and sum R + S (48).

The prominence of parametric type GX = K ⇀ X , for K a given datatype K of

keys, leads us to the investigation of its properties as a relator,

B

R

��

K ⇀ B

K⇀R

��
C K ⇀ C

where we define relation K ⇀ R as follows:

N(K ⇀ R)M
def
= δ M = δ N ∧ N · M◦ ⊆ R (100)

So, wherever simple N and M are (K ⇀ R)-related, they are equally defined and their

outputs are R-related. Wherever R is a function f , K ⇀ f is a function too defined by

projection

(K ⇀ f)M = f · M (101)

This can be extended to a bi-relator,

(g ⇀ f)M = f · M · g◦ (102)

provided g is injective — recall (33).

Exercise 21. Show that instantiation R := f in (100) leads to N ⊆ f ·M and f ·M ⊆ N

in the body of (100), and therefore to (101). �

Exercise 22. Show that (K ⇀) is a relator. �

Transforming Data by Calculation 171

Indirection and dereferencing. Indirection is a representation technique whereby data

of interest stored in some data structure are replaced by references (pointers) to some

global (dynamic) store — recall (57) — where the data are actually kept. The represen-

tation implicit in this technique involves allocating fresh cells in the global store; the

abstraction consists in retrieving data by pointer dereferencing.

The motivation for this kind of representation is well-known: the referent is more

expensive to move around than the reference. Despite being well understood and very

widely used, dereferencing is a permanent source of errors in programming: it is im-

possible to retrieve data from a non-allocated reference.

IN

S

�

G IN

G S

�
B GB

To see how this strategy arises, consider B in (99) the datatype

of interest (archived in some parametric container of type G, eg.

binary trees of Bs). Let A be the natural numbers and S be sim-

ple. Since relators preserve simplicity, GS will be simple too, as

depicted aside. The meaning of this diagram is that of declaring a

generic function (say rmap) which, giving S simple, yields GS

also simple. So rmap has type

(IN ⇀ B) → (G IN ⇀ GB) (103)

in the same way the fmap function of Haskell class Functor has type

fmap :: (a -> b) -> (g a -> g b)

(Recall that, once restricted to functions, relators coincide with functors.)

From (91) we infer that rmap can be “uncurried” into a simple relation of type

((IN ⇀ B) × G IN) ⇀ GB which is surjective, for finite structures. Of course we

can replace IN above by any data domain, say K (suggestive of key), with the same

cardinality, that is, such that K ∼= IN . Then

GB

R
��

≤ (K ⇀ B) × GK

Dref

�� (104)

holds for abstraction relation Dref such that Dref = rmap, that is, such that (recalling

(90))

y Dref (S, x) ≡ y(GS)x

for S a store and x a data structure of pointers (inhabitant of GK).

Consider as example the indirect representation of finite lists of Bs, in which fact

l′ Dref (S, l) instantiates to l′(S⋆)l, itself meaning

l′(S⋆)l ≡ length l′ = length l ∧

〈∀ i : 1 ≤ i ≤ length l : l i ∈ dom S ∧ (l′ i) = S(l i)〉

So, wherever l′S⋆l holds, no reference k in list l can live outside the domain of store S,

k ∈ l ⇒ 〈∃ b :: b S k〉 (105)

where ∈ denotes finite list membership.

172 J.N. Oliveira

Exercise 23. Check that (105) PF-transforms to (∈· l)◦ � S, an instance of NSRI (62)

where l denotes the “everywhere l” constant function. �

Exercise 24. Define a representation function r ⊆ Dref ◦ (104) for GX = X⋆. �

Summary. This section presented the essence of this paper’s approach to data calcula-

tion: a preorder (≤) on data types which formalizes data impedance mismatch in terms

of representation/abstraction pairs. This preorder is compatible with the data type con-

structors introduced in section 4 and leads to a data structuring calculus whose laws

enable systematic calculation of data implementations from abstract models. This is

shown in the sections which follow.

6 Calculating Database Schemes from Abstract Models

Relational schema modeling is central to the “open-ended list of mapping issues” iden-

tified in [42]. In this section we develop a number of ≤-rules intended for cross-cutting

impedance mismatch with respect to relational modeling. In other words, we intend

to provide a practical method for inferring the schema of a database which (correctly)

implements a given abstract model, including the stepwise synthesis of the associated

abstraction and representation data mappings and concrete invariants. This method will

be shown to extend to recursive structures in section 9.

Relational schemes “relationally”. Broadly speaking, a relational database is a n-tuple

of tables, where each table is a relation involving value-level tuples. The latter are vec-

tors of values which inhabit “atomic” data types, that is, which hold data with no further

structure. Since many such relations (tables) exhibit keys, they can be thought of as sim-

ple relations. In this context, let

RDBT
def
=

n∏

i=1

(

ni∏

j=1

Kj ⇀

mi∏

k=1

Dk) (106)

denote the generic type of a relational database [2]. Every RDBT -compliant tuple db

is a collection of n relational tables (index i = 1, n) each of which is a mapping from

a tuple of keys (index j) to a tuple of data of interest (index k). Wherever mi = 0 we

have
∏0

k=1 Dk
∼= 1, meaning — via (94) — a finite set of tuples of type

∏ni

j=1 Kj .

(These are called relationships in the standard terminology.) Wherever ni = 1 we are

in presence of a singleton relational table. Last but not least, all Kj and Dk are “atomic”

types, otherwise db would fail first normal form (1NF) compliance [45].

Compared to what we have seen so far, type RDBT (106) is “flat”: there are no

sums, no exponentials, no room for a single recursive datatype. Thus the mismatch

identified in [42]: how does one map structured data (eg. encoded in XML) or a text gen-

erated according to some grammar, or even a collection of object types, into RDBT ?

We devote the remainder of this section to a number of ≤-rules which can be used

to transform arbitrary data models into instances of “flat” RDBT . Such rules share the

generic pattern A ≤ B (of which A ∼= B is a special case) where B only contains

products and simple relations. So, by successive application of such rules, one is lead

Transforming Data by Calculation 173

— eventually — to an instance of RDBT . Note that (89) and (94) are already rules of

this kind (from left to right), the latter enabling one to get rid of powersets and the other

of (some forms of) exponentials. Below we present a few more rules of this kind.

Getting rid of sums. It can be shown (see eg. [11]) that the either combinator [R , S]
as defined by (47) is an isomorphism. This happens because one can always (uniquely)

project a relation (B + C)
T ��A into two components B

R ��A and C
S ��A ,

such that T = [R , S]. Thus we have

(B + C) → A

[,]◦

��
∼= (B → A) × (C → A)

[,]

��
(107)

which establishes universal property

T = [R , S] ≡ T · i1 = R ∧ T · i2 = S (108)

When applied from left to right, rule (107) can be of help in removing sums from

data models: relations whose input types involve sums can always be decomposed into

pairs of relations whose types don’t involve (such) sums.

Sums are a main ingredient in describing the abstract syntax of data. For instance,

in the grammar approach to data modeling, alternative branches of a production in ex-

tended BNF notation map to polynomial sums, recall (49). The application of rule (107)

removes such sums with no loss of information (it is an isomorphism), thus reducing

the mismatch between abstract syntax and relational database models.

