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 A B S T R A C T

Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently 
handle heterogeneous user requirements. To achieve this, network slicing is evolving towards a more 
user-centric digital transformation, focusing on architectures that incorporate native intelligence to enable 
self-managed connectivity in an integrated and isolated manner. However, these initiatives face the challenge 
of validating their results in production environments, particularly those utilizing ML-enabled orchestration, as 
they are often tested in local networks or laboratory simulations. This paper proposes a large-scale validation 
method using a network slicing prediction model to forecast latency using Deep Neural Networks (DNNs) and 
basic ML algorithms embedded within an NS architecture evaluated in real large-scale production testbeds. 
It measures and compares the performance of different DNNs and ML algorithms, considering a distributed 
database application deployed as a network slice over two large-scale production testbeds. The investigation 
highlights how AI-based prediction models can enhance network slicing orchestration architectures and 
presents a seamless, production-ready validation method as an alternative to fully controlled simulations or 
laboratory setups.
1. Introduction

Modern applications require challenging behaviors from physical 
networks to satisfy stringent requirements such as ultra-reliability, low 
latency, and high throughput [1]. In addition to these quantifiable 
network requirements, it is necessary to incorporate seamless, intelli-
gent, and pervasive network capabilities to satisfy user demands  [2,3]. 
Although network management, control planes, and data planes have 
evolved to address this issue, challenges remain and require further 
large-scale evaluation.

Many approaches, technologies, and methods have been developed 
to build user-oriented network architectures that provide connectivity 
in an isolated and personalized manner [4]. One key technological 
enabler of this vision is network slicing, which establishes network con-
nectivity on top of physical infrastructure while ensuring isolation, end-
to-end connectivity, and application-driven requirements, with dedi-
cated control and data planes [5]. With this service-tailoring capability, 
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Machine Learning (ML) effectively addresses various management and 
orchestration challenges, thereby enabling intelligent and real-time 
insights for service provider managers. A major advantage of intelligent 
network orchestration is the ability of Artificial Intelligence (AI) to 
ensure and evaluate the service quality and user experience in network 
slicing [6].

AI techniques, such as reinforcement learning, supervised learning, 
and unsupervised learning, have been effectively integrated with net-
work orchestrators to mitigate cybersecurity threats, enable intelligent 
resource allocation, and ensure Service-Level Agreement (SLA) assur-
ance for network slicing [7–9]. In network slicing SLA assurance and 
measurement, computational intelligence techniques have been pro-
gressively incorporated into the building blocks of orchestration archi-
tectures. However, these architectures are neither natively secure nor 
inherently intelligent, often leading to context-specific solutions [10]. 
Consequently, they remain dependent on third-party vendors, raising 
concerns regarding the security and privacy of network slicing services.
https://doi.org/10.1016/j.future.2025.107971
Received 30 September 2024; Received in revised form 11 February 2025; Accepte
vailable online 20 June 2025 
167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and
d 9 June 2025

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-9328-8618
https://orcid.org/0000-0002-8781-3914
https://orcid.org/0000-0003-1310-9366
https://orcid.org/0000-0002-0821-0614
mailto:rodrigo@ufv.br
mailto:rafael.pasquini@ufu.br
mailto:joberto.martins@animaeducacao.com.br
mailto:terezacarvalho@usp.br
mailto:flavio@di.uminho.pt
https://doi.org/10.1016/j.future.2025.107971
https://doi.org/10.1016/j.future.2025.107971
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107971&domain=pdf


R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971 
A key challenge in incorporating intelligence into network slicing 
architectures for the effective utilization of AI pipelines is ensuring data 
quality and granularity [11] while preserving user privacy and avoiding 
the exposure of network slicing application details. Our approach ad-
dresses this by leveraging generic infrastructure metrics appropriately 
combined to enable SLA fitting and forecasting across diverse network 
slicing applications. Although demonstrated through SLA prediction for 
Cassandra applications, the proposed methodology is designed with 
principles and techniques that can be generalized to various slicing ap-
plications. Evaluating the effectiveness of this intelligent orchestration 
mechanism requires analyzing network environments under conditions 
comparable to those of a production-ready network [12].

This paper investigated the performance of our intelligent native 
orchestration architecture in production-ready network scenarios under 
realistic conditions. Hence, we developed and enhanced an orchestra-
tion framework for network slicing [13]. We evaluated the capability 
of the newer Predictor Module within the ‘‘SFI2 AI Management’’ 
building block to forecast latency from a distributed database (Cas-
sandra) deployed as a network slice, operating on nationwide testbeds 
FIBRE-NG [14] and Fabric [15]. DNNs and basic ML algorithms were 
employed to predict Cassandra latency within our dataset generation 
framework.

This paper presents several key contributions: (1) an empirical 
analysis of DNNs and basic ML algorithms for network slicing latency 
forecasting on large-scale testbeds, (2) an in-depth investigation of 
hyperparameter tuning for DNNs, (3) the development of a realis-
tic network application dataset with a comprehensive workload, and 
(4) a detailed deployment workflow for network slicing services on 
nationwide testbeds.

The structure of the remainder of this paper is as follows. In Sec-
tion 2, we contextualize our work within a broader scope, highlighting 
the unique contributions of this research. The proposed method is 
presented in detail in Section 3, followed by a description of the 
experimental setup in Section 4. Section 5 discusses the results, and 
Section 6 presents the concluding remarks and future directions.

2. Related work

In the literature, there are different uses of ML for predicting Quality 
of experience (QoE) or Quality of Service (QoS), both for applications 
in the context of mobile networks and generic applications on network 
slices [16]. Some approaches use machine learning algorithms pre-
trained in simulation environments, validate how these algorithms 
behave, and compute performance metrics [17]. Other approaches have 
been proposed for network simulation environments, leaving aside the 
validation of these methods in real network testbeds [18].

Pasquini and Stadler [19] combined three metrics to estimate ap-
plication QoE while running different applications in an OpenFlow 
network. They combined the operating system metrics, network flows 
in switch tables, and application metrics to train machine learning. 
The experiments considered two applications: Video on Demand (VoD) 
and Voldemort-distributed databases. They simulated two traffic be-
haviors to assess the suitability of QoE prediction by considering the 
observed metrics. Our approach further explores and validates whether 
ML behaves properly in a real network testbed.

In network slicing orchestration matter, Cui et al. [20] proposed 
reinforcement learning combined with the Long Short-Term Memory
(LSTM) algorithm to guarantee QoS for vehicle-to-vehicle network 
slicing. The search space of Deep Reinforcement Learning (DRL) is a 
5G antenna, where the action relies on the number of resource blocks. 
Our approach estimates QoE in a real network testbed.

Nougnanke et al. [21] proposed and evaluated an ML-based ap-
proach for modeling and predicting network traffic under different 
workloads. They can estimate latency under different network con-
ditions using ML algorithms. They used a mininet and a simulated 
environment to validate their findings using three different datasets. 
2 
Our approach involves creating a dataset to validate the estimation of 
some network metrics; however, our approach focuses on estimating 
the QoE in a real sliced network.

Ge et al. [22] proposed an Graph Neural Networks (GNN)-based 
end-to-end delay estimator for Software-Defined Networking (SDN) 
environments. They used a real dataset from the GEANT network to fit 
their model. In addition, as a proof of concept, they used the OMNet++ 
simulation environment to assess the prediction accuracy of the model 
for QoS assurance. A similar study using the same method as described 
above was differentiated using the Abline dataset [23].

