
Future Generation Computer Systems 174 (2026) 107971

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

AI-driven orchestration at scale: Estimating service metrics on national-wide

testbeds
Rodrigo Moreira a ,∗, Rafael Pasquini b , Joberto S.B. Martins c , Tereza C. Carvalho d ,
Flávio de Oliveira Silva e
a Federal University of Viçosa (UFV), Rio Paranaíba, Minas Gerais, Brazil
b Federal University of Uberlândia (UFU), Uberlândia, Brazil
c Salvador University (UNIFACS), Salvador, Bahia, Brazil
d University of São Paulo (USP), São Paulo, Brazil
e University of Minho (UMinho), Braga, Portugal

A R T I C L E I N F O

Keywords:
Network slicing
Deep Neural Networks
Machine learning
Service-level agreement
Distributed database

 A B S T R A C T

Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently
handle heterogeneous user requirements. To achieve this, network slicing is evolving towards a more
user-centric digital transformation, focusing on architectures that incorporate native intelligence to enable
self-managed connectivity in an integrated and isolated manner. However, these initiatives face the challenge
of validating their results in production environments, particularly those utilizing ML-enabled orchestration, as
they are often tested in local networks or laboratory simulations. This paper proposes a large-scale validation
method using a network slicing prediction model to forecast latency using Deep Neural Networks (DNNs) and
basic ML algorithms embedded within an NS architecture evaluated in real large-scale production testbeds.
It measures and compares the performance of different DNNs and ML algorithms, considering a distributed
database application deployed as a network slice over two large-scale production testbeds. The investigation
highlights how AI-based prediction models can enhance network slicing orchestration architectures and
presents a seamless, production-ready validation method as an alternative to fully controlled simulations or
laboratory setups.
1. Introduction

Modern applications require challenging behaviors from physical
networks to satisfy stringent requirements such as ultra-reliability, low
latency, and high throughput [1]. In addition to these quantifiable
network requirements, it is necessary to incorporate seamless, intelli-
gent, and pervasive network capabilities to satisfy user demands [2,3].
Although network management, control planes, and data planes have
evolved to address this issue, challenges remain and require further
large-scale evaluation.

Many approaches, technologies, and methods have been developed
to build user-oriented network architectures that provide connectivity
in an isolated and personalized manner [4]. One key technological
enabler of this vision is network slicing, which establishes network con-
nectivity on top of physical infrastructure while ensuring isolation, end-
to-end connectivity, and application-driven requirements, with dedi-
cated control and data planes [5]. With this service-tailoring capability,

∗ Corresponding author.
E-mail addresses: rodrigo@ufv.br (R. Moreira), rafael.pasquini@ufu.br (R. Pasquini), joberto.martins@animaeducacao.com.br (J.S.B. Martins),

terezacarvalho@usp.br (T.C. Carvalho), flavio@di.uminho.pt (F. de Oliveira Silva).

Machine Learning (ML) effectively addresses various management and
orchestration challenges, thereby enabling intelligent and real-time
insights for service provider managers. A major advantage of intelligent
network orchestration is the ability of Artificial Intelligence (AI) to
ensure and evaluate the service quality and user experience in network
slicing [6].

AI techniques, such as reinforcement learning, supervised learning,
and unsupervised learning, have been effectively integrated with net-
work orchestrators to mitigate cybersecurity threats, enable intelligent
resource allocation, and ensure Service-Level Agreement (SLA) assur-
ance for network slicing [7–9]. In network slicing SLA assurance and
measurement, computational intelligence techniques have been pro-
gressively incorporated into the building blocks of orchestration archi-
tectures. However, these architectures are neither natively secure nor
inherently intelligent, often leading to context-specific solutions [10].
Consequently, they remain dependent on third-party vendors, raising
concerns regarding the security and privacy of network slicing services.
https://doi.org/10.1016/j.future.2025.107971
Received 30 September 2024; Received in revised form 11 February 2025; Accepte
vailable online 20 June 2025
167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and
d 9 June 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-9328-8618
https://orcid.org/0000-0002-8781-3914
https://orcid.org/0000-0003-1310-9366
https://orcid.org/0000-0002-0821-0614
mailto:rodrigo@ufv.br
mailto:rafael.pasquini@ufu.br
mailto:joberto.martins@animaeducacao.com.br
mailto:terezacarvalho@usp.br
mailto:flavio@di.uminho.pt
https://doi.org/10.1016/j.future.2025.107971
https://doi.org/10.1016/j.future.2025.107971
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107971&domain=pdf

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
A key challenge in incorporating intelligence into network slicing
architectures for the effective utilization of AI pipelines is ensuring data
quality and granularity [11] while preserving user privacy and avoiding
the exposure of network slicing application details. Our approach ad-
dresses this by leveraging generic infrastructure metrics appropriately
combined to enable SLA fitting and forecasting across diverse network
slicing applications. Although demonstrated through SLA prediction for
Cassandra applications, the proposed methodology is designed with
principles and techniques that can be generalized to various slicing ap-
plications. Evaluating the effectiveness of this intelligent orchestration
mechanism requires analyzing network environments under conditions
comparable to those of a production-ready network [12].

This paper investigated the performance of our intelligent native
orchestration architecture in production-ready network scenarios under
realistic conditions. Hence, we developed and enhanced an orchestra-
tion framework for network slicing [13]. We evaluated the capability
of the newer Predictor Module within the ‘‘SFI2 AI Management’’
building block to forecast latency from a distributed database (Cas-
sandra) deployed as a network slice, operating on nationwide testbeds
FIBRE-NG [14] and Fabric [15]. DNNs and basic ML algorithms were
employed to predict Cassandra latency within our dataset generation
framework.

This paper presents several key contributions: (1) an empirical
analysis of DNNs and basic ML algorithms for network slicing latency
forecasting on large-scale testbeds, (2) an in-depth investigation of
hyperparameter tuning for DNNs, (3) the development of a realis-
tic network application dataset with a comprehensive workload, and
(4) a detailed deployment workflow for network slicing services on
nationwide testbeds.

The structure of the remainder of this paper is as follows. In Sec-
tion 2, we contextualize our work within a broader scope, highlighting
the unique contributions of this research. The proposed method is
presented in detail in Section 3, followed by a description of the
experimental setup in Section 4. Section 5 discusses the results, and
Section 6 presents the concluding remarks and future directions.

2. Related work

In the literature, there are different uses of ML for predicting Quality
of experience (QoE) or Quality of Service (QoS), both for applications
in the context of mobile networks and generic applications on network
slices [16]. Some approaches use machine learning algorithms pre-
trained in simulation environments, validate how these algorithms
behave, and compute performance metrics [17]. Other approaches have
been proposed for network simulation environments, leaving aside the
validation of these methods in real network testbeds [18].

Pasquini and Stadler [19] combined three metrics to estimate ap-
plication QoE while running different applications in an OpenFlow
network. They combined the operating system metrics, network flows
in switch tables, and application metrics to train machine learning.
The experiments considered two applications: Video on Demand (VoD)
and Voldemort-distributed databases. They simulated two traffic be-
haviors to assess the suitability of QoE prediction by considering the
observed metrics. Our approach further explores and validates whether
ML behaves properly in a real network testbed.

In network slicing orchestration matter, Cui et al. [20] proposed
reinforcement learning combined with the Long Short-Term Memory
(LSTM) algorithm to guarantee QoS for vehicle-to-vehicle network
slicing. The search space of Deep Reinforcement Learning (DRL) is a
5G antenna, where the action relies on the number of resource blocks.
Our approach estimates QoE in a real network testbed.

Nougnanke et al. [21] proposed and evaluated an ML-based ap-
proach for modeling and predicting network traffic under different
workloads. They can estimate latency under different network con-
ditions using ML algorithms. They used a mininet and a simulated
environment to validate their findings using three different datasets.
2
Our approach involves creating a dataset to validate the estimation of
some network metrics; however, our approach focuses on estimating
the QoE in a real sliced network.