The calculation of (107), which is easily performed via the power-transpose [11],

can alternatively be performed via the Maybe-transpose [59] — in the case of simple

relations — meaning that relational either preserves simplicity:

(B + C) ⇀ A

[,]◦

��
∼= (B ⇀ A) × (C ⇀ A)

[,]

��
(109)

What about the other (very common) circumstance in which sums occur at the output

rather than at the input type of a relation? Another sum-elimination rule is applicable to

such situations,

A → (B + C)

△+

��
∼= (A → B) × (A → C)

+
�

��
(110)

where

M
+
� N

def
= i1 · M ∪ i2 · N (111)

△+ M
def
= (i◦1 · M, i◦2 · M) (112)

174 J.N. Oliveira

However, (110) does not hold as it stands for simple relations, because
+
� does not

preserve simplicity: the union of two simple relations is not always simple. The weakest

pre-condition for simplicity to be maintained is calculated as follows:

M
+
� N is simple

≡ { definition (111) }

(i1 · M ∪ i2 · N) is simple

≡ { simplicity of union of simple relations (34) }

(i1 · M) · (i2 · N)◦ ⊆ id

≡ { converses ; shunting (26, 27) }

M · N◦ ⊆ i◦1 · i2

≡ { i◦1 · i2 = ⊥ ; (29,30) }

δ M · δ N ⊆ ⊥

≡ { coreflexives (15) }

δ M ∩ δ N = ⊥ (113)

Thus, M
+
� N is simple iff M and N are domain-disjoint.

Exercise 25. Show that
+
� ·△+ = id holds. (NB: property id + id = id can be of help

in the calculation.) �

Exercise 26. Do better than in exercise 25 and show that
+
� is the converse of △+, of

course finding inspiration in (75). Universal property (108) will soften calculations if

meanwhile you show that (M
+
� N)◦ = [M◦ , N◦] holds. �

Getting rid of multivalued types. Recall the Books type (58) defined earlier on. It

deviates from RDBT in the second factor of its range type, 5 ⇀ Author, whereby

book entries are bound to record up to 5 authors. How do we cope with this situation?

Books is an instance of the generic relational type A ⇀ (D × (B ⇀ C)) for arbitrary

A, B, C and D, where entry B ⇀ C generalizes the notion of a multivalued attribute.

Our aim in the calculations which follow is to split this relation type in two, so as to

combine the two keys of types A and B:

A ⇀ (D × (B ⇀ C))

∼= { Maybe transpose (86) }

(D × (B ⇀ C) + 1)A

≤ { (68) }

((D + 1) × (B ⇀ C))A

∼= { splitting (87) }

Transforming Data by Calculation 175

(D + 1)A × (B ⇀ C)A

∼= { Maybe transpose (86, 89) }

(A ⇀ D) × (A × B ⇀ C)

Altogether, we can rely on ≤-rule

A ⇀ (D × (B ⇀ C))

△n

��
≤ (A ⇀ D) × (A × B ⇀ C)

�n

��
(114)

where the “nested join” operator �n is defined by

M �n N = 〈M, N〉 (115)

— recall (91) — and △n is

△n M = (π1 · M, usc(π2 · M)) (116)

where usc (=“undo simple currying”) is defined in comprehension notation as follows,

usc M
def
= {(a, b) �→ (M a)b | a ∈ dom M, b ∈ dom(Ma)} (117)

since M is simple. (Details about the calculation of this abstraction / representation pair

can be found in [63].)

Example. Let us see the application of ≤-rule (114) to the Books data model (58). We

document each step by pointing out the involved abstraction/representation pair:

Books = ISBN ⇀ (T itle× (5 ⇀ Author) × Publisher)

∼=1 { r1 = id ⇀ 〈〈π1, π3〉, π2〉 , f1 = id ⇀ 〈π1 · π1, π2, π2 · π1〉 }

ISBN ⇀ (T itle× Publisher) × (5 ⇀ Author)

≤2 { r2 = △n , f2 = �n, cf. (114) }

(ISBN ⇀ Title× Publisher)× (ISBN × 5 ⇀ Author)

= Books2

Since Books2 belongs to the RDBT class of types (assuming ISBN , T itle, Publisher

and Author atomic) it is directly implementable as a relational database schema.

Altogether, we have been able to calculate a type-level mapping between a source

data model (Books) and a target data model (Books2). To carry on with the mapping

scenario set up in [42], we need to be able to synthesize the two data maps (“map

forward” and “map backward”) between Books and Books2. We do this below as an

exercise of PF-reasoning followed by pointwise translation.

Following rule (65), which enables composition of representations and abstractions,

we synthesize r = △n ·(id ⇀ 〈〈π1, π3〉, π2〉) as overall “map forward” representation,

176 J.N. Oliveira

and f = (id ⇀ 〈π1 · π1, π2, π2 · π1〉) ·�n as overall “map backward” abstraction. Let

us transcribe r to pointwise notation:

r M = △n((id ⇀ 〈〈π1, π3〉, π2〉)M)

= { (102) }

△n(〈〈π1, π3〉, π2〉 · M)

= { (116) }

(π1 · 〈〈π1, π3〉, π2〉 · M, usc(π2 · 〈〈π1, π3〉, π2〉 · M))

= { exercise 8 ; projections }

(〈π1, π3〉 · M, usc(π2 · M))

Thanks to (33), the first component in this pair transforms to pointwise

{isbn �→ (π1(M isbn), π3(M isbn)) | isbn ∈ dom M}

and the second to

{(isbn, a) �→ ((π2 · M) isbn)a | isbn ∈ dom M, a ∈ dom((π2 · M)isbn)}

using definition (117).

The same kind of reasoning will lead us to overall abstraction (“map backward”) f :

f(M, N) = (id ⇀ 〈π1 · π1, π2, π2 · π1〉)(M �n N)

= { (102) and (115) }

〈π1 · π1, π2, π2 · π1〉 · 〈M, N〉

= { exercise 8 ; projections }

〈π1 · π1 · 〈M, N〉, π2 · 〈M, N〉, π2 · π1 · 〈M, N〉〉

= { exercise 9; N is a function }

〈π1 · M, N · δ M, π2 · M〉

= { (92) }

{isbn �→ (π1(M isbn), N ′, π2(M isbn)) | isbn ∈ dom M}

where N ′ abbreviates {n �→ N(i, n) | (i, n) ∈ dom N ∧ i = isbn}.

The fact that N is preconditioned by δ M in the abstraction is a clear indication that

any addition to N of authors of books whose ISBN don’t participate in M is doomed

to be ignored when ‘backward mapping” the data. This explains why a foreign key

constraint must be added to any SQL encoding of Books2, eg.:

CREATE TABLE BOOKS (
ISBN VARCHAR (...) NOT NULL,
Publisher VARCHAR (...) NOT NULL,

Transforming Data by Calculation 177

Title VARCHAR (...) NOT NULL,
CONSTRAINT BOOKS PRIMARY KEY(ISBN)

);

CREATE TABLE AUTHORS (
ISBN VARCHAR (...) NOT NULL,
Count NUMBER (...) NOT NULL,
Author VARCHAR (...) NOT NULL,
CONSTRAINT AUTHORS_pk PRIMARY KEY (ISBN,Count)

);

ALTER TABLE AUTHORS ADD CONSTRAINT AUTHORS_FK
FOREIGN KEY (ISBN) REFERENCES BOOKS (ISBN);

It can be observed that this constraint is ensured by representation r (otherwise right-

invertibility wouldn’t take place). Constraints of this kind are known as concrete invari-

ants. We discuss this important notion in the section which follows.

Summary. This section described the application of the calculus introduced in section

5 to the transformation of abstract data models targeted at relational database imple-

mentations. It also showed how more elaborate laws can be derived from simpler ones

and how to synthesize composite “forward” and “backward” data mappings using the

underlying relational calculus. We proceed to showing how to take further advantage of

relational reasoning in synthesizing data type invariants entailed by the representation

process.

