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Abstract. Self-healing is an autonomic computing fundamental
well-disseminated in standalone computer systems. In distributed sys-
tems, e.g. computer networks or mobile networks, the introduction of
self-healing capabilities poses some challenges, mainly when software-
based networks, e.g. Software-Defined Networking (SDN) and Network
Functions Virtualisation (NFV), are involved. Such networks impose new
control and management layers, and the adoption of self-healing func-
tions means that all layers must be considered. In this paper, we present
the challenges of self-healing in the scope of SDN and NFV, by revis-
ing the self-healing concept in computer and mobile networks, and by
presenting the thorough difference between a system that applies fault
tolerance from one that applies self-healing functions. We also introduce
a framework for solving these challenges, by describing four use cases of
self-healing, considering control, management, and data layers. The use
cases focus on maintaining the health of the network at run-time, con-
sidering control, management, and infrastructure layers. Our framework
is a novel Operations, Administration, and Maintenance (OAM) tool,
based on a self-management network architecture that was introduced
in our previous works.

Keywords: Self-management - Self-healing - Fault tolerance - OAM -
SDN - NFV

1 Introduction

Future computer and mobile networks must simultaneously support diverg-
ing network requirements, e.g. low-latency, high-throughput, reliability, etc.
Software-Defined Networking (SDN) and Network Functions Virtualisation
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(NFV) are key enablers for this supporting, as these technologies facilitate net-
work automation, virtualisation, and service composition [22], which are cru-
cial for delivering dynamic allocation and reallocation of resources for criti-
cal requirements. Although the advances in specifications and implementations
for these technologies in the last years, SDN and NFV have unresolved prob-
lems associated with network healthiness, which are discussed in this paper,
e.g. controller channel maintenance, bugs and crashes in network applications,
distributed resources management, and so on [3,8].

Before SDN and NFV, distributed protocols running inside the network
infrastructure were responsible for network health maintenance. Such distributed
protocols, like Open Shortest Path First (OSPF), resolve the network impair-
ments that lead the network to the unhealthy state, e.g. link congestion, network
overload, and inconsistency routing rules [16]. SDN and NFV approaches bring
new network layers or planes, i.e. the control plane and management plane, with
software components for operating in the environment. Such new network planes
operate over the data plane, for ensuring the provisioning and maintenance of
network resources, including routes in multi-path topologies, compute resources,
e.g. storage, memory and processing power, and radio resources. Common SDN
and NFV components, e.g. SDN Controller (SDNC) and Virtualised Infrastruc-
ture Manager (VIM), conveniently have mechanisms for supporting data plane
failures; however, the communication maintenance between the data plane and
control/management planes as well as the resilience of control/management com-
ponents are open issues [17].

In this paper, which is an extended version of our previous work [20], we dis-
cuss the autonomic fundamental of self-healing applied to softwarised and virtu-
alised networks. By using SDN and NFV technologies we propose a self-healing
framework capable of acting on data, control, and management planes, and we
add new use cases for self-healing in comparison to the original paper. To the
best of the authors’ knowledge, our framework is the first solution that addresses
fault issues in all network layers for these technologies. The main objective of
our solution is to ensure the network health even with unexpected behaviours
in any network planes. The framework acts as an Operations, Administration,
and Maintenance (OAM) tool, autonomously applying monitoring and recovery
functions.

Autonomic computing fundamentals, e.g. self-healing, self-configuration, and
self-optimisation, empower the self-management of computer and mobile net-
works, which is considered the future of the Network Management (NM) [18].
By the self-healing fundamental, the network must recover itself from faults
that can culminate in a degraded or broken performance. This concept allows
the network to maintain the Quality of Service (QoS) of applications running
in the environment, avoiding these applications to achieve a degraded or broken
state. Our framework covers different autonomic computing fundamentals, well-
known as self-* — self-optimisation, self-configuration, self-protection, etc. — and,
in this work, we chose the self-healing as the start point to evaluate the solution.
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The remainder of the paper is structured as follows. In Sect. 2, we discuss the
fault tolerance principle in data, control, and management planes; and position
our contribution with some related works. In Sect. 3, we present our framework
with technical details. In Sect. 4, we describe some use cases of our framework in
an SDN/NFV environment and discuss them concerning the QoS point of view.
Finally, in Sect. 5, we pose our concluding remarks and suggest some directions
for future work.

2 Background

In computer science, a system that applies the self-healing concept can detect
or predict faults that lead the system to a nonoperational state [9]. The system
usually notices the fault and recovers itself before a completely broken state.
In computer networks, this self-healing capability is complex due to the num-
ber of diverging nodes — which are Network Elements (NEs), including routers,
switches, gateways, proxies, firewalls, etc. — running simultaneously in the net-
work topology [21]. As every NE has its particularities and diverse protocols run
in the environment, the detection and recovery of failures are more complex in
computer networks than in standalone systems.

A computer network is a graph with NEs representing the nodes and links
between the NEs representing the edges. Additionally, nodes can represent hosts
or User Equipment (UE) that are connected in the NEs. In traditional architec-
tures, before network softwarisation and virtualisation, the network is healthy
when the communication between hosts and UE has no problems. However, some
impairments can deteriorate the network health, such as broken/congested links,
hardware/software failures, bugs in network applications, etc. [16]. In the cur-
rent and future computer and mobile networks, the network is unhealthy if QoS
requirements are not satisfied, even if the communication is established. More-
over, considering SDN and NFV, new graphs are abstracted in the environment,
representing the topologies between the data plane with control and manage-
ment planes. Such QoS requirements in the data plane and the new graphs
pose more complexity in the environment, which requires autonomic functions
as self-healing. In this section, we detail the complexity in data, control and
management planes, and discuss the self-healing fundamental in these layers.