Ge et al. [22] proposed an Graph Neural Networks (GNN)-based
end-to-end delay estimator for Software-Defined Networking (SDN)
environments. They used a real dataset from the GEANT network to fit
their model. In addition, as a proof of concept, they used the OMNet++
simulation environment to assess the prediction accuracy of the model
for QoS assurance. A similar study using the same method as described
above was differentiated using the Abline dataset [23].

Laiche et al. [24] introduced a multifactor influence in video QoE.
They used machine learning to predict QoE assurance in an emulated
network scenario. They used and compared the performance of the K-
Nearest Neighbors (KNN), Random Forest (RF), and Decision Tree (DT)
algorithms to predict user experience by considering popularity and
user engagement on a well-known streaming web platform.

Abdelwahed et al. [25] proposed and evaluated an ML-based ap-
proach for estimating Web QoE using different context metrics. The
metrics considered were network, browsing, and web user engagement.
Using RF, DT, and KNN, they estimated Mean Opinion Score (MOS) by
considering user-side metrics. Similarly, our approach aims to predict
the application QoE by considering different metrics.

Regarding QoS estimation in network slicing using ML algorithms,
Khan et al. [26] applied and evaluated Deep Neural Network (DNN)
methods to select better network slicing according to connectivity
services (mMTC, URLLC, and eMBB) requirements. Their experiments
assessed how the ML algorithm handled accurate slice assignment,
slice-load balancing, and slice-failure scenarios. Instead of using a
simulated network, our approach evaluates the effectiveness of acML
in a real network to predict the applications QoE.

For 5G mobile network slicing, Thantharate and Beard [27] pro-
posed and evaluated a transfer learning method for network slicing
QoS. Their proposed rationale is based on training local models for
different slice network requirements in the source domain. The model
can predict the resources in the target domain to satisfy slicing qual-
ity agreement. Our approach further predicts the application of SLA
conformance for an online network slice application in a real network
testbed. Similarly, N. P. Tran et al. [28] proposed and evaluated an ap-
proach to estimate end-to-end throughput in 5G and B5G using LSTM.

Yu et al. [29] idealized a linear regression algorithm combined with
Reinforcement Learning (RL) to predict slice mobility while ensuring
QoS for the application, minimizing costs, and maximizing revenues
and profits. They used different statistics, such as user demand for
CPU, RAM, and slicing resources to train the ML algorithm offline. Our
approach focuses on predicting application QoE through time-series
regression, which enables multi-step predictions over time.

Yang et al. [30] bring a method for predicting QoS for Virtual Re-
ality applications in a network slicing using different machine learning
algorithms. Their solutions can predict the latency, bandwidth, and
different video codecs for different slicing models. Our approach aims
to predict the Cassandra application SLA in a real network testbed by
using ML algorithms.

Dangi and Lalwani [31] proposes a hybrid deep learning model for
efficient network slicing in 5G networks. The model combines Har-
ris Hawks Optimization (HHO) with Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) networks to optimize
hyperparameters and classify network slices. The methodology involves
three phases: loading the dataset, optimizing it with HHO, and classi-
fying slices using the hybrid model. The results demonstrate that the
proposed model outperforms existing methods in predicting appropri-
ate network slices and offers improved service quality and efficiency in
5G network slicing.

Baktır et al. [32] proposes a Mixed Integer Programming (MIP)
model and a heuristic algorithm called NESECS to optimize network
slicing for various service types with different performance require-
ments. The MIP model aims to provide optimal solutions for small net-
work instances, whereas NESECS is designed to handle larger instances

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Table 1
Related works and their properties.
 Paper Experimental

environment
Evaluation
metrics

Dataset Enabling
technologies

Applications

 [20] Simulated
network

Convergence time and
Mobility velocity

Own LSTM-DDPG V2V
communication

 [21] Emulated
network

Normalized Mean Absolute
Error (NMAE), and
Prediction Time

Telecom Italia
Big Data
Challenge dataset
[33]

SDN, P4, NS3,
and ML Algorithms.

Network
connectivity

 [22] Emulated
network

RMSE,
MAE,
and Weighted
Mean Absolute Percentage Error
(WMAPE).

GEANT GNN, MLR, XGBoost,
and RF

Network
connectivity

 [23] Simulated
network

Packet Delay, Mean Squared
Error (MSE),
RMSE, MAE,
and WMAPE.

Abilene
network

GNN, RF,
and NN

Network
connectivity

 [19] Local
network

NMAE, and
Training time

Own OpenFlow,
and ML Algorithms

VoD,
and KV

 [24] Simulated
network

RMSE, Correlation,
and Outlier Ratio

Own KNN,
Decision Three (DT)

VoD

 [25] Local
network

Accuracy, Correlation,
and MOS rating.

Own KNN, RF,
and DT

Web

 [26] Simulated
network

Accuracy, Recall, Precision,
and F-1 score

DeepSlice,
and Secure5G

Convolutional Neural
Network (CNN),
LSTM and
Python-based ML
frameworks.

5G
verticals

 [27] Simulated
network

MSE,
correlation

Own Matlab deep
Learning toolbox.

5G
verticals

 [29] Simulated
network

RL-Convergence
time

Own NetworkX 5G
verticals

 [28] Simulated
network

Mean Absolute Percentage
Error (MAPE),
packet loss, and delay

Own LSTM,
and Traditional ML
models

5G
verticals

 [30] Simulated
network

Accuracy Own Linear regression
methods

Virtual
reality

 [31] Simulated
network

Accuracy, Precision,
Recall, and F1-Score

Unicauca IP Flow,
and 5G Network
Slicing

HHO, CNN,
and LSTM

Network
slicing

 [32] Simulated
network

SLA Violations, End-to-End Delay,

and Resource Utilization

Custom
Simulated data

SDN, Virtualization,
and Edge computing

Network slicing,
and Edge computing
optimization

 Our
approach

Production-
ready
network

MAE, MAPE,
and MSE

Own DNNs, and
Basic ML models

Distributed
Database on a sliced
Testbed

efficiently. This study evaluates the performance of these solutions
through extensive experiments, demonstrating that the proposed meth-
ods can effectively manage network resources, reduce SLA violations,
and improve the overall network performance by ensuring logical
isolation and resource reservation for different service types.

Approaches in the literature close to this proposal are summarized
in Table 1. In this table, we have an ‘‘Experimental Environment’’
column related to which network environment the ML algorithm makes
QoS or QoE predictions. Many approaches have used simulated envi-
ronments or local networks. The ‘‘Evaluation Metrics’’ column aims
to show which metrics (MAPE, MSE, RMSE, and others) the authors
most often take into account to validate their proposals. The ‘‘Dataset’’
column indicates the dataset that each approach considers in the model
training phase. Some approaches have created their own datasets,
whereas others use datasets created by third parties. The ‘‘Enabling
Technologies’’ column aims to identify which methods and technologies
for both machine learning and simulating network environments are
state-of-the-art. Many approaches still use classic ML approaches such
3
as RF, DT, and KNN. Finally, the ‘‘Application’’ column reports the
applications for which the prediction engines estimate QoS and QoE.
Some approaches focus on 5G verticals, while others focus on specific
applications.

3. Proposed method

Deploying network slices across multiple domains still requires
advanced management and orchestration technologies capable of in-
fluencing the underlying network, particularly when dealing with het-
erogeneous devices. Existing tools and techniques for implementing
dynamic and elastic slices remain inadequately managed, presenting
opportunities for improvement, especially with AI as a foundational
enabler of such architectures. In this context, we previously proposed
the Slicing Future Internet Infrastructures (SFI2) reference architecture
to manage and orchestrate AI-native network slices while integrating
diverse testbeds [13].

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Fig. 1. SFI2 artificial intelligence agents management within FIBRE-NG domain slices.

3.1. SFI2 slicing architecture

The SFI2 architectural approach with native artificial intelligence
embedded agents is illustrated in Fig. 1. AI-native embedded agents in
the architecture target the preparation, commissioning, operation, and
decommissioning phases of the network slicing life-cycle.