7 Concrete Invariants

The fact that R and F are connected (63) in every ≤-rule (7) forces the range of R to

be at most the domain of F , ρ R ⊆ δ F . This means that the representation space (B)

can be divided in three parts:

– inside ρ R — data inside ρ R are referred to as canonical representatives; the pred-

icate associated to ρ R, which is the strongest property ensured by the representa-

tion, is referred to as the induced concrete invariant, or representation invariant.
– outside δ F — data outside δ F are illegal data: there is no way in which they

can be retrieved; we say that the target model is corrupted (using the database

terminology) once its CRUD drives data into this zone.
– inside δ F and outside ρ R — this part contains data values which R never gen-

erates but which are retrievable and therefore regarded as legal representatives;

however, if the CRUD of the target model lets data go into this zone, the range of

the representation cannot be assumed as concrete invariant.

The following properties of domain and range

δ R = ker R ∩ id (118)

ρR = img R ∩ id (119)

ρ (R · S) = ρ (R · ρS) (120)

δ (R · S) = δ (δ R · S) (121)

178 J.N. Oliveira

help in inferring concrete invariants, in particular those induced by ≤-chaining (65).

Concrete invariant calculation, which is in general nontrivial, is softened wherever

≤-rules are expressed by GCs 19. In this case, the range of the representation (concrete

invariant) can be computed as coreflexive r · f ∩ id, that is, predicate 20

φ x
def
= r(f x) = x (122)

As illustration of this process, consider law

A → B × C

〈(π1·),(π2·)〉
��

≤ (A → B) × (A → C)

〈 , 〉

�� (123)

which expresses the universal property of the split operator, a perfect GC:

X ⊆ 〈R, S〉 ≡ π1 · X ⊆ R ∧ π2 · X ⊆ S (124)

Calculation of the concrete invariant induced by (123) follows:

φ(R, S)

≡ { (122, 123) }

(R, S) = (π1 · 〈R, S〉, π2 · 〈R, S〉)

≡ { (46) }

R = R · δ S ∧ S = S · δ R

≡ { δ X ⊆ Φ ≡ X ⊆ X · Φ }

δ R ⊆ δ S ∧ δ S ⊆ δ R

≡ { (14) }

δ R = δ S

In other words: if equally defined R and S are joined and then decomposed again, this

will be a lossless decomposition [58].

Similarly, the following concrete invariant can be shown to hold for rule (114) 21:

φ(M, N)
def
= N · ∈◦ � M (125)

Finally note the very important fact that, in the case of ≤-rules supported by perfect

GCs, the source datatype is actually isomorphic to the subset of the target datatype

determined by the concrete invariant (as range of the representation function 22).

19 Of course, these have to be perfect (64) on the source (abstract) side.
20 See Theorem 5.20 in [1].
21 See [63] for details.
22 See the Unity of opposites theorem of [5].

Transforming Data by Calculation 179

Exercise 27. Infer (124) from (41) and universal property

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S) (126)

Moreover, show that (40) instantiates (124). �

Exercise 28. Show that (113) is the concrete invariant induced by rule (110), from left-

to-right, in case all relations are simple. �

Concrete invariants play an important role in data refinement. For instance, Morgan [49]

takes them into account in building functional abstractions of the form af · Φdti where

(entire) abstraction function af is explicitly constrained by concrete invariant dti. In the

section which follows we show how such invariants help in calculating model transfor-

mations. The reader is also referred to [8] for a PF-theory of invariants in general.

8 Calculating Model Transformations

References [30] and [43] postulate a number of model transformation rules (concerning

GERs in the first case and UML class diagrams in the second) which we are in position

to calculate. We illustrate this process with rule 12.2 of [30], the rule which converts a

(multivalued) attribute into an entity type:

A

A1

A2

A3[0:N]

id: A1

⇔

A’

A1

A2

id: A1

rA0:N

EA3

K3

A3

id: K3

1:N

The PF-semantics of entity A are captured by simple relations from identity A1 to

attributes A2 and A3, this one represented by a powerset due to being [0:N]:

A1 ⇀ A2 × PA3

The main step in the calculation is the creation of the new entity EA3 by indirection —

recall (104) — whereafter we proceed as before:

A1 ⇀ A2 × PA3

≤1 { (104) }

(K3 ⇀ A3) × (A1 ⇀ A2 × PK3)

∼=2 { (94) }

(K3 ⇀ A3) × (A1 ⇀ A2 × (K3 ⇀ 1))

≤3 { (114) }

(K3 ⇀ A3) × ((A1 ⇀ A2) × (A1 × K3 ⇀ 1))

∼=4 { introduce ternary product }

(A1 ⇀ A2)
︸ ︷︷ ︸

A′

× (A1 × K3 ⇀ 1)
︸ ︷︷ ︸

rA

× (K3 ⇀ A3)
︸ ︷︷ ︸

EA3

180 J.N. Oliveira

The overall concrete invariant is

φ(M, R, N) = R · ∈◦ � M ∧ R · ∈◦ � N

— recall eg. (125) — which can be further transformed into:

φ(M, R, N) = R · ∈◦ � M ∧ R · ∈◦ � N

≡ { (54, 53) }

R · π◦
1 � M ∧ R · π◦

2 � N

≡ { (36) }

R � M · π1 ∧ R � N · π2

In words, this means that relationship R (rA in the diagram) must integrate referentially

with M (A’ in the diagram) on the first attribute of its compound key and with N (EA3

in the diagram) wrt. the second attribute.

The reader eager to calculate the overall representation and abstraction relations will

realize that the former is a relation, due to the fact that there are many ways in which

the keys of the newly created entity can be associated to values of the A3 attribute.

This association cannot be recovered once such keys are abstracted from. So, even re-

stricted by the concrete invariant, the calculated model is surely a valid implementation

of the original, but not isomorphic to it. Therefore, the rule should not be regarded as

bidirectional.

9 On the Impedance of Recursive Data Models

Recursive data structuring is a source of data impedance mismatch because it is not

directly supported in every programming environment. While functional programmers

regard recursion as the natural way to programming, for instance, database program-

mers don’t think in that way: somehow trees have to give room to flat data. Somewhere

in between is (pointer-based) imperative programming and object oriented program-

ming: direct support for recursive data structures doesn’t exist, but dynamic memory

management makes it possible to implement them as heap structures involving pointers

or object identities.

In this section we address recursive data structure representation in terms of non-

recursive ones. In a sense, we want to show how to “get away with recursion” [56]

in data modeling. It is a standard result (and every a programmer’s experience) that

recursive types using products and sums can be implemented using pointers [69]. Our

challenge is to generalize this result and present it in a calculational style.

As we have seen already, recursive (finite) data structures are least solutions to equa-

tions of the form X ∼= GX , where G is a relator. The standard notation for such a

solution is µG. (This always exists when G is regular [11], a class which embodies all

polynomial G.)

Programming languages which implement datatype µG always do so by wrapping

it inside some syntax. For instance, the Haskell declaration of datatype PTree (38)

Transforming Data by Calculation 181

involves constructor Node and selectors name, birth, mother and father, which

cannot be found in equation (51). But this is precisely why the equation expresses

isomorphism and not equality: constructor and selectors participate in two bijections

which witness the isomorphism and enable one to construct or inspect inhabitants of

the datatype being declared.