Laiche et al. [24] introduced a multifactor influence in video QoE. 
They used machine learning to predict QoE assurance in an emulated 
network scenario. They used and compared the performance of the K-
Nearest Neighbors (KNN), Random Forest (RF), and Decision Tree (DT) 
algorithms to predict user experience by considering popularity and 
user engagement on a well-known streaming web platform.

Abdelwahed et al. [25] proposed and evaluated an ML-based ap-
proach for estimating Web QoE using different context metrics. The 
metrics considered were network, browsing, and web user engagement. 
Using RF, DT, and KNN, they estimated Mean Opinion Score (MOS) by 
considering user-side metrics. Similarly, our approach aims to predict 
the application QoE by considering different metrics.

Regarding QoS estimation in network slicing using ML algorithms, 
Khan et al. [26] applied and evaluated Deep Neural Network (DNN) 
methods to select better network slicing according to connectivity 
services (mMTC, URLLC, and eMBB) requirements. Their experiments 
assessed how the ML algorithm handled accurate slice assignment, 
slice-load balancing, and slice-failure scenarios. Instead of using a 
simulated network, our approach evaluates the effectiveness of  acML 
in a real network to predict the applications QoE.

For 5G mobile network slicing, Thantharate and Beard [27] pro-
posed and evaluated a transfer learning method for network slicing 
QoS. Their proposed rationale is based on training local models for 
different slice network requirements in the source domain. The model 
can predict the resources in the target domain to satisfy slicing qual-
ity agreement. Our approach further predicts the application of SLA 
conformance for an online network slice application in a real network 
testbed. Similarly, N. P. Tran et al. [28] proposed and evaluated an ap-
proach to estimate end-to-end throughput in 5G and B5G using LSTM.

Yu et al. [29] idealized a linear regression algorithm combined with 
Reinforcement Learning (RL) to predict slice mobility while ensuring 
QoS for the application, minimizing costs, and maximizing revenues 
and profits. They used different statistics, such as user demand for 
CPU, RAM, and slicing resources to train the ML algorithm offline. Our 
approach focuses on predicting application QoE through time-series 
regression, which enables multi-step predictions over time.

Yang et al. [30] bring a method for predicting QoS for Virtual Re-
ality applications in a network slicing using different machine learning 
algorithms. Their solutions can predict the latency, bandwidth, and 
different video codecs for different slicing models. Our approach aims 
to predict the Cassandra application SLA in a real network testbed by 
using ML algorithms.

Dangi and Lalwani [31] proposes a hybrid deep learning model for 
efficient network slicing in 5G networks. The model combines Har-
ris Hawks Optimization (HHO) with Convolutional Neural Networks 
(CNN) and Long Short-Term Memory (LSTM) networks to optimize 
hyperparameters and classify network slices. The methodology involves 
three phases: loading the dataset, optimizing it with HHO, and classi-
fying slices using the hybrid model. The results demonstrate that the 
proposed model outperforms existing methods in predicting appropri-
ate network slices and offers improved service quality and efficiency in 
5G network slicing.

Baktır et al. [32] proposes a Mixed Integer Programming (MIP) 
model and a heuristic algorithm called NESECS to optimize network 
slicing for various service types with different performance require-
ments. The MIP model aims to provide optimal solutions for small net-
work instances, whereas NESECS is designed to handle larger instances 
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Table 1
Related works and their properties.
 Paper Experimental 

environment
Evaluation 
metrics

Dataset Enabling 
technologies

Applications  

 [20] Simulated 
network

Convergence time and
Mobility velocity

Own LSTM-DDPG V2V 
communication

 

 [21] Emulated 
network

Normalized Mean Absolute 
Error (NMAE), and
Prediction Time

Telecom Italia
Big Data 
Challenge dataset 
[33]

SDN, P4, NS3, 
and ML Algorithms.

Network 
connectivity

 

 [22] Emulated 
network

RMSE,
MAE, 
and Weighted 
Mean Absolute Percentage Error 
(WMAPE).

GEANT GNN, MLR, XGBoost, 
and RF

Network 
connectivity

 

 [23] Simulated 
network

Packet Delay, Mean Squared 
Error (MSE),
RMSE, MAE, 
and WMAPE.

Abilene 
network

GNN, RF,
and NN

Network 
connectivity

 

 [19] Local 
network

NMAE, and
Training time

Own OpenFlow,
and ML Algorithms

VoD,
and KV

 

 [24] Simulated 
network

RMSE, Correlation,
and Outlier Ratio

Own KNN,
Decision Three (DT)

VoD  

 [25] Local 
network

Accuracy, Correlation,
and MOS rating.

Own KNN, RF, 
and DT

Web  

 [26] Simulated 
network

Accuracy, Recall, Precision, 
and F-1 score

DeepSlice, 
and Secure5G

Convolutional Neural 
Network (CNN),
LSTM and 
Python-based ML 
frameworks.

5G
verticals

 

 [27] Simulated 
network

MSE, 
correlation

Own Matlab deep 
Learning toolbox.

5G 
verticals

 

 [29] Simulated 
network

RL-Convergence 
time

Own NetworkX 5G 
verticals

 

 [28] Simulated 
network

Mean Absolute Percentage 
Error (MAPE),
packet loss, and delay

Own LSTM,
and Traditional ML 
models

5G 
verticals

 

 [30] Simulated 
network

Accuracy Own Linear regression 
methods

Virtual 
reality

 

 [31] Simulated 
network

Accuracy, Precision, 
Recall, and F1-Score

Unicauca IP Flow, 
and 5G Network 
Slicing

HHO, CNN, 
and LSTM

Network 
slicing

 

 [32] Simulated 
network

SLA Violations, End-to-End Delay, 

and Resource Utilization

Custom 
Simulated data

SDN, Virtualization, 
and Edge computing

Network slicing, 
and Edge computing 
optimization

 

 Our
approach

Production-
ready
network

MAE, MAPE,
and MSE

Own DNNs, and
Basic ML models

Distributed
Database on a sliced 
Testbed

 

efficiently. This study evaluates the performance of these solutions 
through extensive experiments, demonstrating that the proposed meth-
ods can effectively manage network resources, reduce SLA violations, 
and improve the overall network performance by ensuring logical 
isolation and resource reservation for different service types.

Approaches in the literature close to this proposal are summarized 
in Table  1. In this table, we have an ‘‘Experimental Environment’’ 
column related to which network environment the ML algorithm makes 
QoS or QoE predictions. Many approaches have used simulated envi-
ronments or local networks. The ‘‘Evaluation Metrics’’ column aims 
to show which metrics (MAPE, MSE, RMSE, and others) the authors 
most often take into account to validate their proposals. The ‘‘Dataset’’ 
column indicates the dataset that each approach considers in the model 
training phase. Some approaches have created their own datasets, 
whereas others use datasets created by third parties. The ‘‘Enabling 
Technologies’’ column aims to identify which methods and technologies 
for both machine learning and simulating network environments are 
state-of-the-art. Many approaches still use classic ML approaches such 
3 
as RF, DT, and KNN. Finally, the ‘‘Application’’ column reports the 
applications for which the prediction engines estimate QoS and QoE. 
Some approaches focus on 5G verticals, while others focus on specific 
applications.