2.1 Fault Tolerance in the Data Plane

In an SDN topology, the data plane is the layer in which the NEs are placed.
For NFV, the compute nodes where network functions run represent the data
plane. Considering Fig. 1 as an example, NE1, NE,, ..., NEg are SDN NEs whilst
Compute Node; and Compute Nodes abstract the representation of NFV data
layer components. The network functions running inside the compute nodes are
connected by the NEs. In current mobile networks, Network Slices (NSs) [4] are
abstracted by the components shown in the Data plane. The SDNC; provides the
connections between different nodes in the data plane, applying routes inside the
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NEs. Such routes are defined and created by SDN Applications running on the
top of SDNCy, through the Northbound Interface (NBI). The network functions
running inside the compute nodes, e.g. Virtual Network Functions (VNFs), are
instantiated by management components, e.g. OAM;.

From the fault tolerance point of view, data plane issues are well-solved by
current solutions because the control plane components are responsible for the
operation of the data plane. It means that if NE7, shown in Fig.1, presents
failures, the SDNC; will recalculate and apply routes avoiding such NE. Analo-
gously, if the Compute Node; is overloaded, the OAM; will recreate new network
functions into the Compute Nodes, and it will even migrate current network func-
tions that are presenting problems. As the most known components found in the
literature already have mechanisms for dealing with the data plane components,
the focus in our framework is associated with QoS.

SDNC - SDN Controller = = =Logical link

OAM - Operations, Administration and Management

Physical Link

Fig.1. A layered SDN and NFV typical environment. The Control plane contains
operational and management components, represented by SDNC; and OAM;, and the
Data plane contains network components and computational infrastructure elements,
represented by NEs and Compute Nodes respectively.

Even with solutions for fault tolerance in the data plane, applications with
particular QoS attributes require specific fault tolerance actions. For exam-
ple, Ultra-Reliable and Low Latency Communications (URLLC) applications
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demand strict latency during the whole service lifecycle [7]. In this situation,
the applications require different attributes: one application can require 1 ms of
latency, while another can require 10 ms. If the communications between such
applications and end-users are using the same network link and this link has a
delay of 5 ms, the first application is not running properly, but the former appli-
cation has no problem. It means that services and applications with specific QoS
requirements, e.g. reliability, low-latency, or high-throughput, are healthy if the
network is delivering such requirements.

For future computer and mobile networks, e.g. 5G, Mobile Network Opera-
tors (MNOs) will probably share their infrastructure in several logical networks,
named NSs [23]. In this approach, network orchestrators are responsible for pro-
visioning each NS throughout the different network segments, e.g. Core Network
(CN) and Radio Access Network (RAN). The orchestrators have information
about the available resources and orchestrate such resources in a better way,
ensuring that the required QoS will be delivered. The OAM tools ensure the
continuous delivery of the services with the required QoS. In this way, the data
plane must be monitored during the run-time and resource reallocation and net-
work reconfiguration must be performed when the network pass through health
problems, i.e. network impairments, such as network overload, is affecting the
QoS of some NSs.

In this paper, the network self-healing framework, defined in Sect. 3, takes
into account the QoS requirements from NSs for guaranteeing the QoS during the
NS entire lifecycle. On the other hand, for fault tolerance of data plane compo-
nents, e.g. link failures, the framework has no actions, because it is assumed that
the SDN and NFV components are capable to deal with infrastructure impair-
ments. Besides the data plane, the control and management layers are under
academic investigation, since SDN and NFV were not designed with intrinsic
management functions for fault tolerance of the control and management layer
themselves [17].

2.2 Fault Tolerance in the Control and Management Planes

Former computer network architectures contain distributed protocols that are
responsible for real-time operation; such protocols are responsible for fault tol-
erance in the data plane. In such architectures, network functions are performed
in the same layer in which the data traffic is carried out, as there is no separation
between control, management, and data planes. As an example, if a link between
two NEs is having problems, the routing protocols, e.g. OSPF, modify the routes
to avoid degradation of the link. In SDN, the routing function is performed by
SDN Applications that run on top of the SDNC. In this way, the routing appli-
cation ensures the modification of data plane routes. As pointed in Subsect. 2.1,
this mechanism avoids or mitigates data plane failures. However, the integration
between the data plane and the control plane, in which the SDN Controller and
Applications are placed, requires an uninterrupted communication channel [17].

Figure 1 shows an SDN Controller, i.e. SDNCy, controlling some NEs, i.e.
NE;, NE,, ... NEg; it is assumed that some SDN Applications are running on
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top of SDNC;. As the SDNC; controls the NEs from the data plane, it has
logical connections, represented by the dashed lines, with all these NEs. How-
ever, it has a physical connection, represented by the continuous lines, only with
NE;. The communication between SDNC; and NE; occurs through the paths
SDNC;-NE3-NEg-NE7, SDNC;-NE2-NEg-NE3-NE7, or SDNC;-NEo-NEg-NE3-
NE;5-NEg-NE7. Considering the topology in Fig.1, if NE; has a problem, or
the link SDNC;-NE; is broken or degraded, the entire data plane will be non-
operational since the decisions of routing and forwarding are made by SDNC;
and its applications. As stated, an SDN environment requires fault tolerance
actions for the communication inter-layers. For self-healing purposes, as the net-
work must recover itself from problems, it must be able to recover from data,
control, and management issues.