µG

out

��
∼= GµG

in

��

The general case is depicted in the diagram aside,

where in embodies the chosen syntax for constructing

inhabitants of µG and out = in◦ embodies the syntax for

destructing (inspecting) such inhabitants. For instance,

the in bijection associated with PTree (38) interpreted

as solution to equation (51) is

in((n, b), m, f)
def
= Node n b m f (127)

Programs handling µG can be of essentially two kinds: either they read (parse, in-

spect) µG-structures (trees) or they actually build such structures. The former kind is

known as folding and the latter as unfolding, and both can be pictured as diagrams

exhibiting their recursive (inductive) nature:

µG
out ��

fold R

��

GµG

G(fold R)

��
A GA

R

��

µG GµG
in��

A

unfold R

��

R

�� GA

G(unfold R)

��

Both fold and unfold are instances of a more general, binary combinator known as

hylomorphism [11], which is normally expressed using the bracketed notation [[,]] of

(129) below to save parentheses:

unfold R = [[in, R]] (128)

fold S = [[R, out]]

As fixed points (129), hylomorphisms enjoy a number of so-called fusion properties,

two of which are listed below for their relevance in calculations to follow 23:

C G C
T��

B

V

��

G B

G V

��

S��

K

[[S,H]]

��

H �� G K

G [[S,H]]

��

A

R

��

U

�� G A

G R

��

[[S, H]] = 〈µ X :: S · (GX) · H〉 (129)

V · [[S, H]] ⊆ [[T, H]] ⇐ V · S ⊆ T · (GV) (130)

[[S, H]] · R = [[S, U]] ⇐ H · R = (GR) · U (131)

23 These and other properties of hylomorphisms arise from the powerful µ-fusion theorem [5]

once the relational operators involved are identified as lower adjoints in GCs, recall table 1.

182 J.N. Oliveira

In (liberal) Haskell syntax we might write the type of the unfold combinator as

something like

unfold :: (a -> g a) -> a -> mu g

assuming only functions involved. If we generalize these to simple relations, we obtain

the following type for function unfold

(A ⇀ µG)(A⇀G A)

which, thanks to (89), “uncurries” into ((A ⇀ GA) × A) ⇀ µG.

Let us temporarily assume that there exists a datatype K such that simple relation

Unf , of type ((K ⇀ GK) × K) ⇀ µG and such that Unf = unfold , is surjective.

Then we are in condition to establish the ≤-equation which follows,

µG

R ��

≤
(K ⇀ GK)
︸ ︷︷ ︸

“heap”

×K

Unf

�� (132)

where K can be regarded as a data type of “heap addresses”, or “pointers”, and K ⇀

GK a datatype of G-structured heaps 24. So, assertion t Unf (H, k) means that, if

pair (H, k) is in the domain of Unf , then the abstract value t = (unfold H)k will

be retrieved — recall (90). This corresponds to dereferencing k in H and carrying on

doing so (structurally) while building (via in) the tree which corresponds to such a walk

through the heap.

Termination of this process requires H to be free of dangling references — ie. satisfy

the NSRI property (62) — and to be referentially acyclic. This second requirement can

also be expressed via the membership relation associated with G: relation K K
∈G·H��

on references must be well-founded [23].

Jourdan [39] developed a pointwise proof of the surjectiveness of Unf (132) for K

isomorphic to the natural numbers and G polynomial (see more about this in section 13).

The representation relation R, which should be chosen among the entire sub-relations

of Unf ◦, is an injective fold (since converses of unfolds are folds [11]). Appendix A

illustrates a strategy for encoding such folds, in the case of G polynomial and K the

natural numbers.

“De-recursivation” law (132) generalizes, in the generic PF-style, the main result

of [69] and bears some resemblance (at least in spirit) with “defunctionalization” [35],

a technique which is used in program transformation and compilation. The genericity of

this result and the ubiquity of its translation into practice — cf. name spaces, dynamic

memory management, pointers and heaps, database files, object run-time systems, etc

— turns it into a useful device for cross-paradigm transformations. For instance, [56]

shows how to use it in calculating a universal SQL representation for XML data.

The sections which follow will illustrate this potential, while stressing on genericity

[37]. Operations of the algebra of heaps such as eg. defragment (cf. garbage-collection)

will be stated generically and be shown to be correct with respect to the abstraction

relation.

24 Technically, this view corresponds to regarding heaps as (finite) relational G-coalgebras.

Transforming Data by Calculation 183

10 Cross-Paradigm Impedance Handled by Calculation

Let us resume work on the case study started in section 2 and finally show how to map

the recursive datatype PTree (38) down to a relational model (SQL) via an intermedi-

ate heap/pointer representation.

Note that we shall be crossing over three paradigms — functional, imperative and

database relational — in a single calculation, using the same notation:

PTree

∼=1 { r1 = out , f1 = in, for G K
def
= Ind × (K + 1) × (K + 1) — cf. (51, 127) }

µG

≤2 { R2 = Unf ◦, F2 = Unf — cf. (132) }

(K ⇀ Ind × (K + 1) × (K + 1)) × K

∼=3 { r3 = (id ⇀ flatr◦) × id , f3 = (id ⇀ flatr) × id — cf. (43) }

(K ⇀ Ind × ((K + 1) × (K + 1))) × K

∼=4 { r4 = (id ⇀ id × p2p) × id , f4 = (id ⇀ id × p2p◦) × id — cf. (88) }

(K ⇀ Ind × (K + 1)2) × K

∼=5 { r5 = (id ⇀ id × tot◦) × id , f5 = (id ⇀ id × tot) × id — cf. (84) }

(K ⇀ Ind × (2 ⇀ K)) × K

≤6 { r6 = △n , f6 = �n — cf. (114) }

((K ⇀ Ind) × (K × 2 ⇀ K)) × K

∼=7 { r7 = flatl , f7 = flatl◦ — cf. (44) }

(K ⇀ Ind) × (K × 2 ⇀ K) × K

=8 { since Ind = Name × Birth (51) }

(K ⇀ Name × Birth) × (K × 2 ⇀ K) × K (133)

In summary:

– Step 2 moves from the functional (inductive) to the pointer-based representation. In

our example, this corresponds to mapping inductive tree (9) to the heap of figure 2a.

– Step 5 starts the move from pointer-based to relational-based representation. Iso-

morphism (84) between Maybe-functions and simple relations (which is the main

theme of [59]) provides the relevant data-link between the two paradigms: pointers

“become” primary/foreign keys.

– Steps 7 and 8 deliver an RDBT structure (illustrated in figure 2b) made up of two

tables, one telling the details of each individual, and the other recording its im-

mediate ancestors. The 2-valued attribute in the second table indicates whether the

mother or the father of each individual is to be reached. The third factor in (133) is

the key which gives access to the root of the original tree.

184 J.N. Oliveira

In practice, a final step is required, translating the relational data into the syntax of

the target relational engine (eg. a script of SQL INSERT commands for each relation),

bringing symmetry to the exercise: in either way (forwards or backwards), data map-

pings start by removing syntax and close by introducing syntax.

Exercise 29. Let f4:7 denote the composition of abstraction functions f4 · (· · ·) · f7.

Show that (id ⇀ π1) · π1 · f4:7 is the same as π1. �

11 On the Transcription Level

Our final calculations have to do with what the authors of [42] identify as the transcrip-

tion level, the third ingredient of a mapping scenario. This has to do with diagram (10):

once two pairs of data maps (“map forward” and “map backward”) F, R and F ′, R′

have been calculated so as to represent two source datatypes A and B, they can be used

to transcribe a given source operation B A
O�� into some target operation D C

P�� .

How do we establish that P correctly implements O? Intuitively, P must be such that

the performance of O and that of P (the latter wrapped within the relevant abstraction

and representation relations) cannot be distinguished:

O = F ′ · P · R (134)

Equality is, however, much too strong a requirement. In fact, there is no disadvantage

in letting the target side of (134) be more defined than the source operation O, provided

both are simple 25:

O ⊆ F ′ · P · R (135)

Judicious use of (29, 30) will render (135) equivalent to

O · F ⊆ F ′ · P (136)

provided R is chosen maximal (R = F ◦) and F � P . This last requirement is obvious:

P must be prepared to cope with all possible representations delivered by R = F ◦.

