Guidelines for Modelling Reactive Systems
with Coloured Petri Nets*

Madalena Gongalves and Joao M. Fernandes

Centro Algoritmi — Universidade do Minho
Braga, Portugal
pg18396Q@alunos.uminho.pt, jmf@di.uminho.pt

Abstract. This paper focus on the modelling of reactive systems, more
particularly, control systems. A set of guidelines is proposed in order
to build models that support analysis, simulation and prototyping. The
guidelines are split in two parts; the analysis of a problem is addressed
first, followed by the design with Coloured Petri Nets (CPNs). A smart
library example is used as case study. The models developed under this
approach turn out to be modular, parameterisable, configurable and
executable.

Keywords: Reactive Systems, Coloured Petri Nets, Modelling.

1 Introduction

A reactive system is “a system that is able to create desired effects in its environ-
ment by enabling, enforcing, or preventing events in the environment” [I8]. This
characterization implies that, in requirements engineering for reactive systems,
it is necessary to describe not only the system itself, but also the environment
in which the system is expected to operate [9].

In this paper, we are particularly interested in controllers, i.e., reactive systems
that control, guide or direct their external environments. This work assumes that
a controller (to be developed) and its surrounding environment are linked by a
set of physical entities, as depicted in fig. [[l This structure clearly highlights
two interfaces A and B that are relevant to two different groups of stakeholders,
users and developers, during the task of requirements analysis.

From the user’s or client’s point of view, the system is composed of the con-
troller and the physical entities. Typically, the users are not aware of this sep-
aration; they see a device and they need only to follow the rules imposed by
interface B to use it. In fact, they may not even know that there is a computer-
based system controlling the system they interact with.

* This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through the FCT - Fundagao para a Ciéncia e a Tecnologia (Portuguese
Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-
015095.

R.J. Machado et al. (Eds.): MOMPES 2012, LNCS 7706, pp. 126-[I37] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Guidelines for Modelling Reactive Systems with CPN 127

From the developer’s perspective, the environment is also divided in two parts
with different behavioural properties; the physical entities have predictable be-
haviour, while the human actors may exhibit, for example, disobedience with
respect to their expected behaviour. Thus, the description of the behaviour of
the environment must consider the physical entities (usually called sensors and
actuators) which the system interacts with through interface A. In some cases,
these physical entities are given, and software engineers cannot change or affect
them during the development process, but they need to know how they oper-
ate. Additionally, some relevant behaviour of the human users that interact with
the system through interface B must be considered and actually reflected in the
models.

entities

]

! |

physical | g \
H I

! |

! |

Fig. 1. A controller and its environment

In this paper, we suggest a set of guidelines for modelling reactive systems;
although some of the proposed guidelines may be applicable to other formalisms
and languages, we specifically targeted them for the Coloured Petri Nets (CPN)
modelling language. We assume that the readers are familiar with the CPN
common practices, thereby we do not provide details on the subject. For an
introduction, please refer to [10], [I2] and to the website http://cpntools.org.

We focus on the study of reactive systems, finding which common properties
emerge among different systems of this kind. We also study how these properties
may be described by building specification models that support executability,
modularity, configurability and parameterisation. Our approach is illustrated in
the development of a Smart Library.

This work has been developed under the scope of the APEX project, which
aims to study the user experience within ubiquitous systems. Within this project,
a framework was developed [I5/T16] to facilitate the connection between CPN
models and simulation engines, allowing the creation of virtual prototypes, with
which users may interact. Such prototypes shall support the study of the be-
haviour of users facing computer systems, which may be a source of requirements
for the system specification.

With our guidelines, we intend to systematise the process of modelling; this
is our main contribution. We hope that, by following these guidelines, the re-
sulting models are accurate enough, for the development of reliable prototypes,
and structured enough to allow the models to be more easily modified in case
requirements need to be changed or new ones introduced.