The aforementioned inter-layer communication is the first aspect of the self-
healing of the control plane. The second aspect is associated with the control
components. The SDNC; and its applications are software modules and can
present bugs and crashes [8]. For achieving the self-healing fundamental, the
network must recover these components from bugs or crashes, as well as increase
the computing capability when the network presents overload. The auto-scale
of control components is essential. Nonetheless, the auto-scale of data plane
components (NEs) is another requirement if such elements are virtual switches
(which is not the exemplification of Fig. 1).

From the NFV perspective, the communication between management and
data planes components is similar to the aforementioned SDN approach. In
Fig. 1, the OAM; could represent a VIM Controller, and the infrastructure where
the virtual machines are deployed is on the represented compute nodes. Following
the previous analogy, OAM; has logical connections with the Compute Node;
and Compute Nodes, but the physical connection is made by the links from the
data plane topology. It means that any overload in the NEg can compromise
the communication between the OAM; and its managed virtual machines. The
figure does not represent all NFV components, but the connectivity between
the controllers/orchestrators is similar: a VNF Manager (VNFM) requires unin-
terrupted communication with its managed VNFs; a VIM controller requires
uninterrupted communication with the compute nodes in the NFV Infrastruc-
ture (NFVI); etc.

In addition to the communication aspect, self-healing in an NFV environment
must act over software and hardware problems. As an example, VIM tools com-
monly used in industry, e.g. Openstack [15] or Kubernetes [11], have mechanisms
for self-healing and auto-scale of the containers and virtual machines previously
instantiated. However, the VIM tool itself usually has no mechanisms for healing
from problems. It means that a problem in the OAM; will leave Compute Node;
and Compute Nodes without management.

To achieve the self-healing fundamental, the network must also consider the
placement of components. The SDNC; can run on virtual machines and, in this
situation, it can be instantiated in different places in the topology. In Fig. 1, if
the control traffic is bigger in NE7, maybe the SDNC; could be instantiated
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inside the Compute Node,. As stated in this section, the self-healing functions
must consider communication, bugs and crashes in software and hardware, and
components placement. Additionally, the number of aspects is not exhaustive
and, for this reason, we designed a framework capable of deal with the three
exemplified aspects, but also architectural capable of deal with new aspects
in the future. In Subsect. 2.3 we position our contribution concerning other
frameworks.

2.3 Related Work

SDN and NFV technologies bring many advantages for network and infrastruc-
ture operation [22]; nonetheless, there are some unresolved problems in these
technologies, mainly associated with network and service management [16]. SDN
transfers the operation over the data plane for the control and application layers,
whilst the management of such layers is not standardised. NFV introduces new
components for the management of virtual functions, whilst the management of
the components themselves are not standardised as well. Besides the framework
proposed in this paper has mechanisms to act in all layers, the focus is on the
control and management layers.

The first unresolved problem in SDN and NFV is associated with the con-
troller channel reliability, i.e. the communication between controllers and their
controlled elements [16,17]. In SDN, the SDNC controls all the NE in the domain.
In NFV, management components handle various virtual functions, including
creating, maintaining and decommissioning such functions. For these reasons,
the network must ensure the connectivity between the SDNC and the NEs, as
well as the communication between NFV components and compute nodes in
which the VNFs are placed. The Southbound Interface (SBI) protocol, i.e. the
protocol for the communication between the control and data planes, e.g. Open-
Flow [13], usually have procedures to create the paths between all NEs and
the SDNC when every NE starts. The problem is when routes on such paths
are not available: management functions must reroute previous paths. In the
NFV, there are no default paths, hence the routes are dynamically defined at
run-time, which means that network overload can compromise the control and
management communication.

In literature, there are some works for solving the controller channel reliability
in SDN, such as [5] and [6]. The first presents some functions for monitoring
and recovery of control paths, i.e. paths between the NEs and the SDNC. The
former introduces a control path migration protocol for virtualized environments,
focused on control paths as well. To the best of our knowledge, there are no
works considering other control and management components instead of the
SDNC, such as the SDN Applications and NFV controllers and orchestrators.
Our solution aims to build a catalogue of control and management entities,
relating them to their controlled/managed elements. In this way, the network
can achieve the self-healing fundamental, as the catalogue has information about
what are the management relations in the environment.
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Another challenge in SDN and NFV environments is the definition of control,
management, and data components. In general, virtual environments allow the
deploying of control/management components in the same infrastructure of data
components. As an example, the Compute Node; in Fig.1 can have a virtual
instance, e.g. a Virtual Machine (VM), used for data processing, as well as the
controller or orchestrator managing this VM. From the network topology point
of view, even with the separation between control and data, as proposed by
the SDN approach, the traffic of control and data primitives utilises the same
NEs. It means that the control primitives are not processed by the NEs, but the
traffic of such primitives is in-band, i.e. the same NEs used for forwarding data
primitives are used for forwarding control primitives [19]. The deploy of out-of-
band topology for control and management is not feasible as it is expensive and
complex [19], and hence, a self-management solution must consider that data
and control will share the same infrastructure. The key is the identification of
control and management traffic and components, and prioritisation of them. The
catalogue proposed in this paper is a novel solution for this achievement.