In particular, wherever the source operation O is a query, ie. F ′ = id in (136), this

shrinks to O · F ⊆ P . In words: wherever the source query O delivers a result b for

some input a, then the target query P must deliver the same b for any target value which

represents a.

Suppose that, in the context of our running example (pedigree trees), one wishes to

transcribe into SQL the query which fetches the name of the person whose pedigree tree

is given. In the Haskell data model PTree, this is simply the (selector) function name.

We want to investigate how this function gets mapped to lower levels of abstraction.

The interesting step is ≤2, whereby trees are represented by pointers to heaps. The

abstraction relation Unf associated to this step is inductive. Does this entail inductive

25 Staying within this class of operations is still quite general: it encompasses all deterministic,

possibly partial computations. Within this class, inclusion coincides with the standard defini-

tion of operation refinement [60].

Transforming Data by Calculation 185

reasoning? Let us see. Focusing on this step alone, we want to solve equation name ·
Unf ⊆ Hname for unknown Hname — a query of type ((K ⇀ GK) × K) ⇀

Name.

Simple relation currying (91) makes this equivalent to finding Hname such that, for

every heap H , name · (Unf H) ⊆ Hname H holds, that is, name · (unfold H) ⊆
Hname H . Since both unfold H and Hname H are hylomorphisms, we write them

as such, name · [[in, H]] ⊆ [[T, H]], so that T becomes the unknown. Then we

calculate:

name · [[in, H]] ⊆ [[T, H]]

⇐ { fusion (130) }

name · in ⊆ T · G(name)

≡ { name · Node = π1 · π1 (127) ; expansion of G(name) }

π1 · π1 ⊆ T · (id × (name + id) × (name + id))

⇐ { π1 · (f × g) = f · π1 }

T = π1 · π1

Thus

Hname H = [[π1 · π1, H]]

= { (129) }

〈µ X :: π1 · π1 · (id × (X + id) × (X + id)) · H〉

= { π1 · (f × g) = f · π1 }

〈µ X :: π1 · π1 · H〉

= { trivia }

π1 · π1 · H

Back to uncurried format and introducing variables, we get (the post-condition of)

Hname

n Hname(H, k) ≡ k ∈ dom H ∧ n = π1(π1(H k))

which means what one would expect: should pointer k be successfully dereferenced

in H , selection of the Ind field will take place, wherefrom the name field is finally

selected (recall that Ind = Name × Birth).

The exercise of mapping Hname down to the SQL level (133) is similar but less

interesting. It will lead us to

n Rname (M, N, k) = k ∈ dom M ∧ n = π1(M k)

where M and N are the two relational tables which originated from H after step 2.

Rname can be encoded into SQL as something like

186 J.N. Oliveira

SELECT Name FROM M WHERE PID = k

under some obvious assumptions concerning the case in which k cannot be found in

M . So we are done as far as transcribing name is concerned.

The main ingredient of the exercise just completed is the use of fusion property

(130). But perhaps it all was much ado for little: queries aren’t very difficult to tran-

scribe in general. The example we give below is far more eloquent and has to do with

heap housekeeping. Suppose one wants to defragment the heap at level 2 via some real-

location of heap cells. Let K K
f�� be the function chosen to rename cell addresses.

Recalling (33), defragmentation is easy to model as a projection:

defragment : (K −→ K) −→ (K ⇀ GK) −→ (K ⇀ GK)

defragment f H
def
= (G f) · H · f◦ (137)

The correctness of defragment has two facets. First, H · f◦ should remain simple;

second, the information stored in H should be preserved: the pedigree tree recorded in

the heap (and pointer) shouldn’t change in consequence of a defragment operation. In

symbols:

t Unf (defragment f H, f k) ≡ t Unf (H, k) (138)

Let us check (138):

t Unf (defragment f H, f k) ≡ t Unf (H, k)

≡ { (132) ; (128) }

t [[in, defragment fH]] (f k) ≡ t [[in, H]] k

≡ { go pointfree (20); definition (137) }

[[in, (G f) · H · f◦]] · f = [[in, H]]

⇐ { fusion property (131) }

(G f) · H · f◦ · f = (G f) · H

⇐ { Leibniz }

H · f◦ · f = H

≡ { since H ⊆ H · f◦ · f always holds }

H · f◦ · f ⊆ H

So, condition H · f◦ · f ⊆ H (with points:

k ∈ dom H ∧ f k = f k′ ⇒ k′ ∈ dom H ∧ H k = H k′

for all heap addresses k, k′) is sufficient for defragment to preserve the information

stored in the heap and its simplicity 26. Of course, any injective f will qualify for safe

defragmentation, for every heap.

26 In fact, H · f◦ · f ⊆ H ensures H · f◦ simple, via (30) and monotonicity.

Transforming Data by Calculation 187

Some comments are in order. First of all, and unlike what is common in data refine-

ment involving recursive data structures (see eg. [24] for a comprehensive case study),

our calculations above have dispensed with any kind of inductive or coinductive argu-

ment. (This fact alone should convince the reader of the advantages of the PF-transform

in program reasoning.)

Secondly, the defragment operation we’ve just reasoned about is a so-called rep-

resentation changer [34]. These operations (which include garbage collection, etc) are

important because they add to efficiency without disturbing the service delivered to the

client. In the mapping scenario terminology of [42], these correspond to operations

which transcribe backwards to the identity function, at source level.

Finally, a comment on CRUD operation transcription. Although CRUD operations in

general can be arbitrarily complex, in the process of transcription they split into simpler

and simpler middleware and dataware operations which, at the target (eg. database)

level end up involving standard protocols for data access [42].

The ubiquity of simplicity in data modeling, as shown throughout this paper, invites

one to pay special attention to the CRUD of this kind of relation. Reference [57] identi-

fies some “design patterns” for simple relations. The one dealt with in this paper is the

identity pattern. For this pattern, a succinct specification of the four CRUD operations

on simple M is as follows:

– Create(N): M �→ N † M , where (simple) argument N embodies the new entries

to add to M . The use of the override operator † [38, 59] instead of union (∪) ensures

simplicity and prevents from writing over existing entries.

– Read(a): deliver b such that b M a, if any.

– Update(f, Φ): M �→ M †f ·M ·Φ. This is a selective update: the contents of every

entry whose key is selected by Φ get updated by f ; all the other remain unchanged.

– Delete(Φ): M �→ M · (id−Φ), where R−S means relational difference (cf. table

1). All entries whose keys are selected by Φ are removed.

Space constraints preclude going further on this topic in this paper. The interested

reader will find in reference [57] the application of the PF-transform in speeding-up

reasoning about CRUD preservation of datatype invariants on simple relations, as a

particular case of the general theory [8]. Similar gains are expected from the same

approach applied to CRUD transcription.

Exercise 30. Investigate the transcription of selector functionmother (38) to the heap-

and-pointer level, that is, solve mother · Unf ⊆ P for P . You should obtain a simple

relation which, should it succeed in dereferencing the input pointer, it will follow on

to the second position in the heap-cell so as to unfold (if this is the case) and show the

tree accessible from that point. The so-called hylo-computation rule — [[R, S]] = R ·
(F [[R, S]]) · S — is what matters this time. �

Summary. The transcription level is the third component of a mapping scenario whereby

abstract operations are “mapped forward” to the target level and give room to concrete

implementations (running code). In the approach put forward in this paper, this is per-

formed by solving an equation (134) where the unknown is the concrete implementa-

tion P one is aiming at. This section gave an example of how to carry out this task in

188 J.N. Oliveira

presence of recursive data structures represented by heaps and pointers. The topic of

CRUD operation transcription was also (briefly) addressed.