The paper is structured as follows. Sect. 2] discusses related literature. In
sect. Bl the Smart Library case study is introduced. In sects. d and Bl we present
several guidelines for modelling reactive systems with CPNs. Some conclusions
are drawn in sect.

128 M. Gongalves and J.M. Fernandes

2 Related Work

There is no “official” recipe book describing how to model software, in general.
However, many modelling approaches have been proposed for specific contexts,
targeting different types of systems and different modelling languages.

In [I], Coad and Yourdon give strong emphasis to problem analysis, before
start modelling the problem. They state that both analysis and design must be
performed using the same underlying representation, in order to avoid great dif-
ferences between those two tasks. Their suggestion resides in an object-oriented
approach.

In [8], the Statemate approach is explained, addressing the modelling of re-
active systems. A system specification is organised in three views - functional,
behavioural, and structural - and each of these describes a different perspective
of the system under consideration.

Wieringa also discusses the modelling of reactive systems in [I8], providing
some new outlooks on the topic. Similarly, in [I7], some overall modelling guide-
lines are given, with a great focus on the modelling of real-time systems.

A lot of studies combine different modelling languages, trying to gain some
leverage from the particularities of each language. For example, the Unified Mod-
elling Language (UML) and Petri Nets (PNs) can complement each other, since
the UML is a standard modelling language, world-wide known and used, and
PNs are formal and executable, and provide good analysis and validation tech-
niques [2]. Examples of systems that are modelled using UML diagrams and then
transformed into a PN model can be found in [], [I3] and [14]. The UML dia-
grams that are more commonly used for this purpose are Use Cases, Statecharts
and Scenario Diagrams (Sequence or Colaboration Diagrams). The results are
presented in different variants of PNs, like CPNs or Object-Oriented Petri Nets
(OOPNs).

Girault and Valk [7] also refer some techniques to model with PNs; following
a bottom-up approach, they suggest to make a list of every possible states of
an object class, then find an event for each state change and connecting those
events to the corresponding states. Later, different object classes are combined
to model a greater (target) system.

The guidelines proposed in sections] and [l of this paper use a collection of
ideas and concepts from the literature mentioned above, but they are mainly
inspired on the works of Coad& Yourdon, Wieringa, and Girault& Valk. In both
our analysis and design parts, we structure our approach according to ideas that
follow. First, we deal with entities (users and physical entities) and then we de-
fine the structure that connects the entire system (similarly to Coad& Yourdon).
Afterwards, we narrow the entities, by identifying states and events and bind-
ing these properly, in order to achieve the desired behaviour (similarly to Gi-
rault&Valk). Wieringa’s work contributed with some definitions that are used
in this paper.

Guidelines for Modelling Reactive Systems with CPN 129

3 Case Study: Smart Library

The guidelines presented in this paper were developed along with a few CPN
diagrams for a smart library example. In our example, there are some gates for
entering and other gates for exiting the library; each gate allows the entry /exit
from multiple users, at the same time. The problem described in [I6] explains
what happens when a user is looking for books he had previously requested
(e.g., via a web interface). This library recognizes registered users and creates
different light paths to guide them from the entry gate to their requested books.
Unregistered users can not be guided by the smart library.

Every time a registered user approaches an entry or exit gate, a screen near
that gate displays that user’s information (a list of his/her requested and re-
turned books). Presence sensors, scattered throughout the library, are respon-
sible for real-time recognition of registered users and books locations (inside or
near the library). A registered user carries an id card or device (like a PDA) that
makes him/her recognizable by the sensors; as he/she approaches a book that
he/she requested, lights of a specific and unique colour are turned on, showing
the bookshelf where the book stands, and highlighting the actual book. Different
light colours are used to distinguish the requests of different users.

4 Guidelines for Analysis

Before start sketching actual diagrams, one must take a moment to analyse
the problem in hands. The first thing to do when modelling any system is to
study it and understand its purpose. So, it is necessary to identify every single
entity within the system and within its environment - the Controller, all Physical
Entities, and all Users - the roles they play and how they do it.