Enhancements promoted by AI-embedded agents include predicting
resource and performance parameters using distinct AI techniques, such
as combinatorial optimization, reinforcement learning, and neural net-
works. Notably, a potential focus of AI-embedded agents is the orches-
tration process involving different steps and actions applied to instanti-
ate and dynamically reconfigure slices according to user requirements.

Furthermore, the SFI2 architecture aims to operate over heteroge-
neous infrastructure following the concept of Machine Learning as a
Service (MLaaS). To achieve this, the SFI2 AI management module
collects metrics from the target domains. It interacts with the embedded
agents in the functional blocks to manage the learning model and the
other required parameters. The SFI2 AI management module manages
learning agents throughout all infrastructure components to support the
training, prediction, or decision tasks.

3.2. Problem setting and method

This paper proposes the evaluation of network slicing latency fore-
casting in a sliced SFI2-conform large-scale production-ready testbed
(FIBRE-NG and Fabric). The focus is on the SFI2 AI management func-
tional block, which natively and intelligently orchestrates slices to esti-
mate the SLA compliance of an application running on a network slice.

The proposed method is shown in Fig. 2, highlighting the functional
block of the orchestrator architecture and its interaction with the
network slice lifecycle.

Thus, adopting the premise that the slice is implemented by the
SFI2 Orchestrator [13], the procedures for online forecasting of QoE
begin by considering different metrics in different testbeds. The step
1 of the method refers to the collection and aggregation procedure
of different 𝑋 metrics from the application, the network slice, and the
underlying computational infrastructure. Application metrics 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
refer to the statistics provided by applications at different execution
stages. The 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 infrastructure metrics refer to the computational
resource consumption metrics demanded by the network slices from
the underlying hardware. Network metrics 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 refer to the network
statistics of the network slice. These metrics are aggregated by data
4
cleaning and standardization algorithms in the computational resource,
resulting in a dataset 𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∪𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘.

Cassandra, a distributed key–value database, is the application run-
ning on top of the network slicing used in this study. Using the
cassandra-stress [34] tool, we generated logs of the reading and
writing operations in this database to build a set of metrics 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛.
cassandra-stress presents different performance metrics for read-
ing and writing operations in the database, such as latency, operation
rate, errors, and others.

The 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 represents the statistics collected from the underlying
infrastructure that supports the network slice execution. The metrics
collected refer to the consumption of the Central Processing Unit (CPU),
Random-Access Memory (RAM), and Input/Output (I/O) operations
required by the network slice from the infrastructure. We also used the
NetData monitoring framework to collect CPU, RAM, and I/O metrics,
as well as other metrics related to computational resources.

The 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 variable refers to the generic statistics collected from
the network interfaces of each distributed entity comprising the net-
work slice. We employ a native network metrics extractor (NetData)
to gather statistics on the volume of transmitted, received, and lost
data across the various interfaces that support the Cassandra service.
These individual network interface statistics are then aggregated based
on their respective timestamps.

The 𝑌 service-level metrics for the Cassandra application are defined
by the mean latency of the Read (R) and Write (W) operations. This
latency represents the time taken by the Cassandra application to
complete R and W operations when induced by cassandra-stress.
During the training phase of DNNs and basic ML algorithms, we extract
features such as response time, errors, operations per second, and other
relevant metrics from 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 to construct the dataset. Conversely,
in the 𝑌 testing phase, our objective is to estimate the mean latency
of various operations in Cassandra by considering only the generic
infrastructure metrics of the testbeds.

Step 2 involves training using various algorithms based on ML
for time-series regression. We employ basic ML and DNNs to leverage
their potential in handling complex datasets that lack linear relaxations,
exhibit high-dimensional characteristics, and seamlessly adapt to new
scenarios, thereby facilitating knowledge transfer.

Step 3 represents the search and adjustment of the hyperparame-
ters for each DNN. At this stage, the hyperopt [35] tool uses Bayesian
methods to find better parameters for training DNNs, such as learning
rate, batch size, and epochs. At the end of this phase, the models are
trained with the best hyperparameters and exported to enable inference
through the SFI2 AI Management functional block.

The 4 step involves the empirical comparison of basic ML algo-
rithms and DNNs using appropriate metrics for regression problems,
such as MAE, MSE, and MAPE. MAE represents the average of the ab-
solute differences between the predicted and actual values, while MSE
is the mean of the squares of these differences, thereby emphasizing
larger deviations in evaluating regression models. MAPE is a measure
of relative error that expresses the difference between actual values
and those predicted by a regression model as a percentage. MAPE is
independent of the data scale, making it suitable for comparing the
accuracy of regression models.

In step 5 , we train the models and fine-tune the hyperparameters
before integrating the trained models into SFI2 AI Management. The
SFI2 architecture receives these models and makes them available for
future SLA forecasting using the Predictor API.

In step 6 , the Application Programming Interface (API) of the SFI2
AI Management block can handle some instances of
𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛,𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑛𝑒𝑡𝑤𝑜𝑟𝑘 and return a possible condition of the QoE 𝑌 in
which the network slice is conditioned online, allowing us to evaluate
whether the SLA is being honored.

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Fig. 2. Proposed method: Dataset generation combined with DNNs training and test flow.
3.3. Service infrastructure statistics and service-level metrics

In this section, we detail the set of input features 𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
∪𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 and denote the response variable 𝑌 . The 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
statistics refer to the volume of operations performed on the database
at a given timestamp, errors, and lines written per second for the Cas-
sandra application. We extracted these metrics from the cassandra-
stress utility, thus linking each record of these statistics to the
corresponding timestamp. The 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 statistics are metrics related to
the consumption of the computational resources of each node that hosts
the Cassandra application containers. These statistics are CPU con-
sumption, RAM memory, and interrupts of the host machines collected
through NetData.

The 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 metric refers to the consumption of network resources
by each computing node and container in the Cassandra application.
Specifically, network statistics refer to the volume of data sent, errors
received from the containers that run the Cassandra ring components,
and computing nodes that host the application. These statistics were
collected every second using NetData.

The 𝑌 metric refers to the QoE experienced by a user when op-
erating on a distributed database. This metric considers the average
latency of write (W) and read (R) operations in Cassandra deployed
on the testbed. The response variable metric 𝑌 was measured using
the Cassandra-stress utility, and we linked each latency per second
to a given timestamp. All write and read operations of our dataset
generation framework in distributed testbeds did not take into account
application caches in any of the replicas.

We model the collection of these metrics as 𝑋 and 𝑌 time series so
that our objective is to estimate the average of the W and R operations
in the Cassandra application deployed by the SFI2 Architecture over dif-
ferent testbeds using a regression problem in supervised learning [36].
Then, we estimate 𝑌𝑡 using machine learning algorithms that learn from
the statistics 𝑋𝑡 = [𝑋1𝑡,… , 𝑋𝑑𝑡]. Thus, we find a model 𝑀 ∶ 𝑋𝑡 → 𝑌𝑡,
where 𝑌𝑡 optimally approximates 𝑌𝑡 for a given 𝑋𝑡.

We used different ML models and DNNs model architectures to solve
the regression problem. We used DT, RF, KNN, LSTM, CatBoost, and
XGBoost. Among them we use DNNs such as: FCN [37], FCNPlus [38],
ResNet [38], ResNetPlus [38], ResCNN [38], TCN [39], Inception-
Time [40], InceptionTimePlus [40], OmniScaleCNN [41], XCM [38],
5
and XCMPlus [38] that are implemented in the framework Fastai and
tsai [38,42].

Table 2 provides an overview of the employed DNNs structure.
The Trainable Parameters column indicates the number of parameters
that can be adjusted during training, including the weights and biases.
The total number of Layers refers to the overall number of layers in
the model, encompassing convolutional, pooling, and fully connected
layers. The kernel Sizes describe the dimensions of the filters used in the
convolutional layers. Pooling highlights the presence of pooling layers,
which help reduce data dimensionality. Mult-Adds (M) represents the
computational cost measured in millions of multiplication and addition
operations. Finally, the Estimated Size (MB) estimates the model’s
size in megabytes, reflecting the number of parameters and required
storage.