A third unresolved problem in the software/virtual-based network environ-
ments is the QoS of End-to-End (E2E) applications. In general, the projects
found in the literature are considering Network Slicing as a Service (NSaaS) [23]
as a key enabler for the acceptation of SDN and NFV technologies. In this way,
the management functions are responsible for provisioning and maintenance of
NSs that contain strict QoS attributes. There is not any unique solution for the
operation of these NSs during the entire NS lifecycle. From the maintenance at
run-time perspective, a 3GPP working group defined self-healing as essential [2].

The number of unresolved problems in software and virtual networks is not
exhaustive, as management aspects are usually not considered at the design step
in network solutions. For this reason, we use a self-management architecture as
the starting point to build a framework capable of dealing with the problems
described in this section, which are under investigation in other research groups,
as well as future problems that future applications will pose.

3 Self-healing Framework

For applying self-healing in SDN and NFV environments, we built a frame-
work based on Self-Organising Networks Architecture (SONAr) [10], which is an
architecture for self-management of computer and mobile networks inspired by
Self-Organising Networks (SON) [1] concepts. In this section, we first describe
the framework architecture and show the placement of the self-* functions; we
next detail the monitoring functions of our solution, followed by the recovery
functions details; and finally, we present the Management Catalog and discuss
some use cases.

3.1 Framework Architecture

In this section, we present some technical details about the project we have
developed from our previous position paper. The SONAr has capabilities for self-
configuration, self-protection, self-optimisation, and so son; however, we focus
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on the self-healing fundamental in this paper. Figure 2 shows a layered vision of
our framework. In SDN and NFV, the Infrastructure Layer contains NEs, e.g.
switches, and compute elements, e.g. servers. The Control Layer has the SDN
components, e.g. controller and applications, and NFV elements, e.g. controller
and orchestrators. Separated from the Control Layer, we present the Manage-
ment Layer, in which our framework operates.

Management Layer
Self-Organising Network Architecture (SONAr)

\ Network Event Manager (NEM)
A A ' A
'Y Y A Y

) Collecting Entities Self-Learning Entities Self-Organising Entities | |Integration Entities
noe | iceE = || e e | | el (BeEl ol

Legend [ Control Layer ]»
. e.g. SDN controller, VNF Manager, NS Orchestrator
— Connection
--+> SONAr event O
(D Autonomic Control cPI Southbound Interface (SBI)
Loop e.g. OpenFlow, ForCES, NETCONF
[] SONAr component

Infrastructure Layer
Local Agent (LA) e.g. switches, routers, server, appliances

Fig. 2. The framework insight-architecture, i.e. SONAr. The Control and Infrastruc-
ture layers are monitored by the Management Layer. The collected data is transformed
into events and the modules for self-management, i.e. SLE, SOE, and IE, address such
events for real-time and prediction-based recovery.

From the self-healing aspect, the operation in any network topology is com-
monly performed by OAM systems and divided into two phases: (i) monitoring
and (ii) recovery. In (i), the OAM framework, e.g. SONAr, retrieves information
from the infrastructure. In (ii), the retrieved information is analysed for detect-
ing or predicting failures and actions are executed for recovering from these
potential /eventual failures.

3.2 Monitoring of Different Network Layers
SONAr applies three different monitoring techniques, as summarised as follows:

— Autonomic Control Loop (ACL): Every Collecting Entities (CoE) applies
ACL for retrieving information from both Control Layer and Infrastructure
Layer periodically, e.g. the Metrics CoE (MCoE), responsible for collecting
metrics, can collect statistic usage from NEs’ ports in the Infrastructure Layer
or memory usage from an SDN application in the Control Layer.

— Local Agents (LAs): The LAs are placed inside the NEs in the Infrastruc-
ture Layer, for summarising information and sending it to the CoEs. This
technique avoids the high cost of control loops and flooding.
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— Interception of primitives in the SBI: an entity named Control Primitives
Interceptor (CPI) is deployed as a proxy between the data and control planes.
The CPI intercepts control primitives and send them to the CoEs. If the prim-
itives are malicious or cause a crash in the destination (control components),
SONAr can recover the destination.

Each aforementioned technique has advantages and disadvantages. Accord-
ing to our experience, ACL and LA techniques are sufficient to monitor the
entire SDN and NFV environment. Additionally, the CPI is a novel contribu-
tion from SONAr and enables the recovery of crashes and bugs caused by con-
trol/management primitives.

The CoEs transform the collected/received information in events that are
published in the Network Event Manager (NEM) publisher/subscriber platform.
NEM works with topics and each event is categorised in a specific topic, e.g. the
collected metrics are published in the topic named ‘metric’, and any other entity
in the framework can subscribe to one or more topics. In this way, the collected
events or the generated events, which are created by SONAr’s components, are
sent and received by any entity. From the self-healing point of view, the Self-
Healing Entity (SHE) and Self-Learning Entities (SLEs) are essential for network
recovery. The first has algorithms for real-time analysis and recovery actions,
whilst the former has Artificial Intelligence (AI) algorithms for prediction actions
that can avoid or mitigate future failures.