3. Proposed method

Deploying network slices across multiple domains still requires 
advanced management and orchestration technologies capable of in-
fluencing the underlying network, particularly when dealing with het-
erogeneous devices. Existing tools and techniques for implementing 
dynamic and elastic slices remain inadequately managed, presenting 
opportunities for improvement, especially with AI as a foundational 
enabler of such architectures. In this context, we previously proposed 
the Slicing Future Internet Infrastructures (SFI2) reference architecture 
to manage and orchestrate AI-native network slices while integrating 
diverse testbeds [13].
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Fig. 1. SFI2 artificial intelligence agents management within FIBRE-NG domain slices.

3.1. SFI2 slicing architecture

The SFI2 architectural approach with native artificial intelligence 
embedded agents is illustrated in Fig.  1. AI-native embedded agents in 
the architecture target the preparation, commissioning, operation, and 
decommissioning phases of the network slicing life-cycle.

Enhancements promoted by AI-embedded agents include predicting 
resource and performance parameters using distinct AI techniques, such 
as combinatorial optimization, reinforcement learning, and neural net-
works. Notably, a potential focus of AI-embedded agents is the orches-
tration process involving different steps and actions applied to instanti-
ate and dynamically reconfigure slices according to user requirements.

Furthermore, the SFI2 architecture aims to operate over heteroge-
neous infrastructure following the concept of Machine Learning as a 
Service (MLaaS). To achieve this, the SFI2 AI management module 
collects metrics from the target domains. It interacts with the embedded 
agents in the functional blocks to manage the learning model and the 
other required parameters. The SFI2 AI management module manages 
learning agents throughout all infrastructure components to support the 
training, prediction, or decision tasks.

3.2. Problem setting and method

This paper proposes the evaluation of network slicing latency fore-
casting in a sliced SFI2-conform large-scale production-ready testbed 
(FIBRE-NG and Fabric). The focus is on the SFI2 AI management func-
tional block, which natively and intelligently orchestrates slices to esti-
mate the SLA compliance of an application running on a network slice.

The proposed method is shown in Fig.  2, highlighting the functional 
block of the orchestrator architecture and its interaction with the 
network slice lifecycle.

Thus, adopting the premise that the slice is implemented by the 
SFI2 Orchestrator [13], the procedures for online forecasting of QoE 
begin by considering different metrics in different testbeds. The step 
1  of the method refers to the collection and aggregation procedure 
of different 𝑋 metrics from the application, the network slice, and the 
underlying computational infrastructure. Application metrics 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
refer to the statistics provided by applications at different execution 
stages. The 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 infrastructure metrics refer to the computational 
resource consumption metrics demanded by the network slices from 
the underlying hardware. Network metrics 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 refer to the network 
statistics of the network slice. These metrics are aggregated by data 
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cleaning and standardization algorithms in the computational resource, 
resulting in a dataset 𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∪𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘.

Cassandra, a distributed key–value database, is the application run-
ning on top of the network slicing used in this study. Using the
cassandra-stress [34] tool, we generated logs of the reading and 
writing operations in this database to build a set of metrics 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛.
cassandra-stress presents different performance metrics for read-
ing and writing operations in the database, such as latency, operation 
rate, errors, and others.

The 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 represents the statistics collected from the underlying 
infrastructure that supports the network slice execution. The metrics 
collected refer to the consumption of the Central Processing Unit (CPU), 
Random-Access Memory (RAM), and Input/Output (I/O) operations 
required by the network slice from the infrastructure. We also used the 
NetData monitoring framework to collect CPU, RAM, and I/O metrics, 
as well as other metrics related to computational resources.

The 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 variable refers to the generic statistics collected from 
the network interfaces of each distributed entity comprising the net-
work slice. We employ a native network metrics extractor (NetData) 
to gather statistics on the volume of transmitted, received, and lost 
data across the various interfaces that support the Cassandra service. 
These individual network interface statistics are then aggregated based 
on their respective timestamps.

The 𝑌  service-level metrics for the Cassandra application are defined 
by the mean latency of the Read (R) and Write (W) operations. This 
latency represents the time taken by the Cassandra application to 
complete R and W operations when induced by cassandra-stress. 
During the training phase of DNNs and basic ML algorithms, we extract 
features such as response time, errors, operations per second, and other 
relevant metrics from 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 to construct the dataset. Conversely, 
in the 𝑌  testing phase, our objective is to estimate the mean latency 
of various operations in Cassandra by considering only the generic 
infrastructure metrics of the testbeds.

Step 2  involves training using various algorithms based on ML 
for time-series regression. We employ basic ML and DNNs to leverage 
their potential in handling complex datasets that lack linear relaxations, 
exhibit high-dimensional characteristics, and seamlessly adapt to new 
scenarios, thereby facilitating knowledge transfer.

Step 3  represents the search and adjustment of the hyperparame-
ters for each DNN. At this stage, the hyperopt [35] tool uses Bayesian 
methods to find better parameters for training DNNs, such as learning 
rate, batch size, and epochs. At the end of this phase, the models are 
trained with the best hyperparameters and exported to enable inference 
through the SFI2 AI Management functional block.

The 4  step involves the empirical comparison of basic ML algo-
rithms and DNNs using appropriate metrics for regression problems, 
such as MAE, MSE, and MAPE. MAE represents the average of the ab-
solute differences between the predicted and actual values, while MSE 
is the mean of the squares of these differences, thereby emphasizing 
larger deviations in evaluating regression models. MAPE is a measure 
of relative error that expresses the difference between actual values 
and those predicted by a regression model as a percentage. MAPE is 
independent of the data scale, making it suitable for comparing the 
accuracy of regression models.

In step 5  , we train the models and fine-tune the hyperparameters 
before integrating the trained models into SFI2 AI Management. The 
SFI2 architecture receives these models and makes them available for 
future SLA forecasting using the Predictor API.

In step 6  , the Application Programming Interface (API) of the SFI2 
AI Management block can handle some instances of
𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛,𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑛𝑒𝑡𝑤𝑜𝑟𝑘 and return a possible condition of the QoE 𝑌  in 
which the network slice is conditioned online, allowing us to evaluate 
whether the SLA is being honored.
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Fig. 2. Proposed method: Dataset generation combined with DNNs training and test flow.
3.3. Service infrastructure statistics and service-level metrics

In this section, we detail the set of input features 𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
∪𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 and denote the response variable 𝑌 . The 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
statistics refer to the volume of operations performed on the database 
at a given timestamp, errors, and lines written per second for the Cas-
sandra application. We extracted these metrics from the cassandra-
stress utility, thus linking each record of these statistics to the 
corresponding timestamp. The 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 statistics are metrics related to 
the consumption of the computational resources of each node that hosts 
the Cassandra application containers. These statistics are CPU con-
sumption, RAM memory, and interrupts of the host machines collected 
through NetData.

The 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 metric refers to the consumption of network resources 
by each computing node and container in the Cassandra application. 
Specifically, network statistics refer to the volume of data sent, errors 
received from the containers that run the Cassandra ring components, 
and computing nodes that host the application. These statistics were 
collected every second using NetData.