12 Related Work

This section addresses two areas of research which are intimately related to the data

transformation discipline put forward in the current paper. One is bidirectional pro-

gramming used to synchronize heterogeneous data formats [13]. The other is the design

of term rewriting systems for type-safe data transformation [17].

Lenses. The proximity is obvious between abstraction/representation pairs implicit in

≤-rules and bidirectional transformations known as lenses and developed in the context

of the classical view-update problem [13, 14, 27, 33]. Each lens connects a concrete data

type C with an abstract view A on it by means of two functions A × C
put ��C and

A C
get�� . (Note the similarity with (R, F) pairs, except for put’s additional argument

of type C.)

A lens is said to be well-behaved if two conditions hold,

get(put(v, s)) = v and put(get s, s) = s

known as acceptability and stability, respectively. For total lenses, these are easily PF-

transformed into

put · π◦
1 ⊆ get◦ (139)

〈get, id〉 ⊆ put◦ (140)

which can be immediately recognized as stating the connectivity requirements of ≤-

diagrams

A × C put

��
A

π◦

1 ��

≤ C

get

�� and C

〈get,id〉
		

≤ A × C

put

(141)

respectively.

Proving that these diagrams hold in fact is easy to check in the PF-calculus: stability

(140) enforces put surjective (of course 〈get, id〉 is injective even in case get is not).

Acceptability (139) enforces get surjective since it is larger than the converse of entire

put · π◦
1 (recall rules of thumb of exercise 2). Conversely, being at most the converse of

a function, put · π◦
1 is injective, meaning that

π1 · put◦ · put · π◦
1 ⊆ id

≡ { shunting (26, 27) and adding variables }

put(a, c) = put(a′, c′) ⇒ a = a′

holds. This fact is known in the literature as the semi-injectivity of put [27].

Transforming Data by Calculation 189

Exercise 31. A (total, well-behaved) lens is said to be oblivious [27] if put is of the

form f · π1, for some f . Use the PF-calculus to show that in this case get and f are

bijections, that is, A and C in (141) are isomorphic 27. Suggestion: show that get = f◦

and recall (75). �

Put side by side, the two ≤-diagrams displayed in (141) express the bidirectional na-

ture of lenses in a neat way 28. They also suggest that lenses could somehow be “pro-

grammed by calculation” in the same manner as the structural transformations investi-

gated in the main body of this paper. See section 13 for future research directions in this

respect.

2LT — a library for two-level data transformation. The 2LT package of the U.Minho

Haskell libraries [10, 17, 18] applies the theory presented in the current paper to data

refinement via (typed) strategic term re-writing using GADTs. The refinement process

is modeled by a type-changing rewrite system, each rewrite step of which animates

a ≤-rule of the calculus: it takes the form A �→ (C, to, from) where C, the target

type, is packaged with the conversion functions (to and from) between the old (A) and

new type (C). By repeatedly applying such rewrite steps, complex conversion functions

(data mappings) are calculated incrementally while a new type is being derived. (So,

2LT representation mappings are restricted to functions.)

Data mappings obtained after type-rewriting can be subject to subsequent simplifi-

cation using laws of PF program calculation. Such simplifications include migration

of queries on the source data type to queries on a target data type by fusion with the

relevant data mappings (a particular case of transcription, as we have seen). Further to

PF functional simplification, 2LT implements rewrite techniques for transformation of

structure-shy functions (XPath expressions and strategic functions), see eg. [18].

In practice, 2LT can be used to scale-up the data transformation/mapping techniques

presented in this paper to real-size case-studies, mainly by mechanizing repetitive tasks

and discharging housekeeping duties. More information can be gathered from the

project’s website: http://code.google.com/p/2lt.

13 Conclusions and Future Work

This paper presented a mathematical approach to data transformation. As main advan-

tages of the approach we point out: (a) a unified and powerful notation to describe

data-structures across various programming paradigms, and its (b) associated calculus

based on elegant rules which are reminiscent of school algebra; (c) the fact that data

impedance mismatch is easily expressed by rules of the calculus which, by construc-

tion, offer type-level transformations together with well-typed data mappings; (d) the

properties enjoyed by such rules, which enable their application in a stepwise, struc-

tured way.

The novelty of this approach when compared to previous attempts to lay down the

same theory is the use of binary relation pointfree notation to express both algorithms

27 This is Lemma 3.9 in [27], restricted to functions.
28 Note however that, in general, lenses are not entire [27].

190 J.N. Oliveira

and data, in a way which dispenses with inductive proofs and cumbersome reasoning. In

fact, most work on the pointfree relation calculus has so far been focused on reasoning

about programs (ie. algorithms). Advantages of our proposal to uniformly PF-transform

both programs and data are already apparent at practical level, see eg. the work reported

in [50].

Thanks to the PF-transform, opportunities for creativity steps are easier to spot and

carry out with less symbol trading. This style of calculation has been offered to Minho

students for several years (in the context of the local tradition on formal modeling) as

alternative to standard database design techniques 29. It is the foundation of the “2LT

bundle” of tools available from the UMinho Haskell libraries. However, there is still

much work to be done. The items listed below are proposed as prompt topics for re-

search.

Lenses. The pointwise treatment of lenses as partial functions in [27] is cpo-based,

entailing the need for continuity arguments. In this paper we have seen that partial

functions are simple relations easily accommodated in the binary relation calculus. At

first sight, generalizing put and get of section 12 from functions to simple relations

doesn’t seem to be particularly hard, even in the presence of recursion, thanks to the PF

hylomorphism calculus (recall section 9).

How much the data mapping formalism presented in the current paper can offer to

the theory of bidirectional programming is the subject of on-going research.

Heaps and pointers at target. We believe that Jourdan’s long, inductive pointwise argu-

ment [39] for ≤-law (132) can be supplanted by succinct pointfree calculation if results

developed meanwhile by Gibbons [29] are taken into account. Moreover, the same law

should be put in parallel with other related work on calculating with pointers (read eg.

[12] and follow the references).

Separation logic. Law (132) has a clear connection to shared-mutable data represen-

tation and thus with separation logic [62]. There is work on a PF-relational model for

this logic [64] which is believed to be useful in better studying and further generalizing

law (132) and to extend the overall approach to in-place data-structure updating.

Concrete invariants. Taking concrete invariants into account is useful because these

ensure (for free) properties at target-data level which can be advantageous in the tran-

scription of source operations. The techniques presented in section 7 and detailed in

[63] are the subject of current research taking into account the PF-calculus of invari-

ants of [8]. Moreover, ≤-rules should be able to take invariants into account (a topic

suggested but little developed in [55]).

Mapping scenarios for the UML. Following the exercise of section 8, a calculational

theory of UML mapping scenarios could be developed starting from eg. K. Lano’s cat-

alogue [43]. This should also take the Calculating with Concepts [22] semantics for

UML class diagrams into account. For preliminary work on this subject see eg. [9].

29 The ≤-rules of the calculus are used in practical classes and lab assignments in the derivation

of database schemas from abstract models, including the synthesis of data mappings. The

proofs of such rules (as given in the current paper) are addressed in the theory classes.

Transforming Data by Calculation 191

PF-transform. Last but not least, we think that further research on the PF-transform

should go along with applying it in practice. In particular, going further and formalizing

the analogy with the Laplace transform (which so far has only been hinted at) would be

a fascinating piece of research in mathematics and computer science in itself, and one

which would put the vast storehouse in order, to use the words of Lawvere and Schanuel

[44]. In these times of widespread pre-scientific software technology, putting the PF-

transform under the same umbrella as other mathematical transforms would contribute

to better framing the software sciences within engineering mathematics as a whole.