4.1 Identify the Physical Entities

The sensors are the physical objects that observe events from the system envi-
ronment [18], and that warn the system when any relevant external event has
occurred. Such warnings are presented to the system as stimuli and can be re-
sponded to. To describe a sensor one must state which type of sensor is needed,
what does the sensor do, and how does it do it. Since not all changes in the
environment are relevant to the system under development, it is also important
to state which events must be reported to the system.

The actuators are the other physical objects that comprise the system. One
must analyse their behaviours to ascertain which ones have active roles within
the system (i.e., which ones have behaviour of their own that is relevant to the
system) and which ones are just passive actuators (i.e., do not have behaviour
of their own that is relevant to the system) [3].

In the smart library example, five physical entities were identified: books,
presence sensors, lights, gates, and displays.

130 M. Gongalves and J.M. Fernandes

4.2 Identify the Users

Each user represents a category of human actors that interact with the system.
Users may have different privileges and perform different actions; hence, one must
tell users categories apart, and identify all possible actions for each category.

In the smart library example, we assume that registered users can perform
two actions: moving between areas of the library (i.e., areas that are sensed by
the library presence sensors) and picking up books.

4.3 Identify the Global Structure for Communications

Both the controller and the users exchange data between each other. Recalling
fig. [l the communication structure is defined by two interfaces, A and B. To
describe each of these interfaces, one must identify: (1) which physical entities are
directly connected to the controller and (2) which physical entities are directly
connected with each category of users, respectively.

In the smart library example, both the controller and the users interact with
all physical entities.

4.4 Identify the Functions of the Controller

The controller is the brain of the system: by connecting the physical entities
and making sequences of actions of those entities, the controller creates a new
behaviour that responds in a desired fashion to the environment in which the
system is embedded. The events that are external to the system are observed by
the sensors and sent to the controller as stimuli. The controller then chooses an
appropriate answer and enforces particular behaviours to the actuators.

To describe the controller, one must find all the functions, validations and
decisions that must be performed by the system under consideration, but cannot
be assigned to users or physical entities.

In the smart library example, the main responsibilities of the controller are
updating the user information in the displays, identifying the books by reading
their RFID tags, turning the lights on and off, opening and closing the gates,
and reading users’ positions from the presence sensors.

4.5 Identify Private Phenomena of the Physical Entities

The private phenomena of an entity are its states and internal events. Regarding
physical entities with active roles, one can start describing their behaviour by
determining what are the stares of those entities, and then identifying which
possible actions could be performed to toggle among those states.

The identification of the internal events strongly depends on the choices of the
modeller. In some cases, it is possible to assign a different event for every single
state, but it is also possible to create only one event to toggle between all the

Guidelines for Modelling Reactive Systems with CPN 131

Lights are
turned off

Turn on
the lights

ght'

input (light);
output (light');
action

(case (#state light) of
Toggle LIGHT_ON => {(#id light),LIGHT_OFF}
Lights LIGHT_OFF => {(#id light),LIGHT_ON});
(a) (b)

Fig. 2. (a) Each state responds to a particular event; (b) Both states respond to the
same event

states. As an example, imagine a lightbulb that can be either turned on or turned
off (hence, it has two different states); the behaviour of that lightbulb can be
described by two events, Turn the lights on and Turn the lights off (fig. 2la));
or by a single one, Toggle lights (fig. B(b)).

The occurrence of an internal event may depend on internal and external
conditions [I8]. Examples of internal conditions may include time (i.e., an event
that only occurs after a given amount of time) or the current state of the entity
itself (i.e., an event that only happens when/if the entity finds itself in a spe-
cific state). Examples of external conditions may include commands sent by the
controller and actions performed by users.

To describe the private phenomena of a physical entity one must identify
its states, its internal events, and those internal events restrictions. Relevant
attributes, like id, name, or others, must also be identified.