The 𝑌  metric refers to the QoE experienced by a user when op-
erating on a distributed database. This metric considers the average 
latency of write (W) and read (R) operations in Cassandra deployed 
on the testbed. The response variable metric 𝑌  was measured using 
the Cassandra-stress utility, and we linked each latency per second 
to a given timestamp. All write and read operations of our dataset 
generation framework in distributed testbeds did not take into account 
application caches in any of the replicas.

We model the collection of these metrics as 𝑋 and 𝑌  time series so 
that our objective is to estimate the average of the W and R operations 
in the Cassandra application deployed by the SFI2 Architecture over dif-
ferent testbeds using a regression problem in supervised learning [36]. 
Then, we estimate 𝑌𝑡 using machine learning algorithms that learn from 
the statistics 𝑋𝑡 = [𝑋1𝑡,… , 𝑋𝑑𝑡]. Thus, we find a model 𝑀 ∶ 𝑋𝑡 → 𝑌𝑡, 
where 𝑌𝑡 optimally approximates 𝑌𝑡 for a given 𝑋𝑡.

We used different ML models and DNNs model architectures to solve 
the regression problem. We used DT, RF, KNN, LSTM, CatBoost, and 
XGBoost. Among them we use DNNs such as: FCN [37], FCNPlus [38], 
ResNet [38], ResNetPlus [38], ResCNN [38], TCN [39], Inception-
Time [40], InceptionTimePlus [40], OmniScaleCNN [41], XCM [38], 
5 
and XCMPlus [38] that are implemented in the framework Fastai and
tsai [38,42].

Table  2 provides an overview of the employed DNNs structure. 
The Trainable Parameters column indicates the number of parameters 
that can be adjusted during training, including the weights and biases. 
The total number of Layers refers to the overall number of layers in 
the model, encompassing convolutional, pooling, and fully connected 
layers. The kernel Sizes describe the dimensions of the filters used in the 
convolutional layers. Pooling highlights the presence of pooling layers, 
which help reduce data dimensionality. Mult-Adds (M) represents the 
computational cost measured in millions of multiplication and addition 
operations. Finally, the Estimated Size (MB) estimates the model’s 
size in megabytes, reflecting the number of parameters and required 
storage.

The choice of these neural networks aimed to fulfill our objective of 
empirically comparing the performance of DNNs in estimating the SLA 
compliance. We also used the Optuna [43] framework to optimize the 
hyperparameters of the DNNs for comparison and employed the Tree-
Structured Parzen Estimator (TPE)-based algorithm [44]. Our optimizer 
sought to find the optimal parameters according to the search space, as 
shown in Table  3.

3.4. Dataset generation

To understand how ML algorithms perform in real testbeds, we pro-
pose a dataset that generates workloads using a periodic-load pattern 
and a collection framework. Using cassandra-stress, we generated
Write and Read requests for the application deployed on the Future 
Internet Brazilian Environment for Experimentation New Generation
(FIBRE-NG) and Fabric testbeds. These requests follow a Poisson pro-
cess where the request rate adheres to a sinusoidal function, starting 
with a level 𝑃𝑠 and amplitude 𝑃𝐴 until 500k lines are written or read 
from the Cassandra application. The initial Cassandra parameters were 
defined as follows: consistency level set to quorum, replica factor of 2, 
and 256 tokens.

In Figs.  3, and 4, the workload pattern represents the number 
of cassandra-stress processes created according to a sinusoidal 
function over simulation time. The traces in Figs.  3 and 4 refer to 
the instances of cassandra-stress, generating requests of different 
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Table 2
Detailed structure of employed DNN models.
 Model Trainable 

parameters
Total 
layers

Kernel 
sizes

Mult-
Adds (M)

Estimated 
size (MB)

 

 FCN 285,446 17 (7), (5), (3) 14.47 2.18  
 FCNPlus 285,446 18 (7), (5), (3) 14.47 2.18  
 ResNet 490,758 53 (7), (5), (3), (1) × 3 24.86 3.74  
 ResNetPlus 490,758 56 (7), (5), (3), (1) × 3 24.86 3.74  
 ResCNN 268,551 33 (7), (5), (3), (1), (3) × 3 13.58 2.05  
 TCN 71,406 95 (7) × 2, (1), (7) × 13 1.88 0.54  
 InceptionTime 460,038 90 (1), (39), (19), (9) × 6 23.32 3.51  
 InceptionTimePlus 460,038 124 (1), (39), (19), (9) × 6 23.32 3.51  
 OmniScaleCNN 5,239,596 68 (1), (2), (3), (5), (7), (11) × 3, (1), (2) 266.26 39.97  
 XCM 328,584 29 (51), (1), (51) 24.64 2.51  
 XCMPlus 328,584 30 (51), (1), (51) 24.64 2.51  
Table 3
Optuna search space for each regression model (DNNs).
 Hyperparameter Search space  
 Batch size 8, 16, 32  
 Learning Rate (LR) 0.1, 0.01, 0.001 
 Epochs 20, 50, 100  
 Patience 5, 10, 50  
 Optimizer Adam, SGD  
 # of Layers 1, 2, 3, 4, 5  
 Hidden size 50, 100, 200  
 Bidirectional True, False  

Fig. 3. FIBRE-NG Testbed — Generating the traces.

Fig. 4. Fabric Testbed — Generating the traces.

types, such as Write and Read, to create application metrics. Whenever 
a new cassandra-stress process is created, it triggers requests 
(W or R) to the Cassandra application running on the testbeds. We 
empirically define the parameters of the sinusoidal function as 𝑓 (𝑡) =
22.5 + 45

2 sin
(

2𝜋𝑡
𝑇

)

, where 𝑡 represents time and 𝑇  is the period of the 
function.

This function models a wave that oscillates between 0 and 45, 
with an amplitude (𝑃𝐴) of 452  units and an average value (𝑃𝑠) of 22.5, 
providing an adequate representation for the desired variability in the 
generated processes. These values were defined empirically because of 
the restriction of computational resources for cassandra-stress
6 
Fig. 5. FIBRE-NG: Write operation.

Fig. 6. FIBRE-NG: Read operation.

(container), and high values of 𝑃𝑠 and 𝑃𝐴 imply high resource consump-
tion and can lead to container failure, thereby damaging the creation 
of the dataset. Both Write and Read operations were performed in 
Cassandra after the warm-up process.

Despite the Poisson model has limitations, particularly in repre-
senting peak load conditions, as it focuses on typical traffic rather 
than maximum loads. The dataset was generated in a live production 
environment using a synthetic workload application. The models were 
trained with realistic live production data, replicating actual network 
behaviors. This environment, with interconnected distributed nodes on 
a large-scale testbed, could experiences unexpected traffic patterns and 
anomalies.

This method involves forecasting the next data point based on 
historical observations up to the current time and making continuous 
predictions as new data become available. The set of data generated 
from the Write and Read operations, as well as the training and testing 
splits, is shown in Figs.  5, 6, 7, and 8, where the operation latency is 
ms on the 𝑦-axis, and the timestamp of the experiment is on the 𝑥-axis.

To adapt our structured numerical dataset for DNNs, specifically for 
Convolutional Neural Networks (CNNs), we applied a sliding window 
transformation using the Sliding Window method from the tsai li-
brary. Given a dataset with 𝑛 variables (merged monitored metrics), 
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Fig. 7. Fabric: Write operation.