The choice of these neural networks aimed to fulfill our objective of
empirically comparing the performance of DNNs in estimating the SLA
compliance. We also used the Optuna [43] framework to optimize the
hyperparameters of the DNNs for comparison and employed the Tree-
Structured Parzen Estimator (TPE)-based algorithm [44]. Our optimizer
sought to find the optimal parameters according to the search space, as
shown in Table 3.

3.4. Dataset generation

To understand how ML algorithms perform in real testbeds, we pro-
pose a dataset that generates workloads using a periodic-load pattern
and a collection framework. Using cassandra-stress, we generated
Write and Read requests for the application deployed on the Future
Internet Brazilian Environment for Experimentation New Generation
(FIBRE-NG) and Fabric testbeds. These requests follow a Poisson pro-
cess where the request rate adheres to a sinusoidal function, starting
with a level 𝑃𝑠 and amplitude 𝑃𝐴 until 500k lines are written or read
from the Cassandra application. The initial Cassandra parameters were
defined as follows: consistency level set to quorum, replica factor of 2,
and 256 tokens.

In Figs. 3, and 4, the workload pattern represents the number
of cassandra-stress processes created according to a sinusoidal
function over simulation time. The traces in Figs. 3 and 4 refer to
the instances of cassandra-stress, generating requests of different

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Table 2
Detailed structure of employed DNN models.
 Model Trainable

parameters
Total
layers

Kernel
sizes

Mult-
Adds (M)

Estimated
size (MB)

 FCN 285,446 17 (7), (5), (3) 14.47 2.18
 FCNPlus 285,446 18 (7), (5), (3) 14.47 2.18
 ResNet 490,758 53 (7), (5), (3), (1) × 3 24.86 3.74
 ResNetPlus 490,758 56 (7), (5), (3), (1) × 3 24.86 3.74
 ResCNN 268,551 33 (7), (5), (3), (1), (3) × 3 13.58 2.05
 TCN 71,406 95 (7) × 2, (1), (7) × 13 1.88 0.54
 InceptionTime 460,038 90 (1), (39), (19), (9) × 6 23.32 3.51
 InceptionTimePlus 460,038 124 (1), (39), (19), (9) × 6 23.32 3.51
 OmniScaleCNN 5,239,596 68 (1), (2), (3), (5), (7), (11) × 3, (1), (2) 266.26 39.97
 XCM 328,584 29 (51), (1), (51) 24.64 2.51
 XCMPlus 328,584 30 (51), (1), (51) 24.64 2.51
Table 3
Optuna search space for each regression model (DNNs).
 Hyperparameter Search space
 Batch size 8, 16, 32
 Learning Rate (LR) 0.1, 0.01, 0.001
 Epochs 20, 50, 100
 Patience 5, 10, 50
 Optimizer Adam, SGD
 # of Layers 1, 2, 3, 4, 5
 Hidden size 50, 100, 200
 Bidirectional True, False

Fig. 3. FIBRE-NG Testbed — Generating the traces.

Fig. 4. Fabric Testbed — Generating the traces.

types, such as Write and Read, to create application metrics. Whenever
a new cassandra-stress process is created, it triggers requests
(W or R) to the Cassandra application running on the testbeds. We
empirically define the parameters of the sinusoidal function as 𝑓 (𝑡) =
22.5 + 45

2 sin
(

2𝜋𝑡
𝑇

)

, where 𝑡 represents time and 𝑇 is the period of the
function.

This function models a wave that oscillates between 0 and 45,
with an amplitude (𝑃𝐴) of 452 units and an average value (𝑃𝑠) of 22.5,
providing an adequate representation for the desired variability in the
generated processes. These values were defined empirically because of
the restriction of computational resources for cassandra-stress
6
Fig. 5. FIBRE-NG: Write operation.

Fig. 6. FIBRE-NG: Read operation.

(container), and high values of 𝑃𝑠 and 𝑃𝐴 imply high resource consump-
tion and can lead to container failure, thereby damaging the creation
of the dataset. Both Write and Read operations were performed in
Cassandra after the warm-up process.

Despite the Poisson model has limitations, particularly in repre-
senting peak load conditions, as it focuses on typical traffic rather
than maximum loads. The dataset was generated in a live production
environment using a synthetic workload application. The models were
trained with realistic live production data, replicating actual network
behaviors. This environment, with interconnected distributed nodes on
a large-scale testbed, could experiences unexpected traffic patterns and
anomalies.

This method involves forecasting the next data point based on
historical observations up to the current time and making continuous
predictions as new data become available. The set of data generated
from the Write and Read operations, as well as the training and testing
splits, is shown in Figs. 5, 6, 7, and 8, where the operation latency is
ms on the 𝑦-axis, and the timestamp of the experiment is on the 𝑥-axis.

To adapt our structured numerical dataset for DNNs, specifically for
Convolutional Neural Networks (CNNs), we applied a sliding window
transformation using the Sliding Window method from the tsai li-
brary. Given a dataset with 𝑛 variables (merged monitored metrics),

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Fig. 7. Fabric: Write operation.

Fig. 8. Fabric: Read operation.

where the last column represents the target variable (Cassandra la-
tency), we constructed overlapping windows of length 𝑤 = 50 with
a stride of 𝑠 = 1. Formally, let 𝐗 ∈ R𝑚×𝑤×(𝑛−1) be the input tensor and
𝐲 ∈ R𝑚×1 be the corresponding target values, where 𝑚 is the number of
generated windows. Each window 𝐗𝑖 is defined as:
𝐗𝑖 = [𝐱𝑖, 𝐱𝑖+1,… , 𝐱𝑖+𝑤−1], 𝐲𝑖 = 𝑥target𝑖+𝑤 (1)

where 𝐱𝑗 ∈ R𝑛−1 represents the feature values at time step 𝑗. This
transformation allows CNNs to extract spatial and temporal patterns
effectively, treating each window as a structured input similar to an
image. The sliding mechanism ensures that local dependencies are
captured while enabling the model to generalize across different time
segments. To evaluate model performance, we employed a time-based
split using the Time Splitter function, reserving a predefined number of
samples for testing.

4. Experiments and model computation

Our experiments sought to validate the behavior of DNNs in estimat-
ing SLA compliance in a nationwide network slice deployed through the
SFI2 Orchestrator. Initially, we deployed the application to the testbeds
and started the workload tests to generate datasets for different metrics.
For each testbed, we seek to identify the Cassandra application’s behav-
ior and SLA and understand whether DNNs or basic ML algorithms can
generalize predictions across geographically distributed testbeds that
experience production-ready network conditions.

4.1. Testbeds

Fig. 9 shows the experimental setup used for our evaluation. What
stands out is the Cassandra ring deployed on different computing nodes
is spread across each testbed FIBRE-NG [14] and Fabric [15]. We
collected and processed the monitoring metrics, which are the features
𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛∪𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟∪𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘, feeding the Predictor API that applies
training with the different regression models.

To collect the application metrics, we employed a sensor and load-
generating node. The load-generating pipeline shown in Fig. 9 executed
7
read and write requests against the Cassandra ring (step 1), whereas
the sensor node generated flat requests simultaneously without altering
the workload pattern (step 2). Thus, we successfully gathered the
necessary metrics of the application from the server side, which were
subsequently compiled (step 3) into a dataset. Finally, the dataset
is uploaded to the SLA compliance training and validation framework
(step 4).

We deployed our network slice with the Cassandra application on
two nationwide testbeds, FIBRE-NG and Fabric, considering the com-
putational nodes in different geographic and intercontinental locations,
such as the European Organization for Nuclear Research (CERN) node,
presented in Table 4, which shows the rest of each testbed where we
deployed the Cassandra application. This experimental setup aims to
validate how DNNs deal with traces generated at nodes that transmit
data in a production-ready network.