3.3 Recovery by Detection and Prediction

The recovery in SONAr is based on the analysis of every event travelling in the
framework. For some events, the framework has no immediate actions, and such
events are just stored in a distributed structure, i.e. Network Database (NDB).
The SLEs performs analysis and Machine Learning (ML) algorithms using the
stored information. For other events, urgent actions are necessary, e.g. a link
down event. The SHE, which is a group of microservices for network healing,
treats the real-time events. The basic microservices in this entity are summarised
as follows: the topology microservice, which is subscribed to topology informa-
tion topics, is responsible for building the network topology and logical con-
trol/management topology between data plane NEs and control/management
components; the catalogue microservice, which creates a catalogue containing
the information about the NEs and the components responsible for the manage-
ment of such elements; the path engine microservice, which run routing algo-
rithms to define the paths between every NEs and virtual function and their
control/management components; the metric microservice, which analysis every
collected metric to define whether such metric represents a failure (or a possi-
ble failure); and finally, the recovery microservice, which is responsible to build
necessary commands to recover from a failure.

After the aforementioned analysis, the SHE has a list of commands that will
be requested to control and manage components primarily, or to infrastructure
elements directly, when control and management components are not available.
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As an example, if a control primitive containing a link down warning is inter-
cepted by the CPI, the CPI sends the primitive to the Topology CoE (TCoE),
which transforms this primitive into an event and publish it into a topic ‘topol-
ogy’ in NEM. SHE microservices, subscribed to the topic ‘topology’, receive the
event. The topology microservice can decide whether this primitive will affect the
communication between the SDNC and some NEs. In a positive situation, the
recovery microservice builds new commands, which are placed into new events.
Such new events are published into NEM, in a topic named ‘recovery commands’.
The events are received by all microservice from any entity that is subscribed to
the topic ‘recovery commands’. The Network Service Broker (NSB), responsible
for the integration between SONAr and the components into Control and Infras-
tructure Layers, receives the events and builds command requests that are sent
to the bottom layers. In the current example, a telnet command is necessary to
modify the control paths between the affected NE and the SDNC.

The Self-Organising Entities (SOEs), divided into SHE, Self-Protection
Entity (SPE), Self-Optimisation Entity (SOPE), and Self-Configuration Entity
(SCE), focus on real-time actions. For fault tolerance, a real-time action means
detection of failures in a reactive perspective, i.e. the failure already occurred
and will be treated. However, for critical applications and services, e.g. URLLC
or Enhanced Vehicular to Everything (eV2X), the time for detection and recov-
ery can not be enough for maintaining the QoS of such applications. For this
reason, SONAr has specified the SLEs, responsible for analysing the informa-
tion stored into NDB to find behaviours that can implicate in future failures. If
a future failure is predicted, the framework can mitigate or, in most cases, avoid
such failure. A common example of this situation is the congestion. Since the
LAs, ACL, and CPI provide information about metrics, a link usage metric is
commonly stored into the NDB. In this scenario, if a link has a linear growth,
it is possible to determine when the link will be congested.

The reason for the division between SOEs and SLEs is associated with the
computing cost of Al algorithms. As some failures require immediate recovery
actions, the SOEs need high performance for analysing and processing recovery
actions as soon as possible. On the other hand, Al algorithms, e.g. ML pro-
cedures, can spend high processing; therefore, the SLEs are separated to not
interfere in real-time actions from SOEs. Any entity listed in Fig.2 can com-
municate with any other by events. Besides the SHE, which groups the healing
microservices, other entities can also participate in the recovery process. As an
example, if the SHE defines that a reboot is necessary for some NEs, the SHE will
publish the recovery event into NEM. This event will be received by the SCE,
which has the best strategies for network bootstrapping. The SCE can generate a
new event, which will be received by the Auto-Boot Manager (ABM). The ABM
has particular bootstrapping procedures and will send the necessary commands
to Control and Infrastructure Layers.
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3.4 The Network Database

The NDB is a NoSQL database that contains operational information used by
SONATr and the events that are collected and generated by the framework. Addi-
tionally, the Management Catalog is stored in this structure and requires some
details. First, SONAr CoEs retrieve the information about the topology and
stores in NDB. Then, the ABM and NSB retrieve meta-information from con-
trollers and orchestrators running in the environment. Such information allows
the identification of a controller and its controlled NEs, as well as the identifi-
cation of an orchestrator and its managed resources. This meta-information is
important because enable the SHE and SLEs to detect and predict failures.

As an example of the Management Catalog, an SDNC, e.g. SDNCy, control-
ling a topology with four NEs, e.g. NE;, NE5, NE3, and NE, is considered, in
addition to another SDNC, e.g. SDNCs, controlling another topology with two
NEs, e.g. NE5, NEg. In the catalogue, some rows are indicating what are the
controllers and their managed elements. As the catalogue is a 2-tuple, the exam-
ple is a set as follows: {(SDNC;, NE;), (SDNCy, NE), (SDNC;, NE3), (SDNCjy,
NE,), (SDNCy, NE5), (SDNCs, NEg)}. For NFV components, SONAr keeps the
information inside the catalogue as well. For example, a VNFM, e.g. VNFM;,
that had instantiated two VNFs, e.g. VNF; and VNF5, is stored in the catalogue
as follows: {(VNFM;, VNF,), (VNFM;, VNF;)}. The 2-tuple is the key from
the catalogue rows, but the column families have many meta-information, indi-
cating the logical addresses, type of NFV components, type of SDNC, vendors,
versions, and so on.