Fig. 8. Fabric: Read operation.

where the last column represents the target variable (Cassandra la-
tency), we constructed overlapping windows of length 𝑤 = 50 with 
a stride of 𝑠 = 1. Formally, let 𝐗 ∈ R𝑚×𝑤×(𝑛−1) be the input tensor and 
𝐲 ∈ R𝑚×1 be the corresponding target values, where 𝑚 is the number of 
generated windows. Each window 𝐗𝑖 is defined as: 
𝐗𝑖 = [𝐱𝑖, 𝐱𝑖+1,… , 𝐱𝑖+𝑤−1], 𝐲𝑖 = 𝑥target𝑖+𝑤 (1)

where 𝐱𝑗 ∈ R𝑛−1 represents the feature values at time step 𝑗. This 
transformation allows CNNs to extract spatial and temporal patterns 
effectively, treating each window as a structured input similar to an 
image. The sliding mechanism ensures that local dependencies are 
captured while enabling the model to generalize across different time 
segments. To evaluate model performance, we employed a time-based 
split using the Time Splitter function, reserving a predefined number of 
samples for testing.

4. Experiments and model computation

Our experiments sought to validate the behavior of DNNs in estimat-
ing SLA compliance in a nationwide network slice deployed through the 
SFI2 Orchestrator. Initially, we deployed the application to the testbeds 
and started the workload tests to generate datasets for different metrics. 
For each testbed, we seek to identify the Cassandra application’s behav-
ior and SLA and understand whether DNNs or basic ML algorithms can 
generalize predictions across geographically distributed testbeds that 
experience production-ready network conditions.

4.1. Testbeds

Fig.  9 shows the experimental setup used for our evaluation. What 
stands out is the Cassandra ring deployed on different computing nodes 
is spread across each testbed FIBRE-NG [14] and Fabric [15]. We 
collected and processed the monitoring metrics, which are the features 
𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛∪𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟∪𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘, feeding the Predictor API that applies 
training with the different regression models.

To collect the application metrics, we employed a sensor and load-
generating node. The load-generating pipeline shown in Fig.  9 executed 
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read and write requests against the Cassandra ring (step 1 ), whereas 
the sensor node generated flat requests simultaneously without altering 
the workload pattern (step 2 ). Thus, we successfully gathered the 
necessary metrics of the application from the server side, which were 
subsequently compiled (step 3 ) into a dataset. Finally, the dataset 
is uploaded to the SLA compliance training and validation framework 
(step 4 ).

We deployed our network slice with the Cassandra application on 
two nationwide testbeds, FIBRE-NG and Fabric, considering the com-
putational nodes in different geographic and intercontinental locations, 
such as the European Organization for Nuclear Research (CERN) node, 
presented in Table  4, which shows the rest of each testbed where we 
deployed the Cassandra application. This experimental setup aims to 
validate how DNNs deal with traces generated at nodes that transmit 
data in a production-ready network.

4.2. Model training

In the experimental training and validation phase of the basic ML 
algorithms and DNNs, we used RTX 4060ti 16 Gb GPU hardware with 
an CPU Intel(R) Core(TM) i5-4430 CPU @3.00 GHz with 32 GB of 
RAM. Furthermore, we used the PyTorch framework together with
FastAi [42] and tsai [38] tools to build the DNNs training setup. All 
models were trained and validated with no seed locks and with tuned 
hyperparameters, and we collected ten (10) samples of training time 
and performance metrics. The choice of DNNs and basic ML models 
aims to represent different model architectures for generalization and 
in-depth analysis.

Our training and test pipeline involves data ingestion, timestamp-
ing, and indexing, followed by splitting into training and testing sub-
sets. Data transformation includes resampling, interpolation, and nor-
malization, with feature selection and separate scaling of the target 
variable. The Sliding Window method generates input–output pairs for 
time series forecasting, while TSDatasets and TSDataLoaders apply fur-
ther transformations. Hyperopt optimizes hyperparameters like batch 
size and learning rate. The model is trained using Learner with early 
stopping to prevent overfitting, and performance metrics are recorded 
for evaluation, ensuring robust data preparation and optimization.

5. Evaluating results

To validate our contribution, we initially analyze the impact of 
different network factors on our case study network slicing applica-
tion response time. We also discuss aspects of Model Tuning for our 
employed neural network. Later, we evaluate different ML approaches 
on a production-ready network and assess the feasibility of our dataset 
generation method, which expresses real network conditions and en-
ables fitting and training models to forecast SLA violations on network 
slicing architectures.

5.1. Impact analysis in a large-scale network

To assess the impact of realistic and production-ready network 
metrics on our experimental deployment, we used a chaos engineering 
tool to simulate latency with jitter and packet loss [45]. We sys-
tematically applied jitter ranging from 1 ms to 10 ms, following a 
uniform distribution, and introduced a packet loss between 1% and 
10% in our experimental sliced application. For token management, 
we implemented two distinct slices containing our distributed database 
application by varying the number of tokens from 32 to 256.

We employed three-way Analysis of Variance (ANOVA) to evaluate 
the effects of three independent factors and their interactions on a 
dependent variable. The factors are: (1) Fixed Latency with Jitter 
induction with levels 1 ms and 10 ms, (2) Network Packet Loss with 
levels 1% and 10%, and (3) Cassandra Tokens with levels 32 and 
256. The response variable analyzed is the Cassandra Write and Read 



R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971 
Fig. 9. Deployment of Cassandra application on nationwide testbeds.
Table 4
Testbeds compute nodes hosting Cassandra services (containers) in a distributed manner.
 Testbed Pod name Node name Location  
 
FIBRE-NG

cassandra-0 WHX-SC Santa Catarina  
 cassandra-1 WHX-RS Rio Grande do Sul  
 cassandra-2 WHX-PB Paraíba  
 loadgen WHX-RN Rio Grande do Norte 
 
Fabric

cassandra-0 Great Plains Network (GPN) Kansas City, MO  
 cassandra-1 CERN France  
 cassandra-2 The University of Utah Salt Lake City, UT  
 loadgen Rutgers University Jersey Cirty, NJ  
Table 5
Experimental factors influence on write operations.
 Source of variation F value P value  
 Network Delay 7.58245 0.00612 
 Network Loss 580.45267 <0.0001  
 Cassandra Tokens 0.25329 0.615  
 Network Delay × Network Loss 4.32445 0.03811 
 Network Delay × Cassandra Tokens 0.45758 0.49909 
 Network Loss × Cassandra Tokens 1.24777 0.26455 
 Network Delay × Network Loss × Cassandra Tokens 1.77435 0.18349 

Latency. This method tests the main effects of each factor, the two-way 
interactions between factors, and the three-way interaction, using the 
F-statistic and corresponding 𝑝-value. A 𝑝-value of 𝑝 < 0.05 indicates 
that the effect or interaction is statistically significant.

The three-way ANOVA results as Table  5 show that for Write 
operations, Network Delay (Jitter) (𝐹 (1, 472) = 7.58, 𝑝 = 0.00612) and 
Network Packet Loss (𝐹 (1, 472) = 580.45, 𝑝 < 0.0001) have significant 
effects on latency, while Cassandra Tokens (𝐹 (1, 472) = 0.25, 𝑝 = 0.615) 
do not. The interaction between Network Delay and Network Packet 
Loss is also significant (𝐹 (1, 472) = 4.32, 𝑝 = 0.03811), suggesting non-
additive effects. However, interactions involving Cassandra Tokens and 
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the three-way interaction are not significant (𝑝 > 0.05). These results 
emphasize that network-related factors are the primary contributors to 
latency during Write operations.