4.2. Model training

In the experimental training and validation phase of the basic ML
algorithms and DNNs, we used RTX 4060ti 16 Gb GPU hardware with
an CPU Intel(R) Core(TM) i5-4430 CPU @3.00 GHz with 32 GB of
RAM. Furthermore, we used the PyTorch framework together with
FastAi [42] and tsai [38] tools to build the DNNs training setup. All
models were trained and validated with no seed locks and with tuned
hyperparameters, and we collected ten (10) samples of training time
and performance metrics. The choice of DNNs and basic ML models
aims to represent different model architectures for generalization and
in-depth analysis.

Our training and test pipeline involves data ingestion, timestamp-
ing, and indexing, followed by splitting into training and testing sub-
sets. Data transformation includes resampling, interpolation, and nor-
malization, with feature selection and separate scaling of the target
variable. The Sliding Window method generates input–output pairs for
time series forecasting, while TSDatasets and TSDataLoaders apply fur-
ther transformations. Hyperopt optimizes hyperparameters like batch
size and learning rate. The model is trained using Learner with early
stopping to prevent overfitting, and performance metrics are recorded
for evaluation, ensuring robust data preparation and optimization.

5. Evaluating results

To validate our contribution, we initially analyze the impact of
different network factors on our case study network slicing applica-
tion response time. We also discuss aspects of Model Tuning for our
employed neural network. Later, we evaluate different ML approaches
on a production-ready network and assess the feasibility of our dataset
generation method, which expresses real network conditions and en-
ables fitting and training models to forecast SLA violations on network
slicing architectures.

5.1. Impact analysis in a large-scale network

To assess the impact of realistic and production-ready network
metrics on our experimental deployment, we used a chaos engineering
tool to simulate latency with jitter and packet loss [45]. We sys-
tematically applied jitter ranging from 1 ms to 10 ms, following a
uniform distribution, and introduced a packet loss between 1% and
10% in our experimental sliced application. For token management,
we implemented two distinct slices containing our distributed database
application by varying the number of tokens from 32 to 256.

We employed three-way Analysis of Variance (ANOVA) to evaluate
the effects of three independent factors and their interactions on a
dependent variable. The factors are: (1) Fixed Latency with Jitter
induction with levels 1 ms and 10 ms, (2) Network Packet Loss with
levels 1% and 10%, and (3) Cassandra Tokens with levels 32 and
256. The response variable analyzed is the Cassandra Write and Read

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Fig. 9. Deployment of Cassandra application on nationwide testbeds.
Table 4
Testbeds compute nodes hosting Cassandra services (containers) in a distributed manner.
 Testbed Pod name Node name Location

FIBRE-NG

cassandra-0 WHX-SC Santa Catarina
 cassandra-1 WHX-RS Rio Grande do Sul
 cassandra-2 WHX-PB Paraíba
 loadgen WHX-RN Rio Grande do Norte

Fabric

cassandra-0 Great Plains Network (GPN) Kansas City, MO
 cassandra-1 CERN France
 cassandra-2 The University of Utah Salt Lake City, UT
 loadgen Rutgers University Jersey Cirty, NJ
Table 5
Experimental factors influence on write operations.
 Source of variation F value P value
 Network Delay 7.58245 0.00612
 Network Loss 580.45267 <0.0001
 Cassandra Tokens 0.25329 0.615
 Network Delay × Network Loss 4.32445 0.03811
 Network Delay × Cassandra Tokens 0.45758 0.49909
 Network Loss × Cassandra Tokens 1.24777 0.26455
 Network Delay × Network Loss × Cassandra Tokens 1.77435 0.18349

Latency. This method tests the main effects of each factor, the two-way
interactions between factors, and the three-way interaction, using the
F-statistic and corresponding 𝑝-value. A 𝑝-value of 𝑝 < 0.05 indicates
that the effect or interaction is statistically significant.

The three-way ANOVA results as Table 5 show that for Write
operations, Network Delay (Jitter) (𝐹 (1, 472) = 7.58, 𝑝 = 0.00612) and
Network Packet Loss (𝐹 (1, 472) = 580.45, 𝑝 < 0.0001) have significant
effects on latency, while Cassandra Tokens (𝐹 (1, 472) = 0.25, 𝑝 = 0.615)
do not. The interaction between Network Delay and Network Packet
Loss is also significant (𝐹 (1, 472) = 4.32, 𝑝 = 0.03811), suggesting non-
additive effects. However, interactions involving Cassandra Tokens and
8
the three-way interaction are not significant (𝑝 > 0.05). These results
emphasize that network-related factors are the primary contributors to
latency during Write operations.

The results in Fig. 10 that high network latency (10 ms) combined
with high packet loss (0.1) significantly degrades performance, as
seen in the red line dropping from 9000 to 8000. In contrast, low
latency (1 ms) with high packet loss starts at around 7000, with
a slight increase. Configurations with low packet loss (0.01) main-
tain stable performance despite increased latency. ANOVA confirms
these findings, with network delay and loss showing high statistical
significance (P < 0.0001). These results highlight the importance of op-
timizing network conditions for enhancing the efficiency and reliability
of distributed database systems like Cassandra.

The three-way ANOVA results for Read operations as Table 6 in-
dicate that both Network Delay (𝐹 (1, 473) = 4.19, 𝑝 = 0.04124) and
Network Packet Loss (𝐹 (1, 473) = 172.78, 𝑝 < 0.0001) significantly affect
latency. Additionally, Cassandra Tokens shows a marginally significant
effect (𝐹 (1, 473) = 3.81, 𝑝 = 0.0515), suggesting a potential influence
on latency that may be worth further exploration. The interaction
between Network Delay and Network Packet Loss is also nearly sig-
nificant (𝐹 (1, 473) = 3.58, 𝑝 = 0.05896), while the interaction between
Network Delay and Cassandra Tokens is not significant (𝐹 (1, 473) =

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Fig. 10. Impact of Network Latency, Cassandra Tokens and Packet Loss on Cassandra
Write Operations.

Fig. 11. Impact of Network Latency, Cassandra Tokens and Packet Loss on Cassandra
Read Operations.

Table 6
Experimental factors influence on read operations.
 Source of variation F value p value
 Network Delay 4.19 0.04124
 Network Packet Loss 172.78 <0.0001
 Cassandra Tokens 3.81 0.0515
 Network Delay × Network Packet Loss 3.58 0.05896
 Network Delay × Cassandra Tokens 0.48 0.491
 Network Loss × Cassandra Tokens 5.79 0.01648
 Network Delay × Network Loss × Cassandra Tokens 2.69 0.10178

0.48, 𝑝 = 0.491). Furthermore, the interaction between Network Loss
and Cassandra Tokens is significant (𝐹 (1, 473) = 5.79, 𝑝 = 0.01648),
suggesting that these two factors jointly influence latency. The three-
way interaction between Network Delay, Network Loss, and Cassandra
Tokens is not significant (𝐹 (1, 473) = 2.69, 𝑝 = 0.10178). These findings
highlight the dominant influence of network-related factors on latency
during Read operations, with Cassandra Tokens potentially having a
marginal effect and interactions between network factors playing a role.

In Fig. 11 suggests that high network latency (10 ms) combined
with high packet loss (0.1) significantly degrades performance, with
a notable decline observed in the graph. Conversely, lower latency
(1 ms) with high packet loss exhibits a slight performance increase.
Moreover, configurations with low packet loss (0.01) demonstrate min-
imal impact from increased latency, indicating stability in performance.
These trends are corroborated by ANOVA results, highlighting the
statistical significance of network delay (P = 0.00612) and network loss
(P < 0.0001), as well as their interaction (P = 0.03811). These findings
underscore the importance of optimizing both latency and packet loss
to enhance the efficiency and reliability of distributed database systems
like Cassandra.
9
Fig. 12. MAPE results for Write and Read operations on FIBRE-NG.

5.2. Model tunning

In this section, we present the results of the hyperparameter op-
timization of DNNs and the performance in estimating SLA for each
model for the different operations (W and R) and testbeds (FIBRE-NG
and Fabric). Therefore, we conducted hyperparameter optimization
for the four constructed datasets ‘fibre-read.csv’, ‘fibre-
write.csv’, ‘fabric-read.csv’, and ‘fabric-write.csv’.