In the smart library example, the lights are modelled as it can be seen in
fig. 2(b): two possible states (on and off) and one event to toggle between them
(toggle lights). This event depends on an external condition: it can only occur if
the controller issues a command to toggle the lights.

4.6 Identify Phenomena Shared between Physical Entities

The shared phenomena [5] are the states and events shared within the interfaces
A and B (fig. [l). For each pair of communicating entities that were identified in
the guideline €3] one must decide what type of data is shared between them.
To help in this decision, one can face a state as data that is always available for
others to read, and although it can be changed, it does not disappear; while an
event can be seen as data that is only available for the first who “gets” it; once
it is consumed by some entity, it ceases to exists.

In the smart library example, the commands sent by the controller to toggle
lights (recall the example explained in the previous guideline) are an example of
shared phenomena. Each command from the controller to the lights is a shared
event, since each command can only be executed once.

132 M. Gongalves and J.M. Fernandes

5 Guidelines for Modelling

After studying the problem carefully, one can move on to drawing CPN diagrams.
By using this language one can guarantee that models can be executed, and thus
simulated.

The following guidelines explain how to use these diagrams to model reactive
systems within CPN Tools.

5.1 Create a Petri Net

The first thing to do is to open CPN Tools and create a new CPN model and a
few new pages: one page for each sensor; one page for each active actuator; one
page for each user; one page for the controller. Each page works as an individual
module. By following this guideline, one guarantees model modularity.

5.2 Draw the Physical Entities

In the previous analysis, active and passive actuators have been distinguished.
This knowledge helps to decide which actuators shall be modelled as individual
modules (the ones that have an active role) and which ones shall be modelled as
simple tokens or not be modelled at all (the ones that have a passive role). This
guideline focuses on sensors and active actuators, and for each of these entities
one must do the following five tasks:

Create Colour Sets. In a first approach, the color set must be as simple as
possible, only describing the states and imperative attributes.

The color set of an entity can be either simple or compound. If one wishes to
describe more than just the states of the entity, then a compound color set must
be written.

To help in the comprehension of the model, this color set should not be a list;
however this is not mandatory. The reason for this suggestion is because, when
using a list, one has to analyse its content to realize how many tokens it holds;
for other color sets, the number of tokens is presented directly in the graphical
interface of the model, and that makes it faster to read it.

Create the Main Place for Each Module. Every CPN module needs a place
to hold the instances of the entity it represents. Draw one place, name it, and
give it the proper color set. For example, a module for a door must have a place
to hold door instances. From now on, such place is called as the main place.

The place Gates in fig. [is an example of a main place. This place holds
tokens with the colour set GATE which has three attributes: the id, the position
and the state of the gate.

The main place should always be a state place, i.e., a place that holds tokens
with information about the state of an entity. This means that it always holds
the same number of tokens that it initially possesses. Any transition connected

Guidelines for Modelling Reactive Systems with CPN 133

1 {id="g-entry",position=ENTRYAREA,
state=CLOSED}++
1" {id="g-exit",position=EXITAREA,sta

te=CLOSED}
[id = getID(gate)] multiplegates
) ate
Gate (id,state) UPDATE [« 9 { Gate
Commands GATE 2
newgate
GateCOMMAND GATE

input (id,state,gate);
output (newgate);
action(if state=getState(gate)
then gate
else newGate(id, getPosition(gate), state));

Fig. 3. The Gate module

to this kind of place can “peek” on the data that is inside it; the occurrence of
such a transition can consume tokens, in order to change their values, but those
tokens have to be restored right away. Consuming and restoring a token from a
state place can be seen as a single, instantaneous action. In an event place, i.e.,
a place that holds tokens with information about events, the data within that
place is stored by some transitions, and consumed by others (which translates
into two different actions).

Create Internal Events. Draw a transition for every event and name each
properly.

The transition UPDATE GATE in fig. [l exemplifies the representation of an
internal events.