The results in Fig.  10 that high network latency (10 ms) combined 
with high packet loss (0.1) significantly degrades performance, as 
seen in the red line dropping from 9000 to 8000. In contrast, low 
latency (1 ms) with high packet loss starts at around 7000, with 
a slight increase. Configurations with low packet loss (0.01) main-
tain stable performance despite increased latency. ANOVA confirms 
these findings, with network delay and loss showing high statistical 
significance (P < 0.0001). These results highlight the importance of op-
timizing network conditions for enhancing the efficiency and reliability 
of distributed database systems like Cassandra.

The three-way ANOVA results for Read operations as Table  6 in-
dicate that both Network Delay (𝐹 (1, 473) = 4.19, 𝑝 = 0.04124) and 
Network Packet Loss (𝐹 (1, 473) = 172.78, 𝑝 < 0.0001) significantly affect 
latency. Additionally, Cassandra Tokens shows a marginally significant 
effect (𝐹 (1, 473) = 3.81, 𝑝 = 0.0515), suggesting a potential influence 
on latency that may be worth further exploration. The interaction 
between Network Delay and Network Packet Loss is also nearly sig-
nificant (𝐹 (1, 473) = 3.58, 𝑝 = 0.05896), while the interaction between 
Network Delay and Cassandra Tokens is not significant (𝐹 (1, 473) =
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Fig. 10. Impact of Network Latency, Cassandra Tokens and Packet Loss on Cassandra 
Write Operations.

Fig. 11. Impact of Network Latency, Cassandra Tokens and Packet Loss on Cassandra 
Read Operations.

Table 6
Experimental factors influence on read operations.
 Source of variation F value p value  
 Network Delay 4.19 0.04124 
 Network Packet Loss 172.78 <0.0001  
 Cassandra Tokens 3.81 0.0515  
 Network Delay × Network Packet Loss 3.58 0.05896 
 Network Delay × Cassandra Tokens 0.48 0.491  
 Network Loss × Cassandra Tokens 5.79 0.01648 
 Network Delay × Network Loss × Cassandra Tokens 2.69 0.10178 

0.48, 𝑝 = 0.491). Furthermore, the interaction between Network Loss 
and Cassandra Tokens is significant (𝐹 (1, 473) = 5.79, 𝑝 = 0.01648), 
suggesting that these two factors jointly influence latency. The three-
way interaction between Network Delay, Network Loss, and Cassandra 
Tokens is not significant (𝐹 (1, 473) = 2.69, 𝑝 = 0.10178). These findings 
highlight the dominant influence of network-related factors on latency 
during Read operations, with Cassandra Tokens potentially having a 
marginal effect and interactions between network factors playing a role.

In Fig.  11 suggests that high network latency (10 ms) combined 
with high packet loss (0.1) significantly degrades performance, with 
a notable decline observed in the graph. Conversely, lower latency 
(1 ms) with high packet loss exhibits a slight performance increase. 
Moreover, configurations with low packet loss (0.01) demonstrate min-
imal impact from increased latency, indicating stability in performance. 
These trends are corroborated by ANOVA results, highlighting the 
statistical significance of network delay (P = 0.00612) and network loss 
(P < 0.0001), as well as their interaction (P = 0.03811). These findings 
underscore the importance of optimizing both latency and packet loss 
to enhance the efficiency and reliability of distributed database systems 
like Cassandra.
9 
Fig. 12. MAPE results for Write and Read operations on FIBRE-NG.

5.2. Model tunning

In this section, we present the results of the hyperparameter op-
timization of DNNs and the performance in estimating SLA for each 
model for the different operations (W and R) and testbeds (FIBRE-NG 
and Fabric). Therefore, we conducted hyperparameter optimization 
for the four constructed datasets ‘fibre-read.csv’, ‘fibre-
write.csv’, ‘fabric-read.csv’, and ‘fabric-write.csv’.

We summarize the hyperparameters found by Optuna for the
FIBRE-NG testbed in Tables  7, and 8. Furthermore, we tuned the 
hyperparameters of the same models for the dataset generated from the 
Fabric testbed, as shown in Tables  9, 10. With these adjusted values, 
we proceeded with an empirical evaluation of the performance of these 
models for predicting the SLA in each testbed.

5.3. Basic model performance

Through our dataset construction framework on sliced testbeds, 
we aggregate the metrics 𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∪ 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪ 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 → 𝑌
and configure the datasets generated to submit it to the training and 
assessment process. Thus, we empirically use the division 80% for 
training and 20% for testing and build the regression model aiming at 
the one-step-ahead prediction method that, given a statistic 𝑖 of 𝑋𝑖, the 
model can estimate the operation latency (W or R) in the next step.

As Fig.  12-a, the Write operation on the FIBRE-NG testbed, and RF 
presented the lowest mean MAPE (0.17), indicating the best predictive 
accuracy, followed by DT (0.39). The KNN had the worst performance, 
with an average MAPE of 6.41, which is significantly higher than 
that of the others. Models such as CatBoost, LSTM, and XGBoost have 
intermediate performance but are still superior to KNN. In addition, 
RF demonstrated greater stability, with the lowest standard deviation 
(0.064).
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Table 7
Write Dataset: Hyperparameter tuning values for the FIBRE-NG testbed.
 Model Batch size Learning rate Epochs Patience Optimizer Layers Hidden size Bidirectional 
 FCN 8 0.1 20 10 Adam 2 100 False  
 FCNPlus 16 0.1 20 50 Adam 4 200 False  
 InceptionTime 16 0.1 100 50 Adam 4 100 False  
 InceptionTimePlus 16 0.1 100 50 Adam 1 50 True  
 OmniScaleCNN 32 0.1 20 50 Adam 2 100 True  
 ResCNN 32 0.1 20 10 Adam 5 100 False  
 ResNet 32 0.1 50 50 Adam 2 100 False  
 ResNetPlus 32 0.1 20 5 Adam 5 50 False  
 TCN 32 0.01 100 50 Adam 1 200 False  
 XCM 16 0.01 50 50 Adam 1 200 False  
 XCMPlus 8 0.1 100 50 Adam 3 100 True  
Table 8
Read Dataset: Hyperparameter tuning values for the FIBRE-NG testbed.
 Model Batch size Learning rate Epochs Patience Optimizer Layers Hidden size Bidirectional 
 FCN 16 0.1 20 10 Adam 3 200 True  
 FCNPlus 16 0.1 20 50 Adam 4 50 False  
 InceptionTime 8 0.01 20 10 Adam 5 100 True  
 InceptionTimePlus 16 0.1 20 50 Adam 2 200 False  
 OmniScaleCNN 8 0.1 50 50 Adam 2 50 True  
 ResCNN 16 0.1 20 10 Adam 3 100 False  
 ResNet 16 0.1 20 10 Adam 1 200 True  
 ResNetPlus 8 0.1 20 50 Adam 2 50 False  
 TCN 32 0.01 50 5 Adam 4 50 False  
 XCM 8 0.01 20 10 Adam 3 200 False  
 XCMPlus 16 0.01 50 50 Adam 3 50 True  
Table 9
Write Dataset: Hyperparameter tuning values for the Fabric Testbed.
 Model Batch size Learning Rate (LR) Epochs Patience Optimizer # of Layers Hidden size Bidirectional 
 FCN 32 0.01 20 10 Adam 3 50 True  
 FCNPlus 32 0.1 100 50 Adam 5 100 True  
 InceptionTime 32 0.1 50 50 Adam 2 200 False  
 InceptionTimePlus 16 0.1 100 50 Adam 4 50 True  
 OmniScaleCNN 16 0.01 50 10 Adam 4 100 True  
 ResCNN 32 0.01 50 50 Adam 5 100 False  
 ResNet 32 0.01 50 50 Adam 4 50 True  
 ResNetPlus 16 0.1 20 10 Adam 3 200 True  
 TCN 8 0.001 100 50 Adam 2 50 False  
 XCM 16 0.1 50 50 Adam 3 50 False  
 XCMPlus 16 0.1 100 50 Adam 1 50 True  
Table 10
Read Dataset: Hyperparameter tuning values for the fabric testbed.
 Model Batch size LR Epochs Patience Optimizer # Layers Hidden size Bidirectional 
 FCN 32 0.1 20 10 Adam 3 100 False  
 FCNPlus 8 0.1 20 10 Adam 3 200 True  
 InceptionTime 32 0.1 100 10 Adam 5 50 True  
 InceptionTimePlus 16 0.1 100 50 Adam 2 50 False  
 OmniScaleCNN 8 0.001 20 50 SGD 4 100 False  
 ResCNN 32 0.1 20 10 SGD 2 100 True  
 ResNet 32 0.1 20 50 Adam 4 100 True  
 ResNetPlus 8 0.1 20 5 Adam 4 200 False  
 TCN 32 0.01 20 10 Adam 2 100 True  
 XCM 8 0.1 100 10 SGD 3 50 True  
 XCMPlus 8 0.1 100 10 SGD 5 200 True  
In the Read operation, as shown in Fig.  12-b on the FIBRE-NG 
testbed, KNN obtained the lowest mean MAPE (12.77), indicating 
the best predictive accuracy. In contrast, CatBoost (35.90) and LSTM 
(30.87) presented the highest errors with high variability, as evidenced 
by the high standard deviation of LSTM (19.34). RF and XGBoost had 
intermediate performances, with mean MAPEs of 21.98 and 21.73, 
respectively. Meanwhile, DT showed a mean error of 25.54, with high 
dispersion.