The catalogue also stores properties information, which enables that SHE
recovery microservice to build recovery commands. As an example, an Open
Network Operating System (ONOS) controller has an open rest-Application
Programming Interface (API) different from the OpenDaylight (ODL) controller
[14]. With the properties information, the SHE can build the proper commands
to request the open APIs from different SDNCs and different NFV components
as well.

4 Use Cases

As exposed in the last section, we provided a self-management framework based
on SONAr specification, allowing the implementation of different self-healing
functions. The modular and flexible characteristics of the framework enable the
monitoring and recovery of several scenarios of failures. In this section, we present
four use cases focused on the control and management connectivity, showing the
framework capacity. Nevertheless, there is a non-exhaustive number of use cases
that the framework can treat, as the reference model allows the creation of new
microservices on demand.

4.1 Control Paths Use Case

The Control Paths use case is associated with the logical connection between
NEs, placed in the data plane, and the SDNC and its applications, placed in the
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control plane, i.e. the SBI connectivity. Figure 3a shows a basic SDN multi-path
topology with four NEs connected, NE;, NE5, NE3, and NE4, and an SDNC,
i.e. C1. In this topology, C; has a single link connection with NE;, which means
that the communication between C; with NEo, NE3, and NE4 is not directly, e.g.
the control primitives sent from C; to NE4 will follow by one of the routes NE;-
NE4, NE{-NE5-NE4, or NE{-NE3-NE4. The OpenFlow protocol, which is a well-
known SBI protocol in literature, has procedures for creating the initial flow rules
between a NE and the controller at the initialisation time (bootstrapping). In
the current example, the initial paths are represented as dashed lines in Fig. 3b.
As the initial path from C; to NE,4 is C1-NE;-NE4, all control primitives from
NE4 to the SDNC will follow throughout the path NE4-NE{-Cy; the other NE
have analogous behaviours.

(a) SDN topology. (b) Initial paths. (c) New path applied.

Fig. 3. SDN control paths use case. At bootstrapping time, the SBI protocol has proce-
dures for creating the initial logical paths from the controller to every NE, as shown in
(b). If a degradation/failure in a link happens, e.g. in the link NE1-NE4, SONAr frame-
work recalculates and applies a new logical control path, avoiding the degraded /broken
link as shown in (c). Adapted from [20].

As the OpenFlow protocol defines the initial control paths, SONAr does not
interfere in the NE bootstrapping in this situation. When the network is opera-
tional, SONATr retrieves the topology and logical paths information by using the
SDNC open APIs: the NSB requests a service to the SDNC and stores the infor-
mation, received in the response, in NDB. If the topology changes, the TCoE
receives the changing information and updates the NDB. At this point, the SHE
path engine microservice calculates all possible paths between C; and every NE.
The CoEs, LAs, and CPI keep monitoring the data, control, and management
planes. If a link degradation /broken is recognised by the SHE topology microser-
vice, the SHE recovery microservice creates recovery commands for applying an
alternative path. This situation is shown in Fig. 3b and c, in which the link NE;-
NE,4 presents a degradation. The NSB receives the recovery command events
and applies flow rule modifications in the NE; and NE,4, and add flow rules in
NE;. Figure 3c shows the new logical path applied, avoiding the link NE;-NE,.
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This use case has other scenarios that we can explore. A second scenario is
overload or congestion. If the link NE;-NE, is not broken, it could be congested
at some time, caused by an overloading of NE; or NE,4, or even high traffic in
this link, caused by data plane communication. As the MCoE keeps monitoring
metrics such as link usage, the Prediction SLE (PSLE) keeps analysing such
metrics at run-time. If by any reason the PSLE predicts congestion in any link,
e.g. NE1-NE4, it publishes an event in NEM, then SHE receives this event and the
SHE recovery microservice proactively defines recovery actions. In this situation,
the logical control path between C; and NE,4 is modified before the congestion
begins.

Diverse other scenarios are possible in the control path use case. The SOE
must ensure uninterrupted communication between the SDNC and its controlled
NE, as well as between SDN applications and the SDNC, which is not represented
in Fig.3. To ensure the availability of the paths, it is important that SONAr
microservices first apply the flow rules for the new paths, and then remove the
old flow rules. In this case, NEs duplicate some control primitives and the SDNC
can receive both primitives. Assuming that the SDNC discards the duplicated
primitives, this procedure is better than the opposite (first remove old flow rules
to then create the new ones), because no control information is lost. Other use
cases considering the control paths are enabled by SONAr, but they are not
described in this document.

4.2 Management Paths Use Case

Another use case we selected is the management paths example. The control path
use case applies to routes between the SDNC and its controlled NEs. However,
in NFV there are other control/management components that we named OAM
in this paper, e.g. a VNFM provisions and manages diverse virtual functions, i.e.
VNFs. As SONAr primarily focuses on management traffic, any OAM requires
uninterrupted communication with its managed resources. Figure 4a shows the
network topology with four NEs, and additionally, a VNFM, i.e. V1, managing
two VINF's previously created, i.e. VNF; and VNF5. In this scenario, the complete
topology must consider the NEs topology and the NFV topology, which has
different available logical paths connecting Vi with VNF; and VNFs.