Create CPN ML Primitives. Some CPN ML variables and other coding must
now be implemented. Any transition has four types of inscriptions: name, guards,
time delays and code segments. One must now write the CPN ML primitives
that validate the conditions imposed to the occurrence of internal events (i.e.,
implement the guards); and assign a behaviour to those events (i.e., implement
the code segments). A more experienced modeller may deal with time inscriptions
right away, but these can also be dealt with later, once the first version of the
model is functional and stable.

In fig. Bl we can find examples of variables, like state and gate, functions like
getID and newGate, and also an example of a value multiplegates.

Set the Data Flowing Direction. Draw the arcs that connect the internal
events to the main place and assign them the proper variables (which were
created in the previous task).

The two arcs between the transition and the main place, in fig. B show how
the tokens travel in the gate module. The transition UPDATE GATE “grabs”
a gate token from the main place, complaint with the condition that is enforced
by the guard of that transition, processes that token (which means the token
may be change, or not), and returns the token to the main place as newgate.

134 M. Gongalves and J.M. Fernandes

5.3 Draw Interfaces for Shared Phenomena

The CPN modelling language allows two representations of shared places: sockets
and fusion places. A fusion place is like two places that were merged, and are
accessed by two different entities, that share their contents. A port place is a place
that can communicate with another port place through a private communication
channel (a socket). It can be either an unidirectional or a bidirectional socket.
The doubt comes when one has to decide wether use fusion places or port places,
for each kind of data (states or events).

In CPN Tools, a socket can only be shared between two entities, and it is not
possible to share port places. Since a states place may be accessed by several
entities, port places are not suitable to depict such places. In contrast, fusion
places are perfectly fit to share a states places; in CPN Tools, in order to make
a fusion place from a common place, one has to tag that common place with the
desired fusion tag.

We advice the use of fusion places for shared states and the use of port places
for shared events.

The black place Gate Commands in fig. [l is a port place of a socket shared
with the controller module. The controller adds tokens in this place, and the
gate module consumes those tokens.

5.4 Draw Scenarios

Last but not least, one must create scenarios to depict the desired behaviours of
both the controller and the users. Two tasks must be carried out to do so:

Create Initial Values. To test a CPN model, it is necessary to create instances
of the physical entities and initialize the main places with those values. By doing
so, the models become parameterisable.

The value multiplegates in fig. [3is the initial value of the main place Gates.

Create the Desired Behaviours of the Controller and the Users. This
is the most creative task of all these guidelines, because it depends a lot on the
nature of the problem under consideration and how the modeller faces it.

The shared places must already be drawn for these modules (guideline B.3])
and that is a starting point; but, from now on, the modeller has to decide how
to process the data that arrives in the input shared places and to whom send
the results of that processing, i.e., to which output shared places should tokens
be added.

Usually, there are many possible behaviours that can be depicted, for both
the controller and the users; therefore, one must use scenarios to illustrate those
behaviours. Scenarios are useful for depicting different courses of action, but
also to consider paths that may or may not happen. For example, consider
the example of a user, walking inside the smart library, following the path the
library suggests, when at a certain moment he ignores that suggestion and starts
wandering inside the library at his will. In this situation, there are two different

Guidelines for Modelling Reactive Systems with CPN 135

behaviours, which means, two different courses of action: first, the action we
want to be executed, where the user follows the suggested path; and second,
an alternative action, where the user does not follow the suggested path. These
actions are equally important and must be represented in the users scenario
model. Since the CPN modelling language provides formal analysis of its models,
one can evaluate if a particular action (or set of actions) will be executed or not.

The key action behind any scenario is the decision-making; scenarios are made
to consider many decision points and many solutions. Variation points (VPs) can
be used to depict paths of alternative execution. Please refer to [6] for a complete
explanation on VPs with CPNs.