During the writing operation, as shown in Fig.  13-a, on the testbed 
Fabric, the DT presented the lowest mean MAPE (0.49), indicating 
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the best predictive accuracy, followed by LSTM (0.69) and RF (0.75). 
XGBoost had a slightly higher error (1.16) but was still lower than 
CatBoost (4.07) and KNN (4.23), which had the worst performance. In 
addition, DT showed the lowest standard deviation (0.19), suggesting 
greater stability.

In the Read operation, as Fig.  13-b, on the testbed Fabric, RF 
presented the lowest mean MAPE (4.06), closely followed by XG-
Boost (4.09) and CatBoost (4.03), indicating very similar performances. 
DT had a higher error (5.64), while KNN obtained the worst re-
sult (9.29), with the highest standard deviation (0.22), demonstrating 
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Fig. 13. MAPE results for Write and Read operations on Fabric.

low precision. LSTM showed an intermediate MAPE (4.85), but with 
greater variability (0.53). Thus, RF, XGBoost, and CatBoost stand out 
as the most effective approaches for predicting the latency in the Read 
operation of the distributed Cassandra on the testbed Fabric.

These experiments with basic ML algorithms for forecasting high-
light the contribution of our study, which discusses the suitability of 
laboratory-trained algorithms in real-world scenarios and production 
networks with geographically distributed nodes. In the four analyzed 
scenarios, RF and DT demonstrated the lowest mean MAPE, indicat-
ing higher predictive accuracy. In the Write operation on the Fabric 
testbed, DT had the best performance (0.49), while in the Read op-
eration on the same testbed, RF stood out (4.06). On FIBRE-NG, RF 
and KNN were more accurate in the Read operation (21.98 and 12.77, 
respectively), whereas DT had the lowest error in the Write operation 
(0.40). In contrast, KNN and CatBoost exhibited the worst performances 
in various scenarios. These results suggest that tree-based models, espe-
cially RF and DT, are more effective for forecasting in sliced testbeds.

5.4. DNN-based model performance

We computed the DNNs training time demands for Write and Read 
operations on the FIBRE-NG and Fabric testbeds and compared the 
results in Fig.  14. Therefore, it is possible to infer that with a confidence 
level of 95%, the read datasets generated in different testbeds require 
the same training time. In contrast, we noticed a difference in the 
training time between the Read and Write operations owing to the 
size of the generated dataset and the variations in network conditions 
experienced by each test workload.
11 
Fig. 14. Training Time for different Operations (W and R) on Testbeds.

Fig. 15. Training and Test behavior for Read and Write datasets on FIBRE-NG and 
Fabric Testbeds.

We deepened our analysis by observing the generalization capacity 
of the DNNs used to predict the Write and Read operations latency in 
Cassandra deployed on the FIBRE-NG and Fabric Testbeds. We present 
in Fig.  14 the training and validation behaviors of only the best DNNs 
for the two operations (W and R) and testbeds considering the MAE 
metric and the measured values in Tables  11 and 12.

We choose to employ the MAE metric rather than RMSE or MSE for 
regression on the Read and Write latency owing to its robustness to 
outlier handling and ease of interpretation. Additionally, MAE shares 
the same unit of measurement as the dependent variable, facilitating a 
more intuitive comprehension of its meaning and magnitude.

For the read and write datasets from the FIBRE-NG testbed shown 
in Fig.  15-a and -b, we observed the training behavior of ResNet DNN. 
From Fig.  15-c, which refers to DNN InceptionTimePlus for the read 
dataset in the Fabric testbed, there was a subtle drop in the training 
and test losses, indicating that DNNs could extract patterns from the 
time series for prediction. As with Fig.  15-d, which refers to the dataset 
written in the Fabric testbed, there is a visual indication that the loss 
decreases as the epochs advance.

The results presented in Tables  13 and 14 summarize the perfor-
mance of DNNs in the context of FIBRE-NG, utilizing the RMSE metric. 
The InceptionTimePlus network stands out with the lowest RMSE for 
both reading (0.011) and writing (0.016), indicating superior perfor-
mance compared to other networks. The ResNet also shows competitive 
results, with RMSE values of 0.010 for reading and 0.012 for writing. 
In contrast, the XCM and OmniScaleCNN exhibit the highest RMSE 
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Table 11
Summarizing the DNNs performance for FABRIC using MAE.
 Neural network Read mean Read StDev Write mean Write StDev 
 FCN 0.040 0.000 0.016 0.005  
 FCNPlus 0.042 0.004 0.012 0.004  
 InceptionTime 0.041 0.003 0.020 0.008  
 InceptionTimePlus 0.040 0.000 0.030 0.017  
 OmniScaleCNN 0.046 0.005 0.027 0.018  
 ResCNN 0.043 0.005 0.021 0.007  
 ResNet 0.040 0.000 0.059 0.033  
 ResNetPlus 0.048 0.006 0.024 0.007  
 TCN 0.040 0.000 0.012 0.004  
 XCM 0.054 0.014 0.027 0.018  
Table 12
Summarizing the DNNs performance for FIBRE-NG using MAE.
 Neural network Read mean Read StDev Write mean Write StDev 
 FCN 0.017 0.008 0.021 0.007  
 FCNPlus 0.013 0.005 0.014 0.005  
 InceptionTime 0.013 0.005 0.024 0.027  
 InceptionTimePlus 0.011 0.003 0.016 0.007  
 OmniScaleCNN 0.020 0.009 0.035 0.025  
 ResCNN 0.021 0.019 0.026 0.013  
 ResNet 0.010 0.000 0.012 0.004  
 ResNetPlus 0.014 0.005 0.017 0.005  
 TCN 0.019 0.007 0.015 0.005  
 XCM 0.025 0.007 0.035 0.012  