Unlike the Control Paths use case, in the Management Paths use case there
are no initial paths. The communication routes between V; with its VNFs are
defined at run-time, by the routing application running on the top of the SDNC,
or by the distributed routing algorithms placed inside the routers in traditional
architectures. At first, there is no problem with this real-time routing mech-
anism. However, SONAr is prepared to provide functions to configure static
and primarily routes. The highest priority is given to management routes, i.e.
the routes for communication between the management components and their
managed resources. For this, there are two additional functions performed by
SONAr entities: (i) the creation of the catalogue containing the management
components and their managed resources; and (ii) the definition and application
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(a) NFV topology. (b) Calculated paths. (c) Alternative path .

Fig. 4. NFV management paths use case. A VNFM component has instantiated two
VNF's and manages them. SONAr retrieves the information about the current VNFs
and applies static routes between Vi and VNF;, as well as between V; and VNF3, as
shown in (b). If a degradation or failure happens in the link NE1-NE4, SONAr applies
an alternative route, avoiding the degraded/broken link as shown in (c). Adapted from
[20].

of initial paths between the components in the catalogue. After such functions,
the initial paths are applied in the NEs, as shown in Fig. 4b.

We assume that the failures in network and infrastructure resources, managed
by NFV components, are solved by such components. For example, failures in
VNF; and VNF5 are normally solved by V;. Common failures include hardware
and software problems, which demand re-instantiating the VNF's; an overload of
a virtual function, demanding the increasing of VNFs; and problems inside the
VNFM itself. SONAr must perform algorithms for ensuring the communication
between Vi and the VNFs, and to solve problems inside V;. Analogous to the
control path use case, if a problem occurs in a link utilised by the management
paths, e.g. link NE;-NE,4 in Fig.4b, SONAr must apply an alternative path, as
shown in 4c. The initial path calculated and applied by v microservices was V-
NE4-NE;-VNF;. After a detected/predicted degradation in the link NE;-NEy,
the alternative path applied was V{-NE4-NE3-NE{-VNF;.

4.3 SDN Controller Migration Use Case

Considering a cloud environment, with SDN and NFV components running over
VMs or containers, it is reasonable that such components can modify the virtual
locations. The migration of these components is expected in SONAr since it is
necessary for recovery from some failures. In Fig. 5a, the same network topology
used in the previous detailed use cases is shown. Assuming that compute nodes
are available and physically connected with all NEs, the initial SDNC place-
ment is in NE;. The control traffic between C; with any NE obligatorily passes
throughout NE;.

The SONATr can operate to solve some failures that can occur after some spe-
cific impairments associated with the SDNC placement. The first one is associ-
ated with the issues that occur in the NEs directly associated with the SDNC, e.g.
NE; in Fig. 5a. An overload or crash in NE; can culminate in a non-operational
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(a) Initial SDNC placement. (b) New SDNC instantiation. (c) Control paths migration.

Fig. 5. Migration of an SDN controller use case. SONAr can determine the best SDN
controller placement based on failure identification or network traffic. If a controller
is initially plugged in a NE, e.g. NE; as shown in (a), but the highest traffic of SBI
control primitives is in another part of the topology, e.g. NE3, SONAr migrates the
controller, which is usually running on a VM, to another NE, as shown in (c).

data plane. As SONArs has procedures, in the SHE and SLEs, for failure detec-
tion or prediction respectively such impairments, recovery actions are possible
if the C; runs over a VM or container. Assuming that NEs; has a compute
node directly connected with it, SONAr can instantiate a new VM and start Cy
inside this VM, as shown in Fig.5b. For this, SONAr works as follows: CoEs
collected information accusing the failure; SHE recovery microservice analyses
the information and creates new events containing the solution, i.e. commands
to instantiate a new controller instance; the new events reach the NSB, which
transforms such events in the necessary commands; NSB requests the creation of
anew VM to a VIM running in the environment; and finally, the NSB copies C;
settings to the new VM, then it starts the applications, and finally it copies the
current state from C;. At the final, the new VM has the same configuration of
C1 running in the old VM. For avoiding loss of information, the ideal procedure
is to maintain C; state in a structure shared by the old VM and the new VM
until the final of the migration.

At the moment that the new C; VM is ready to assume the traffic, SONAr
configures every NEs with flow rules to send the control traffic to the new VM,
i.e. that one plugged on NE,. This step is represented in Fig. 5c. The final step
from SONAr is to turn down the old VM. The described situation shows the
failure in the NEs where the C; was placed. However, other situations demand
real-time controller migration. One of them is the high-traffic in some part of
the network topology. As an example, the topology shown in Fig.5 has the C;
connected with the NE; at the beginning; however, if the control traffic is higher
in NE5, the controller can be migrated to NEs, avoiding control traffic flooding
in the network. SONATr is capable to work with this situation because SLEs have
algorithms for dealing with metrics indicating the heat map of the topology, i.e.
the part of the topology graph where the control/management traffic is higher.
Besides that, Fig. 5 shows a basic four-node topology. In different topologies,
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there is the option to allocate the SDNC next to the NEs that demands more
control traffic.