We summarize the hyperparameters found by Optuna for the
FIBRE-NG testbed in Tables 7, and 8. Furthermore, we tuned the
hyperparameters of the same models for the dataset generated from the
Fabric testbed, as shown in Tables 9, 10. With these adjusted values,
we proceeded with an empirical evaluation of the performance of these
models for predicting the SLA in each testbed.

5.3. Basic model performance

Through our dataset construction framework on sliced testbeds,
we aggregate the metrics 𝑋 = 𝑋𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∪ 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∪ 𝑋𝑛𝑒𝑡𝑤𝑜𝑟𝑘 → 𝑌
and configure the datasets generated to submit it to the training and
assessment process. Thus, we empirically use the division 80% for
training and 20% for testing and build the regression model aiming at
the one-step-ahead prediction method that, given a statistic 𝑖 of 𝑋𝑖, the
model can estimate the operation latency (W or R) in the next step.

As Fig. 12-a, the Write operation on the FIBRE-NG testbed, and RF
presented the lowest mean MAPE (0.17), indicating the best predictive
accuracy, followed by DT (0.39). The KNN had the worst performance,
with an average MAPE of 6.41, which is significantly higher than
that of the others. Models such as CatBoost, LSTM, and XGBoost have
intermediate performance but are still superior to KNN. In addition,
RF demonstrated greater stability, with the lowest standard deviation
(0.064).

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Table 7
Write Dataset: Hyperparameter tuning values for the FIBRE-NG testbed.
 Model Batch size Learning rate Epochs Patience Optimizer Layers Hidden size Bidirectional
 FCN 8 0.1 20 10 Adam 2 100 False
 FCNPlus 16 0.1 20 50 Adam 4 200 False
 InceptionTime 16 0.1 100 50 Adam 4 100 False
 InceptionTimePlus 16 0.1 100 50 Adam 1 50 True
 OmniScaleCNN 32 0.1 20 50 Adam 2 100 True
 ResCNN 32 0.1 20 10 Adam 5 100 False
 ResNet 32 0.1 50 50 Adam 2 100 False
 ResNetPlus 32 0.1 20 5 Adam 5 50 False
 TCN 32 0.01 100 50 Adam 1 200 False
 XCM 16 0.01 50 50 Adam 1 200 False
 XCMPlus 8 0.1 100 50 Adam 3 100 True
Table 8
Read Dataset: Hyperparameter tuning values for the FIBRE-NG testbed.
 Model Batch size Learning rate Epochs Patience Optimizer Layers Hidden size Bidirectional
 FCN 16 0.1 20 10 Adam 3 200 True
 FCNPlus 16 0.1 20 50 Adam 4 50 False
 InceptionTime 8 0.01 20 10 Adam 5 100 True
 InceptionTimePlus 16 0.1 20 50 Adam 2 200 False
 OmniScaleCNN 8 0.1 50 50 Adam 2 50 True
 ResCNN 16 0.1 20 10 Adam 3 100 False
 ResNet 16 0.1 20 10 Adam 1 200 True
 ResNetPlus 8 0.1 20 50 Adam 2 50 False
 TCN 32 0.01 50 5 Adam 4 50 False
 XCM 8 0.01 20 10 Adam 3 200 False
 XCMPlus 16 0.01 50 50 Adam 3 50 True
Table 9
Write Dataset: Hyperparameter tuning values for the Fabric Testbed.
 Model Batch size Learning Rate (LR) Epochs Patience Optimizer # of Layers Hidden size Bidirectional
 FCN 32 0.01 20 10 Adam 3 50 True
 FCNPlus 32 0.1 100 50 Adam 5 100 True
 InceptionTime 32 0.1 50 50 Adam 2 200 False
 InceptionTimePlus 16 0.1 100 50 Adam 4 50 True
 OmniScaleCNN 16 0.01 50 10 Adam 4 100 True
 ResCNN 32 0.01 50 50 Adam 5 100 False
 ResNet 32 0.01 50 50 Adam 4 50 True
 ResNetPlus 16 0.1 20 10 Adam 3 200 True
 TCN 8 0.001 100 50 Adam 2 50 False
 XCM 16 0.1 50 50 Adam 3 50 False
 XCMPlus 16 0.1 100 50 Adam 1 50 True
Table 10
Read Dataset: Hyperparameter tuning values for the fabric testbed.
 Model Batch size LR Epochs Patience Optimizer # Layers Hidden size Bidirectional
 FCN 32 0.1 20 10 Adam 3 100 False
 FCNPlus 8 0.1 20 10 Adam 3 200 True
 InceptionTime 32 0.1 100 10 Adam 5 50 True
 InceptionTimePlus 16 0.1 100 50 Adam 2 50 False
 OmniScaleCNN 8 0.001 20 50 SGD 4 100 False
 ResCNN 32 0.1 20 10 SGD 2 100 True
 ResNet 32 0.1 20 50 Adam 4 100 True
 ResNetPlus 8 0.1 20 5 Adam 4 200 False
 TCN 32 0.01 20 10 Adam 2 100 True
 XCM 8 0.1 100 10 SGD 3 50 True
 XCMPlus 8 0.1 100 10 SGD 5 200 True
In the Read operation, as shown in Fig. 12-b on the FIBRE-NG
testbed, KNN obtained the lowest mean MAPE (12.77), indicating
the best predictive accuracy. In contrast, CatBoost (35.90) and LSTM
(30.87) presented the highest errors with high variability, as evidenced
by the high standard deviation of LSTM (19.34). RF and XGBoost had
intermediate performances, with mean MAPEs of 21.98 and 21.73,
respectively. Meanwhile, DT showed a mean error of 25.54, with high
dispersion.

During the writing operation, as shown in Fig. 13-a, on the testbed
Fabric, the DT presented the lowest mean MAPE (0.49), indicating
10
the best predictive accuracy, followed by LSTM (0.69) and RF (0.75).
XGBoost had a slightly higher error (1.16) but was still lower than
CatBoost (4.07) and KNN (4.23), which had the worst performance. In
addition, DT showed the lowest standard deviation (0.19), suggesting
greater stability.

In the Read operation, as Fig. 13-b, on the testbed Fabric, RF
presented the lowest mean MAPE (4.06), closely followed by XG-
Boost (4.09) and CatBoost (4.03), indicating very similar performances.
DT had a higher error (5.64), while KNN obtained the worst re-
sult (9.29), with the highest standard deviation (0.22), demonstrating

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Fig. 13. MAPE results for Write and Read operations on Fabric.

low precision. LSTM showed an intermediate MAPE (4.85), but with
greater variability (0.53). Thus, RF, XGBoost, and CatBoost stand out
as the most effective approaches for predicting the latency in the Read
operation of the distributed Cassandra on the testbed Fabric.

These experiments with basic ML algorithms for forecasting high-
light the contribution of our study, which discusses the suitability of
laboratory-trained algorithms in real-world scenarios and production
networks with geographically distributed nodes. In the four analyzed
scenarios, RF and DT demonstrated the lowest mean MAPE, indicat-
ing higher predictive accuracy. In the Write operation on the Fabric
testbed, DT had the best performance (0.49), while in the Read op-
eration on the same testbed, RF stood out (4.06). On FIBRE-NG, RF
and KNN were more accurate in the Read operation (21.98 and 12.77,
respectively), whereas DT had the lowest error in the Write operation
(0.40). In contrast, KNN and CatBoost exhibited the worst performances
in various scenarios. These results suggest that tree-based models, espe-
cially RF and DT, are more effective for forecasting in sliced testbeds.

5.4. DNN-based model performance

We computed the DNNs training time demands for Write and Read
operations on the FIBRE-NG and Fabric testbeds and compared the
results in Fig. 14. Therefore, it is possible to infer that with a confidence
level of 95%, the read datasets generated in different testbeds require
the same training time. In contrast, we noticed a difference in the
training time between the Read and Write operations owing to the
size of the generated dataset and the variations in network conditions
experienced by each test workload.
11
Fig. 14. Training Time for different Operations (W and R) on Testbeds.