Table 13
Summarizing the DNNs performance for FABRIC using RMSE.
 Neural network Read mean Read StDev Write mean Write StDev 
 FCN 0.050 0.000 0.020 0.000  
 FCNPlus 0.052 0.004 0.019 0.003  
 InceptionTime 0.055 0.005 0.025 0.010  
 InceptionTimePlus 0.053 0.005 0.034 0.016  
 OmniScaleCNN 0.059 0.003 0.033 0.021  
 ResCNN 0.054 0.005 0.024 0.007  
 ResNet 0.051 0.003 0.066 0.038  
 ResNetPlus 0.061 0.010 0.030 0.012  
 TCN 0.050 0.000 0.021 0.003  
 XCM 0.065 0.014 0.020 0.005  
 XCMPlus 0.065 0.009 0.026 0.005  

Table 14
Summarizing the DNNs performance for FIBRE-NG using RMSE.
 Neural network Read mean Read StDev Write mean Write StDev 
 FCN 0.017 0.008 0.021 0.007  
 FCNPlus 0.013 0.005 0.014 0.005  
 InceptionTime 0.013 0.005 0.024 0.027  
 InceptionTimePlus 0.011 0.003 0.016 0.007  
 OmniScaleCNN 0.020 0.009 0.035 0.025  
 ResCNN 0.021 0.019 0.026 0.013  
 ResNet 0.010 0.000 0.012 0.004  
 ResNetPlus 0.014 0.005 0.017 0.005  
 TCN 0.019 0.007 0.015 0.005  
 XCM 0.025 0.007 0.035 0.012  

values, suggesting lower accuracy in their predictions. Additionally, 
the table reveals the variability of the results, reflected in the standard 
deviations (StDev), which vary across the different architectures, with 
most maintaining relatively low deviations, especially in reading tasks.

Having the DNNs learn over the epochs operating on the datasets 
generated in the two testbeds, it is possible to admit that the DNNs 
are efficient in dealing with the seasonality of a production-ready 
network. Then, slicing orchestrators can couple such models into their 
slicing management control loop and modernize the delivery of service 
verticals with a guaranteed SLA.

We seek to observe the behavior of DNNs in predicting Cassandra 
latency by contrasting the real and predicted in the test portion of 
the time series. Fig.  16 shows the DNNs and their prediction process 
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Fig. 16. Latency prediction for better DNNs for Write and Read operations in testbeds.

performance, considering the lowest value of the MAE metric for both 
the Write or Read operations presented in Tables  11 and 12. Thus, 
modern slicing orchestrations can adopt a threshold for the difference 
between actual and predicted and assess whether the network slices it 
manages comply with the agreed SLA.

To further our analysis, we examined the performance of DNNs for 
the four datasets generated in the two testbeds using the MAPE metric. 
As illustrated in Fig.  17-a, for the FIBRE-NG testbed, ResNet demon-
strated the highest performance on the Write dataset with a MAPE 
of 0.024. Conversely, for the Read dataset, DNN InceptionTimePlus 
exhibited superior performance, as depicted in Fig.  17-b.

Furthermore, our analysis revealed that the DNN exhibiting optimal 
performance for the Write dataset in the Fabric testbed was FCNPlus 
(Fig.  18-a), achieving a MAPE of 0.015, with standard deviation serving 
as the criterion for resolving ties.

In the Fabric Read scenario, and according to Fig.  18-b, the MAPE 
showed very low and homogeneous values across the models, indi-
cating high prediction accuracy. The low variability suggests that the 
prediction task for this operation was relatively simple, resulting in 
insignificant percentage errors. Models such as FCN, ResNet, and TCN 
performed practically identically, whereas XCM and XCMPlus showed 
slight variations, but still within a very small error range.

Considering this empirical analysis of the behavior of DNNs and 
the MAPE metric, it is possible to admit that DNNs are technologies 
that perform intelligent network slicing. It is possible to couple such 
capabilities into different building blocks to act at different phases of 
the lifecycle of a network slice. Using the MAPE metric, it is possible 
to have a percentage dimension of the error of DNNs that reiterates 
its ability to be embedded in prediction Application Programming 
Interfaces (APIs) based on microservices, such as SFI2 Orchestration 
Architecture.
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Fig. 17. Mean Absolute Percentage Error (MAPE) for FIBRE-NG in Write and Read 
operations.

Fig. 18. Mean Absolute Percentage Error (MAPE) for Fabric in Write and Read 
operations.
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Our approach primarily focused on evaluating a distributed
database to assess the feasibility of training ML algorithms on a large-
scale testbed. In addition, our method can be extended to a broader 
range of applications that require access to computing and network-
monitoring platforms. This extension would enable the integration of 
diverse performance metrics, facilitating accurate application perfor-
mance forecasting and supporting life-cycle decision making in network 
slicing architectures.

6. Concluding remarks

In this study, we shed light on how ML techniques, specifically 
DNNs and basic ML algorithms, can be jointly employed with slicing 
orchestration architectures to leverage and guarantee SLA for tailored 
applications in nationwide testbeds. To achieve this, we propose a 
method for generating and aggregating datasets regarding the latency 
of Write and Read operations in a distributed database. We found 
that there are approaches in the literature that combine computational 
intelligence for the different phases of the network slice life cycle; 
however, they have not yet considered how these AI techniques behave 
in production-ready networks deployed on nationwide testbeds.

Among the findings, we found that DNNs and even basic ML al-
gorithms are promising technologies that can be built or natively 
embedded in slicing architectural building blocks to perform zero-
touch orchestration in production-ready networks. Furthermore, we 
verified that forecasting network slicing latency with a low error rate 
is possible by monitoring generic and easily collected metrics related 
to the computing or network resources on which the network slice is 
deployed. Furthermore, we believe that embedding the DNN or basic 
ML models in SFI2 AI management to cope with stringent application 
vertical requirements is a promising path.

One of the constraints of this study is that it focuses on generic 
networks and computing metrics. We aimed to incorporate more het-
erogeneous metrics into the dataset construction process to assess the 
generalization of these metrics and achieve low error rates in our 
predictions. Currently, we are working on analyzing the separation of 
metrics to validate the impact of each on the final ability to estimate 
SLA conformance and the employment of Reinforcement Learning.

In addition, we plan to explore methods  such as queueing theory, 
extreme value analysis, or bursty traffic models to better capture ex-
treme network conditions using supervised learning methods and other 
DNNs and attention-based mechanisms  to determine their efficacy in 
such contexts. Our results offer valuable insights and opportunities for 
the further exploration of intelligent native slicing architectures.
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