Acknowledgments

The author wishes to thank his colleagues at Minho University and his (current and

former) students for the warm reception to his (ever evolving) ideas on data calculation.

Special thanks go to L.S. Barbosa, to C.J. Rodrigues, to J.C. Ramalho and to the 2LT

team core: Alcino Cunha, Joost Visser, Tiago Alves and Hugo Pacheco. Jeremy Gibbons

comments on the proceedings version of this paper are gratefully acknowledged.

The author is also indebted to the anonymous referees for detailed and helpful com-

ments which improved the paper’s presentation and technical contents.

Part of this research was carried out in the context of the PURE Project (Program

Understanding and Re-engineering: Calculi and Applications) funded by FCT contract

POSI/ICHS/44304/2002.

References

1. Aarts, C., Backhouse, R.C., Hoogendijk, P., Voermans, E., van der Woude, J.: A relational

theory of datatypes (December 1992), http://www.cs.nott.ac.uk/∼rcb
2. Alves, T.L., Silva, P.F., Visser, J., Oliveira, J.N.: Strategic term rewriting and its application

to a VDM-SL to SQL conversion. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM

2005. LNCS, vol. 3582, pp. 399–414. Springer, Heidelberg (2005)

3. Ambler, S.W.: The object-relational impedance mismatch (February15, 2006),

http://www.agiledata.org/essays/impedanceMismatch.html
4. Backhouse, K., Backhouse, R.C.: Safety of abstract interpretations for free, via logical rela-

tions and Galois connections. SCP 15(1–2), 153–196 (2004)

5. Backhouse, R.C.: Mathematics of Program Construction, pages 608. Univ. of Nottingham

(2004); Draft of book in preparation

6. Backhouse, R.C., de Bruin, P., Hoogendijk, P., Malcolm, G., Voermans, T.S., van der Woude,

J.: Polynomial relators. In: AMAST 1991, pp. 303–362. Springer, Heidelberg (1992)

7. Backus, J.: Can programming be liberated from the von Neumann style? a functional style

and its algebra of programs. CACM 21(8), 613–639 (1978)

8. Barbosa, L.S., Oliveira, J.N., Silva, A.M.: Calculating invariants as coreflexive bisimulations.

LNCS, vol. 5140, pp. 83–99. Springer, Heidelberg (2008)

9. Berdaguer, P.: Algebraic representation of UML class-diagrams, May, Dept. Informatics,

U.Minho. Technical note (2007)

10. Berdaguer, P., Cunha, A., Pacheco, H., Visser, J.: Coupled Schema Transformation and Data

Conversion For XML and SQL. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 290–

304. Springer, Heidelberg (2006)

http://www.cs.nott.ac.uk/~rcb
http://www.agiledata.org/essays/impedanceMismatch.html

192 J.N. Oliveira

11. Bird, R., de Moor, O.: Algebra of Programming. C.A.R. Hoare, series editor, Series in Com-

puter Science. Prentice-Hall International, Englewood Cliffs (1997)
12. Bird, R.S.: Unfolding pointer algorithms. J. Funct. Program. 11(3), 347–358 (2001)
13. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang: Resource-

ful lenses for string data. In: ACM SIGPLAN–SIGACT POPL Symposium, pp. 407–419

(January 2008)
14. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational lenses: A language for updateable

views. In: Principles of Database Systems (PODS) (2006)
15. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.

Addison-Wesley Longman, Amsterdam (1999)
16. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs.

JACM 24(1), 44–67 (1977)
17. Cunha, A., Oliveira, J.N., Visser, J.: Type-safe two-level data transformation. In: Misra, J.,

Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 284–289. Springer, Hei-

delberg (2006)
18. Cunha, A., Visser, J.: Transformation of structure-shy programs: applied to XPath queries

and strategic functions. In: PEPM 2007, pp. 11–20. ACM, New York (2007)
19. Darlington, J.: A synthesis of several sorting algorithms. Acta Informatica 11, 1–30 (1978)
20. de Roever, W.-P., Engelhardt, K., Coenen, J., Buth, K.-H., Gardiner, P., Lakhnech, Y., Stomp,

F.: Data Refinement Model-Oriented Proof methods and their Comparison. Cambridge Uni-

versity Press, Cambridge (1999)
21. Deutsch, M., Henson, M., Reeves, S.: Modular reasoning in Z: scrutinising monotonicity and

refinement (to appear, 2006)
22. Dijkman, R.M., Pires, L.F., Joosten, S.: Calculating with concepts: a technique for the devel-

opment of business process support. In: pUML. LNI, vol. 7, pp. 87–98. GI (2001)
23. Doornbos, H., Backhouse, R., van der Woude, J.: A calculational approach to mathematical

induction. Theoretical Computer Science 179(1–2), 103–135 (1997)
24. Fielding, E.: The specification of abstract mappings and their implementation as B+-trees.

Technical Report PRG-18, Oxford University (September 1980)
25. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques for Software

Development, 1st edn. Cambridge University Press, Cambridge (1998)
26. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Proc. Symposia in

Applied Mathematics Mathematical Aspects of Computer Science, vol. 19, pp. 19–32. Amer-

ican Mathematical Society (1967)
27. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-

rectional tree transformations: A linguistic approach to the view-update problem. ACM

Trans. Program. Lang. Syst 29(3), 17 (2007)
28. Frias, M.F.: Fork algebras in algebra, logic and computer science. Logic and Computer Sci-

ence. World Scientific Publishing Co, Singapore (2002)
29. Gibbons, J.: When is a function a fold or an unfold?, Working document 833 FAV-12 avail-

able from the website of IFIP WG 2.1, 57th meeting, New York City, USA (2003)
30. Hainaut, J.-L.: The transformational approach to database engineering. In: Lämmel, R.,

Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143. Springer, Heidelberg

(2006)
31. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R.

(eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196 (1986)
32. Hoogendijk, P.: A Generic Theory of Data Types. PhD thesis, University of Eindhoven, The

Netherlands (1997)
33. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured docu-

ments based on bidirectional transformations. In: Proc. ACM SIGPLAN symposium on Par-

tial evaluation and semantics-based program manipulation, pp. 178–189. ACM Press, New

York (2004)

Transforming Data by Calculation 193

34. Hutton, G., Meijer, E.: Back to basics: Deriving representation changers functionally. Journal

of Functional Programming (1993) (Functional Pearl)

35. Hutton, G., Wright, J.: Compiling exceptions correctly. In: Kozen, D. (ed.) MPC 2004.

LNCS, vol. 3125, pp. 211–227. Springer, Heidelberg (2004)

36. Jackson, D.: Software abstractions: logic, language, and analysis. The MIT Press, Cambridge

Mass (2006)

37. Jeuring, J., Jansson, P.: Polytypic programming. In: Advanced Functional Programming.

Springer, Heidelberg (1996)

38. Jones, C.B.: Systematic Software Development Using VDM, 1st edn. Series in Computer

Science. Prentice-Hall Int., Englewood Cliffs (1986)

39. Jourdan, I.S.: Reificação de tipos abstractos de dados: Uma abordagem matemática. Master’s

thesis, University of Coimbra (1992) (in Portuguese)

40. Kahl, W.: Refinement and development of programs from relational specifications.

ENTCS 4, 1–4 (2003)

41. Kreyszig, E.: Advanced Engineering Mathematics, 6th edn. J. Wiley & Sons, Chichester

(1988)

42. Lämmel, R., Meijer, E.: Mappings make data processing go round. In: Lämmel, R., Saraiva,

J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 169–218. Springer, Heidelberg (2006)

43. Lano, K.: Catalogue of model transformations,

http://www.dcs.kcl.ac.uk/staff/kcl/
44. Lawvere, B., Schanuel, S.: Conceptual Mathematics: a First Introduction to Categories. Cam-

bridge University Press, Cambridge (1997)

45. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)

46. McCarthy, J.: Towards a mathematical science of computation. In: Popplewell, C.M. (ed.)

Proc. IFIP 62, pp. 21–28. North-Holland Pub.Company, Amsterdam (1963)

47. McLarty, C.: Elementary Categories, Elementary Toposes, 1st edn. Oxford Logic Guides,

vol. 21. Calendron Press, Oxford (1995)

48. Meng, S., Barbosa, L.S.: On refinement of generic state-based software components. In:

Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 506–520.