Fig. 15. Training and Test behavior for Read and Write datasets on FIBRE-NG and
Fabric Testbeds.

We deepened our analysis by observing the generalization capacity
of the DNNs used to predict the Write and Read operations latency in
Cassandra deployed on the FIBRE-NG and Fabric Testbeds. We present
in Fig. 14 the training and validation behaviors of only the best DNNs
for the two operations (W and R) and testbeds considering the MAE
metric and the measured values in Tables 11 and 12.

We choose to employ the MAE metric rather than RMSE or MSE for
regression on the Read and Write latency owing to its robustness to
outlier handling and ease of interpretation. Additionally, MAE shares
the same unit of measurement as the dependent variable, facilitating a
more intuitive comprehension of its meaning and magnitude.

For the read and write datasets from the FIBRE-NG testbed shown
in Fig. 15-a and -b, we observed the training behavior of ResNet DNN.
From Fig. 15-c, which refers to DNN InceptionTimePlus for the read
dataset in the Fabric testbed, there was a subtle drop in the training
and test losses, indicating that DNNs could extract patterns from the
time series for prediction. As with Fig. 15-d, which refers to the dataset
written in the Fabric testbed, there is a visual indication that the loss
decreases as the epochs advance.

The results presented in Tables 13 and 14 summarize the perfor-
mance of DNNs in the context of FIBRE-NG, utilizing the RMSE metric.
The InceptionTimePlus network stands out with the lowest RMSE for
both reading (0.011) and writing (0.016), indicating superior perfor-
mance compared to other networks. The ResNet also shows competitive
results, with RMSE values of 0.010 for reading and 0.012 for writing.
In contrast, the XCM and OmniScaleCNN exhibit the highest RMSE

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Table 11
Summarizing the DNNs performance for FABRIC using MAE.
 Neural network Read mean Read StDev Write mean Write StDev
 FCN 0.040 0.000 0.016 0.005
 FCNPlus 0.042 0.004 0.012 0.004
 InceptionTime 0.041 0.003 0.020 0.008
 InceptionTimePlus 0.040 0.000 0.030 0.017
 OmniScaleCNN 0.046 0.005 0.027 0.018
 ResCNN 0.043 0.005 0.021 0.007
 ResNet 0.040 0.000 0.059 0.033
 ResNetPlus 0.048 0.006 0.024 0.007
 TCN 0.040 0.000 0.012 0.004
 XCM 0.054 0.014 0.027 0.018
Table 12
Summarizing the DNNs performance for FIBRE-NG using MAE.
 Neural network Read mean Read StDev Write mean Write StDev
 FCN 0.017 0.008 0.021 0.007
 FCNPlus 0.013 0.005 0.014 0.005
 InceptionTime 0.013 0.005 0.024 0.027
 InceptionTimePlus 0.011 0.003 0.016 0.007
 OmniScaleCNN 0.020 0.009 0.035 0.025
 ResCNN 0.021 0.019 0.026 0.013
 ResNet 0.010 0.000 0.012 0.004
 ResNetPlus 0.014 0.005 0.017 0.005
 TCN 0.019 0.007 0.015 0.005
 XCM 0.025 0.007 0.035 0.012

Table 13
Summarizing the DNNs performance for FABRIC using RMSE.
 Neural network Read mean Read StDev Write mean Write StDev
 FCN 0.050 0.000 0.020 0.000
 FCNPlus 0.052 0.004 0.019 0.003
 InceptionTime 0.055 0.005 0.025 0.010
 InceptionTimePlus 0.053 0.005 0.034 0.016
 OmniScaleCNN 0.059 0.003 0.033 0.021
 ResCNN 0.054 0.005 0.024 0.007
 ResNet 0.051 0.003 0.066 0.038
 ResNetPlus 0.061 0.010 0.030 0.012
 TCN 0.050 0.000 0.021 0.003
 XCM 0.065 0.014 0.020 0.005
 XCMPlus 0.065 0.009 0.026 0.005

Table 14
Summarizing the DNNs performance for FIBRE-NG using RMSE.
 Neural network Read mean Read StDev Write mean Write StDev
 FCN 0.017 0.008 0.021 0.007
 FCNPlus 0.013 0.005 0.014 0.005
 InceptionTime 0.013 0.005 0.024 0.027
 InceptionTimePlus 0.011 0.003 0.016 0.007
 OmniScaleCNN 0.020 0.009 0.035 0.025
 ResCNN 0.021 0.019 0.026 0.013
 ResNet 0.010 0.000 0.012 0.004
 ResNetPlus 0.014 0.005 0.017 0.005
 TCN 0.019 0.007 0.015 0.005
 XCM 0.025 0.007 0.035 0.012

values, suggesting lower accuracy in their predictions. Additionally,
the table reveals the variability of the results, reflected in the standard
deviations (StDev), which vary across the different architectures, with
most maintaining relatively low deviations, especially in reading tasks.

Having the DNNs learn over the epochs operating on the datasets
generated in the two testbeds, it is possible to admit that the DNNs
are efficient in dealing with the seasonality of a production-ready
network. Then, slicing orchestrators can couple such models into their
slicing management control loop and modernize the delivery of service
verticals with a guaranteed SLA.

We seek to observe the behavior of DNNs in predicting Cassandra
latency by contrasting the real and predicted in the test portion of
the time series. Fig. 16 shows the DNNs and their prediction process
12
Fig. 16. Latency prediction for better DNNs for Write and Read operations in testbeds.

performance, considering the lowest value of the MAE metric for both
the Write or Read operations presented in Tables 11 and 12. Thus,
modern slicing orchestrations can adopt a threshold for the difference
between actual and predicted and assess whether the network slices it
manages comply with the agreed SLA.

To further our analysis, we examined the performance of DNNs for
the four datasets generated in the two testbeds using the MAPE metric.
As illustrated in Fig. 17-a, for the FIBRE-NG testbed, ResNet demon-
strated the highest performance on the Write dataset with a MAPE
of 0.024. Conversely, for the Read dataset, DNN InceptionTimePlus
exhibited superior performance, as depicted in Fig. 17-b.

Furthermore, our analysis revealed that the DNN exhibiting optimal
performance for the Write dataset in the Fabric testbed was FCNPlus
(Fig. 18-a), achieving a MAPE of 0.015, with standard deviation serving
as the criterion for resolving ties.

In the Fabric Read scenario, and according to Fig. 18-b, the MAPE
showed very low and homogeneous values across the models, indi-
cating high prediction accuracy. The low variability suggests that the
prediction task for this operation was relatively simple, resulting in
insignificant percentage errors. Models such as FCN, ResNet, and TCN
performed practically identically, whereas XCM and XCMPlus showed
slight variations, but still within a very small error range.

Considering this empirical analysis of the behavior of DNNs and
the MAPE metric, it is possible to admit that DNNs are technologies
that perform intelligent network slicing. It is possible to couple such
capabilities into different building blocks to act at different phases of
the lifecycle of a network slice. Using the MAPE metric, it is possible
to have a percentage dimension of the error of DNNs that reiterates
its ability to be embedded in prediction Application Programming
Interfaces (APIs) based on microservices, such as SFI2 Orchestration
Architecture.

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Fig. 17. Mean Absolute Percentage Error (MAPE) for FIBRE-NG in Write and Read
operations.

Fig. 18. Mean Absolute Percentage Error (MAPE) for Fabric in Write and Read
operations.
13
Our approach primarily focused on evaluating a distributed
database to assess the feasibility of training ML algorithms on a large-
scale testbed. In addition, our method can be extended to a broader
range of applications that require access to computing and network-
monitoring platforms. This extension would enable the integration of
diverse performance metrics, facilitating accurate application perfor-
mance forecasting and supporting life-cycle decision making in network
slicing architectures.