Scenarios are models prone to change; the conditions that support a given
scenario may change rapidly, and when that happens, the scenario needs to
be adapted accordingly to the new conditions. If the problem being modelled
is quite simple and is not subject to major changes, then the modeller can
choose to create more graphical scenarios, which can be quickly read and easily
understood. On the other hand, if the problem is likely to change over time,
requiring new scenarios to be considered or old ones to be disregarded, then the
modeller should opt to draw less graphics and write more code, because code can
be easily modified and is much more scalable. Thereby, it is advisable to build
simple scenarios that are easily configurable; and because of that, the modeller
must sometimes choose code over graphics.

Fig. M depicts the users module for the smart library, and is an example of
how a scenario can look like. Users inside or near the Library can perform the
action MOVE BETWEEN AREAS, by choosing one path from the Possible
Paths place. This choice is restricted by two conditions: a user can only move to
another area, if there is a path from that user’s position to the area he wants to
go to, and that path is not blocked by a closed gate. For example, a user u can
go from inside the library to the ezit area, but the user cannot exit the library,
because the path ezit area to outside is blocked by a gate in the exit area.

The use of scenarios ensures that the models can be easily configured.

1" (ENTRYAREA,INSIDE)++
1" (ENTRYAREA,OUTSIDE)++
i " 1" (INSIDE,EXITAREA)++
multipleusers [getUserPosition(u)=a1] multiplepaths 1‘EEXITAREA,INSIDE;++

MOVE BETWEEN 1 (EXITAREA,OUTSIDE)++

AREAS Possible Paths [6) |1’ (OUTSIDE,ENTRYAREA)

ArealDxArealD

Users inside or]
near the Library /¢ -
u

USER

input (u,g,al,a2);
output (u');
action
(if (pathHasGate(al,a2) andalso isGateOpen(g,al,a2))
orelse not(pathHasGate(al,a2))
then USER.set_position u a2
else u

)i

multiplegates

1" {id="g-entry",position=ENTRYAREA,
state=CLOSED}++

GATE |1 {id="g-exit",position=EXITAREA,sta
te=CLOSED}

Fig. 4. The users scenario for the Smart Library

136 M. Gongalves and J.M. Fernandes
6 Conclusions and Future Work

This work is a first step in the development of a modelling methodology, that fo-
cus on model simulation, formal analysis and prototyping. Here, we propose a set
of guidelines for modelling reactive systems, more particularly control systems.
The guidelines are suitable for modelling with Coloured Petri Nets (CPNs), and
cover both problem analysis and design. With these guidelines, we intend to
help modellers develop simple and structured models, that can be used as exe-
cutable prototypes of a final product. Since the prototypes are executable, users
are able to interact with an abstraction of the real system, which makes these
prototypes a good source of requirements for the system specification. A smart
library example is used to illustrate the guidelines.

Our approach supports models that benefit from the features that follow next.
(1) Modularity: setting modules apart, makes it easier to add or remove involved
actors (both people and devices); (2) Parameterisation: storing parameters in
tokens, makes the models expandable; (3) Configurability: using scenarios, makes
it possible to depict a great number of possible behaviours; (4) Erzecutability:
being executable, makes the models suitable for simulation, formal analysis and
prototyping.

These guidelines were developed within the APEX framework, which aims the
study of human behaviour towards software systems. As future work, we intend
to apply these guidelines in other case studies, developing other models that can
be used as tests for the framework. We expect those experiments to help us on
adding new guidelines and tuning the existing ones.

References

1. Coad, P., Yourdon, E.: Object-oriented analysis, 2nd edn. Yourdon Press (1990)

2. Denaro, G., Pezzé, M.: Petri nets and software engineering. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 439-466.
Springer, Heidelberg (2004)

3. Douglass, B.P.: Real-time UML: Developing efficient objects for embedded systems.
Addison-Wesley (2000)

4. Elkoutbi, M., Keller, R.K.: Modeling interactive systems with hierarchical colored
Petri nets. In: Proceedings of the 1998 Advanced Simulation Technologies Confer-
ence, pp. 432-437 (1997)