Springer, Heidelberg (2004) (Best student co-authored paper award)

49. Morgan, C.: Programming from Specification. C.A.R. Hoare, series (ed.), Series in Computer

Science. Prentice-Hall International, Englewood Cliffs (1990)

50. Necco, C., Oliveira, J.N., Visser, J.: Extended static checking by strategic rewriting of point-

free relational expressions. Technical Report FAST:07.01, CCTC Research Centre, Univer-

sity of Minho (2007)

51. Oliveira, J.N.: Refinamento transformacional de especificaşões (terminais). In: Proc. of XII

Jornadas Luso-Espanholas de Matemática, vol. II, pp. 412–417 (May 1987)

52. Oliveira, J.N.: A Reification Calculus for Model-Oriented Software Specification. Formal

Aspects of Computing 2(1), 1–23 (1990)

53. Oliveira, J.N.: Invited paper: Software Reification using the SETS Calculus. In: Denvir, T.,

Jones, C.B., Shaw, R.C. (eds.) Proc. of the BCS FACS 5th Refinement Workshop, Theory and

Practice of Formal Software Development, London, UK, pp. 140–171. Springer, Heidelberg

(1992)

54. Oliveira, J.N.: Data processing by calculation. In: 6th Estonian Winter School in Computer

Science, Palmse, Estonia, March 4-9, 2001. Lecture notes, pages 108 (2001)

55. Oliveira, J.N.: Constrained datatypes, invariants and business rules: a relational approach,

PUReCafé, DI-UM, 2004.5.20 [talk], PURE Project (POSI/CHS/44304/2002) (2004)

56. Oliveira, J.N.: Calculate databases with simplicity, Presentation at the IFIP WG 2.1 #59

Meeting, Nottingham, UK (September 2004) (Slides available from the author’s website)

57. Oliveira, J.N.: Reinvigorating pen-and-paper proofs in VDM: the pointfree approach. In: The

Third OVERTURE Workshop, Newcastle, UK, 27-28 November (2006)

http://www.dcs.kcl.ac.uk/staff/kcl/

194 J.N. Oliveira

58. Oliveira, J.N.: Pointfree foundations for (generic) lossless decomposition (submitted, 2007)

59. Oliveira, J.N., Rodrigues, C.J.: Transposing relations: from Maybe functions to hash tables.

In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 334–356. Springer, Heidelberg (2004)

60. Oliveira, J.N., Rodrigues, C.J.: Pointfree factorization of operation refinement. In: Misra,

J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085. pp. 236–251. Springer,

Heidelberg (2006)

61. Pratt, V.: Origins of the calculus of binary relations. In: Proc. of the 7th Annual IEEE Symp.

on Logic in Computer Science, pp. 248–254. IEEE Computer Society Press, Los Alamitos

(1992)

62. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp.

55–74 (2002)

63. Rodrigues, C.J.: Software Refinement by Calculation. PhD thesis, Departamento de In-

formática, Universidade do Minho (submitted, 2007)

64. Wang, S., Barbosa, L.S., Oliveira, J.N.: A relational model for confined separation logic. In:

TASE 2008, The 2nd IEEE International Symposium on Theoretical Aspects of Software

Engineering, June 17 - 19. LNCS. Springer, Heidelberg (2008)

65. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program 7(3), 231–264 (1997)

66. Sheard, T., Pasalic, E.: Two-level types and parameterized modules. Journal of Functional

Programming 14(5), 547–587 (2004)

67. Thomas, D.: The impedance imperative tuples + objects + infosets =too much stuff! Journal

of Object Technology 2(5) (September/ October 5, 2003)

68. Visser, J.: Generic Traversal over Typed Source Code Representations. Ph. D. dissertation,

University of Amsterdam, Amsterdam, The Netherlands (2003)

69. Wagner, E.G.: All recursive types defined using products and sums can be implemented using

pointers. In: Bergman, C., Maddux, R.D., Pigozzi, D. (eds.) Algebraic Logic and Universal

Algebra in Computer Science. LNCS, vol. 425. Springer, Heidelberg (1990)

70. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall, Inc.,

Upper Saddle River (1996)

A PTree Example in Haskell

This annex presents the exercise, in Haskell, of representing inductive type PTree (38)

by pointers and heaps. For simplicity, the datatype of PTree-shaped heaps is modeled

by finite lists of pairs, together with a pointer telling where to start from:

data Heap a k = Heap [(k,(a,Maybe k, Maybe k))] k

It is convenient to regard this datatype as a bifunctor 30:

instance BiFunctor Heap
where bmap g f

(Heap h k’) =
Heap [(f k) |-> (g a, fmap f p, fmap f p’)

| (k,(a,p,p’)) <- h]
(f k’)

30 Note the sugaring of pairing in terms of the infix combinator x |-> y = (x,y), as sug-

gested by (33). Class BiFunctor is the binary extension to standard class Functor offer-

ing bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d), the binary coun-

terpart of fmap.

Transforming Data by Calculation 195

The chosen (functional) representation is a fold over PTree,

r (Node n b m f) = let x = fmap r m
y = fmap r f

in merge (n,b) x y

where merge is the interesting function:

merge a (Just x) (Just y) =
Heap ([1 |-> (a, Just k1, Just k2)] ++ h1 ++ h2) 1

where (Heap h1 k1) = bmap id even_ x
(Heap h2 k2) = bmap id odd_ y

merge a Nothing Nothing =
Heap ([1 |-> (a, Nothing, Nothing)]) 1

merge a Nothing (Just x) =
Heap ([1 |-> (a, Nothing, Just k2)] ++ h2) 1

where (Heap h2 k2) = bmap id odd_ x
merge a (Just x) Nothing =

Heap ([1 |-> (a, Just k1, Nothing)] ++ h1) 1
where (Heap h1 k1) = bmap id even_ x

Note the use of two functions

even_ k = 2*k
odd_ k = 2*k+1

which generate the kth even and odd numbers. Functorial renaming of heap addresses

via these functions (whose ranges are disjoint) ensure that the heaps one is joining (via

list concatenation) are separate [62, 64]. This representation technique is reminiscent

of that of storing “binary heaps” (which are not quite the same as in this paper) as

arrays without pointers 31. It can be generalized to any polynomial type of degree n by

building n-functions fi k
def
= nk + i, for 0 ≤ i < n.

Finally, the abstraction relation is encoded as a partial function in Haskell as follows:

f (Heap h k) = let Just (a,x,y) = lookup k h
in Node (fst a)(snd a)

(fmap (f . Heap h) x)
(fmap (f . Heap h) y)

31 See eg. entry Binary heap in the Wikipedia.

	Introduction
	Context and Motivation
	Introducing the Pointfree Transform
	Data Structures
	Data Impedance Mismatch Expressed in the PF-Style
	Calculating Database Schemes from Abstract Models
	Concrete Invariants
	Calculating Model Transformations
	On the Impedance of Recursive Data Models
	Cross-Paradigm Impedance Handled by Calculation
	On the Transcription Level
	Related Work
	Conclusions and Future Work
	PTree Example in Haskell