4.4 SDN Controller Instantiating Use Case

The SDNC Instantiating use case is similar to the migration use case. However,
in this new use case, both SDNCs operate at the same time. Usually, an SDNC
controls a segment inside a domain. In Fig. 6a, the C; controls a domain with four
NEs in the topology, meaning that the domain has just one segment. This basic
four-nodes topology will probably not have overload or performance problems,
but it is enough to illustrate this use case. In this particular topology, NE;, NEs,
NEj3, and NE,4 send control primitives to C; logical address, e.g. IPv4 or IPv6.
For exemplifying, NE3 will send all its control primitives to NE;, which will
send such primitives to C;. When C; needs to send a request/response control
primitive to NEg, it will send the primitive to NE;; NE; has flow rules configured
to forward primitives with destination ‘NE3’ to NE3.

N S
N LN N LN
(a) Initial control topology. (b) New SDNC instantiation. (c) Control balancing.

Fig. 6. Control traffic balancing use case. Some current SDN controllers allow the
distribution of controller instances. In this use case, SONAr identifies a high-traffic of
control primitives to a unique instance as shown in (a). Next, SONAr instantiates a
new controller instance, as shown in (b), and then migrates the control paths, balancing
the control traffic as shown in (c).

Mainly for performance reasons, SONAr can assume that traffic balancing is
necessary to maintain the high performance of the control primitives traffic. In
this situation, it is necessary to instantiate a new SDNC instance and split the
traffic. For this, the first step is to create a new instance as shown in Fig. 6b.
Notice that, differently from the migration use case — Fig.5b shows only one
active C; node at a moment — in this use case the new instantiated SDNC is an
additional instance as shown in Fig. 6b: there are two SDNC active instances, i.e.
C1 and Csy. Once the new instance is created and configured, SONAr integrates
C; and Cy in a way that they start to share the same state. It is crucial to
mention that the procedures described in this section just work with SDNC
prepared to work with a horizontal scale-up, e.g. the ONOS controller [12].
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Since C; and Cy are operational as shown in Fig. 6b, SONAr starts the migra-
tion of NEs to the new instance. SONAr defines the NEs that will be migrated to
Cs and modifies the flow rules inside such NEs. In the example shown in Fig. 6¢,
SONAr kept NE; and NE; logically connected with C;; and modified NE3 and
NE4 to send control primitives to Cs. The balancing algorithms performed by
SONATr uses basic equations of traffic distribution to determine the number of
new instances to be created and the distribution of NEs to these new instances.
If more than one SDNC instance is available in the topology, the balancing use
case is possible as detailed in this section. Additionally, it means that the use
case related in Subsect. 4.3 is optimised, as the steps to instantiate new instances
are not necessary.

5 Concluding Remarks and Future Work

In this paper, we introduced a new framework to apply self-healing functions
on SDN and NFV environments. The framework is based on SONAr, which
is a reference architecture for computer/mobile networks self-management. Our
framework runs on the Management Layer and has procedures for autonomously
monitoring the other layers. The difference between SONAr and other projects
in literature is in the system placement: SONAr places at the Management Layer
and it is entirely application-based. The common computer and telecommunica-
tions protocols are developed at SONAr, and its modular characteristic enables
the adoption of SONAr even in environments in which SDN, NFV, or legacy
NEs are already deployed.

We exploited the self-healing autonomic computing fundamental for illustrat-
ing SONAr’s capabilities. There is a thorough difference between a fault tolerance
system and a self-healing system. The first is a system capable to deal with faults,
i.e. the system tolerates failures, which means that the system will continue to
work because the components have backups or are partially distributed. The
former means that the system has the notion that some of its parts are degraded
or broken, and therefore it can self-recover itself. Considering a computer or
mobile network, the entire network is the system, i.e. the graph representing the
topology with nodes (NEs) and edges (links). In an SDN and NFV environment,
the system is the infrastructure topology and the control/management layers.
In this way, an SDN/NFV environment achieves the self-healing characteristic
by considering all layers, i.e. Control, Management, and Infrastructure layers.

For implementing all self-healing functions for current and future applica-
tions, we decided to build a framework with an extensible flavour. Hence, the
basic self-management procedures are built at the beginning, but new proce-
dures can be introduced in the future without modification in the initial ones.
For demonstrating this, we choose four use cases focused on control plane con-
nectivity: (i) the first use case shows an SDN topology with degraded/broken
links, and a real-time or preventive migration of control paths to avoid such links;
(ii) the second use case shows the same scenario, but considering an NFV topol-
ogy, in which static routes are necessary to ensure the connectivity between NFV
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components and their managed resources; (iii) the third use case illustrates a live
migration of an SDN controller; and finally, (iv) the fourth use case illustrates
an instantiating of a new SDN controller and the control traffic balancing.

The aforementioned use cases have proven the efficiency of SONAr for deal-
ing with common problems that are found in control and management planes.
For the best of our knowledge, SONAr is the first work to allow the implemen-
tation of these procedures in a flexible model, enabling diverse use cases. At this
moment, we have the implementation of the basic SONAr components, which
means that new researchers from our group can start the implementation of
different microservices for the healing of mobile/computer networks. The self-
healing was chosen in this paper as a study case, but the platform is prepared for
self-configuration, self-optimisation, self-protection, and so on. As future work,
we long for presenting the performance experiments of SONAr considering the
four use cases just presented, as well as new self-* use cases.
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