5. Fernandes, J.M., Jgrgensen, J.B., Tjell, S., Baek, J.: Requirements engineering
for reactive systems: Coloured petri nets for an elevator controller. In: Proceed-
ings of the 14th Asia-Pacific Software Engineering Conference (APSEC 2007), pp.
294-301. IEEE Computer Society (2007), doi:10.1007/s11334-009-0075-6

6. Fernandes, J.M., Tjell, S., Jorgensen, J.B., Ribeiro, O.: Designing tool support for
translating use cases and UML 2.0 sequence diagrams into a coloured Petri net. In:
Proceedings of the 6th International Workshop on Scenarios and State Machines
(SCESM 2007). IEEE Computer Society Press (2007), doi:10.1109/SCESM.2007.1

7. Girault, C., Valk, R.: Petri nets for system engineering: A guide to modeling,
verification, and applications. Springer (2001)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Guidelines for Modelling Reactive Systems with CPN 137

Harel, D., Politi, M.: Modeling reactive systems with Statecharts: The Statemate
approach, 1st edn. McGraw-Hill (1998)

Jackson, M.: Problem frames analyzing and structuring software development prob-
lems. Addison-Wesley (2001)

Jensen, K.: Coloured Petri nets basic concepts, analysis methods and practical use.
Monographs in Theoretical Computer Science, vol. 1. Springer (1992)

Jensen, K., Kristensen, L.M.: Coloured Petri nets: Modelling and validation of
concurrent systems. Springer (2009)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri nets and CPN tools for
modelling and validation of concurrent systems. Software Tools for Technology
Transfer 9(3-4), 213-254 (2007), doi:10.1007/s10009-007-0038-x

Jorgensen, J.B., Tjell, S., Fernandes, J.M.: Formal requirements modelling with
executable use cases and coloured Petri nets. Innovations in Systems and Software
Engineering 5(1), 13-25 (2009), doi:10.1007/s11334-009-0075-6

Saldhana, J.A., Shatz, S.M.: UML Diagrams to object Petri net models: An ap-
proach for modeling and analysis. In: Proceedings of the International Conference
on Software Engineering & Knowledge Engineering (SEKE 2000), pp. 103-110
(2000)

Silva, J.L., Campos, J.C., Harrison, M.D.: An infrastructure for experience centered
agile prototyping of ambient intelligence. In: Proceedings of the 1st ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS 2009), pp.
79-84. ACM (2009), doi:10.1145/1570433.1570450

Silva, J.L., Ribeiro, O.R., Fernandes, J.M., Campos, J.C., Harrison, M.D.: The
APEX framework: Prototyping of ubiquitous environments based on Petri nets.
In: Proceedings of the 3rd International Conference on Human-Centred Software
Engineering (HCSE 2010), pp. 6-21. Springer (2010), doi:10.1007/978-3-642-16488-
02

Ward, P.T., Mellor, S.J.: Structured development for real-time systems. Essential
modeling techniques, vol. II. Pearson Education (1986)

Wieringa, R.J.: Design methods for reactive systems - Yourdon, Statemate, and
the UML. Morgan Kaufmann (2003)

	Guidelines for modelling reactive systems with coloured Petri nets
	Introduction
	Related Work
	Case Study: Smart Library
	Guidelines for Analysis
	Identify the Physical Entities
	Identify the Users
	Identify the Global Structure for Communications
	Identify the Functions of the Controller
	Identify Private Phenomena of the Physical Entities
	Identify Phenomena Shared between Physical Entities

	Guidelines for Modelling
	Create a Petri Net
	Draw the Physical Entities
	Create Colour Sets.
	Create the Main Place for Each Module.
	Create Internal Events.
	Create CPN ML Primitives.
	Set the Data Flowing Direction.

	Draw Interfaces for Shared Phenomena
	Draw Scenarios
	Create Initial Values.
	Create the Desired Behaviours of the Controller and the Users.

	Conclusions and Future Work