6. Concluding remarks

In this study, we shed light on how ML techniques, specifically
DNNs and basic ML algorithms, can be jointly employed with slicing
orchestration architectures to leverage and guarantee SLA for tailored
applications in nationwide testbeds. To achieve this, we propose a
method for generating and aggregating datasets regarding the latency
of Write and Read operations in a distributed database. We found
that there are approaches in the literature that combine computational
intelligence for the different phases of the network slice life cycle;
however, they have not yet considered how these AI techniques behave
in production-ready networks deployed on nationwide testbeds.

Among the findings, we found that DNNs and even basic ML al-
gorithms are promising technologies that can be built or natively
embedded in slicing architectural building blocks to perform zero-
touch orchestration in production-ready networks. Furthermore, we
verified that forecasting network slicing latency with a low error rate
is possible by monitoring generic and easily collected metrics related
to the computing or network resources on which the network slice is
deployed. Furthermore, we believe that embedding the DNN or basic
ML models in SFI2 AI management to cope with stringent application
vertical requirements is a promising path.

One of the constraints of this study is that it focuses on generic
networks and computing metrics. We aimed to incorporate more het-
erogeneous metrics into the dataset construction process to assess the
generalization of these metrics and achieve low error rates in our
predictions. Currently, we are working on analyzing the separation of
metrics to validate the impact of each on the final ability to estimate
SLA conformance and the employment of Reinforcement Learning.

In addition, we plan to explore methods such as queueing theory,
extreme value analysis, or bursty traffic models to better capture ex-
treme network conditions using supervised learning methods and other
DNNs and attention-based mechanisms to determine their efficacy in
such contexts. Our results offer valuable insights and opportunities for
the further exploration of intelligent native slicing architectures.

CRediT authorship contribution statement

Rodrigo Moreira: Writing – original draft, Visualization, Valida-
tion, Software, Resources, Data curation, Conceptualization. Rafael
Pasquini: Writing – review & editing, Validation, Formal analysis.
Joberto S.B. Martins: Writing – review & editing, Validation, Supervi-
sion, Funding acquisition. Tereza C. Carvalho: Project administration,
Investigation, Funding acquisition, Formal analysis. Flávio de Oliveira
Silva: Writing – review & editing, Validation, Supervision, Project
administration, Methodology, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Tereza Cristina Melo de Brito Carvalho reports financial support was
provided by State of Sao Paulo Research Foundation. Joberto Sergio
Barbosa Martins reports financial support was provided by Anima In-
stitute. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
Acknowledgments

We acknowledge the financial support of the Brazilian National
Council for Scientific and Technological Development (CNPq), grant
#421944/2021-8, and the FAPESP MCTIC/CGI, Brazil Research project
2018/23097-3 - SFI2 - Slicing Future Internet Infrastructures. The
authors also thank CNPq, CAPES, FAPESP and Instituto ANIMA.

Data availability

Data will be made available on request.

References

[1] Y. Liu, Y. Deng, A. Nallanathan, J. Yuan, Machine learning for 6G enhanced ultra-
reliable and low-latency services, IEEE Wirel. Commun. 30 (2) (2023) 48–54,
http://dx.doi.org/10.1109/MWC.006.2200407.

[2] M. Zhang, L. Shen, X. Ma, J. Liu, Toward 6G-Enabled mobile vision analytics
for immersive extended reality, IEEE Wirel. Commun. 30 (3) (2023) 132–138,
http://dx.doi.org/10.1109/MWC.023.2200557.

[3] J. Li, H. Wu, X. Huang, Q. Huang, J. Huang, X.S. Shen, Toward Reinforcement-
Learning-Based intelligent network control in 6G networks, IEEE Netw. 37 (4)
(2023) 104–111, http://dx.doi.org/10.1109/MNET.003.2200641.

[4] A.T. Jawad, R. Maaloul, L. Chaari, A comprehensive survey on 6G and
beyond: Enabling technologies, opportunities of machine learning and chal-
lenges, Comput. Netw. 237 (2023) 110085, http://dx.doi.org/10.1016/j.
comnet.2023.110085, URL https://www.sciencedirect.com/science/article/pii/
S1389128623005303.

[5] R. Moreira, P.F. Rosa, R.L.A. Aguiar, F.d. Silva, NASOR: A network slicing
approach for multiple autonomous systems, Comput. Commun. 179 (2021)
131–144, http://dx.doi.org/10.1016/j.comcom.2021.07.028, URL https://www.
sciencedirect.com/science/article/pii/S0140366421002917.

[6] S. S., S. Mishra, C. Hota, Joint QoS and energy-efficient resource alloca-
tion and scheduling in 5G network slicing, Comput. Commun. 202 (2023)
110–123, http://dx.doi.org/10.1016/j.comcom.2023.02.009, URL https://www.
sciencedirect.com/science/article/pii/S0140366423000464.

[7] R. Moreira, L.F. Rodrigues Moreira, F. de Oliveira Silva, An intelligent
network monitoring approach for online classification of Darknet Traf-
fic, Comput. Electr. Eng. 110 (2023) 108852, http://dx.doi.org/10.1016/j.
compeleceng.2023.108852, URL https://www.sciencedirect.com/science/article/
pii/S0045790623002768.

[8] R. Ahmed, M.R. Mahmood, M.A. Matin, Challenges in meeting QoS re-
quirements toward 6G wireless networks: A state of the art survey, Trans.
Emerg. Telecommun. Technol. 34 (2) (2023) e4693, http://dx.doi.org/10.1002/
ett.4693, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4693 URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4693.

[9] M.E. Haque, F. Tariq, M.R.A. Khandaker, K.-K. Wong, Y. Zhang, A survey of
scheduling in 5G URLLC and outlook for emerging 6G systems, IEEE Access 11
(2023) 34372–34396, http://dx.doi.org/10.1109/ACCESS.2023.3264592.

[10] W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X.S. Shen, W. Zhuang,
AI-native network slicing for 6G networks, IEEE Wirel. Commun. 29 (1) (2022)
96–103, http://dx.doi.org/10.1109/MWC.001.2100338.

[11] P. Singh, Systematic review of data-centric approaches in artificial intelli-
gence and machine learning, Data Sci. Manag. 6 (3) (2023) 144–157, http:
//dx.doi.org/10.1016/j.dsm.2023.06.001, URL https://www.sciencedirect.com/
science/article/pii/S2666764923000279.

[12] J. Gomez, E.F. Kfoury, J. Crichigno, G. Srivastava, A survey on network
simulators, emulators, and testbeds used for research and education, Comput.
Netw. 237 (2023) 110054, http://dx.doi.org/10.1016/j.comnet.2023.110054,
URL https://www.sciencedirect.com/science/article/pii/S1389128623004991.

[13] J.S.B. Martins, T.C. Carvalho, R. Moreira, C.B. Both, A. Donatti, J.H. Corrêa, J.A.
Suruagy, S.L. Corrêa, A.J.G. Abelem, M.R.N. Ribeiro, J.-m.S. Nogueira, L.C.S.
Magalhães, J. Wickboldt, T.C. Ferreto, R. Mello, R. Pasquini, M. Schwarz, L.N.
Sampaio, D.F. Macedo, J.F. De Rezende, K.V. Cardoso, F. De Oliveira Silva,
Enhancing network slicing architectures with machine learning, security, sus-
tainability and experimental networks integration, IEEE Access 11 (2023)
69144–69163, http://dx.doi.org/10.1109/ACCESS.2023.3292788.

[14] T. Salmito, L. Ciuffo, I. Machado, M. Salvador, M. Stanton, N. Rodriguez, A.
Abelem, L. Bergesio, S. Sallent, L. Baron, Fibre-an international testbed for future
internet experimentation, in: Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuí dos-SBRC 2014, 2014, pp. p–969.

[15] I. Baldin, A. Nikolich, J. Griffioen, I.I.S. Monga, K.-C. Wang, T. Lehman, P. Ruth,
FABRIC: A national-scale programmable experimental network infrastructure,
IEEE Internet Comput. 23 (6) (2019) 38–47, http://dx.doi.org/10.1109/MIC.
2019.2958545.
14
[16] H.P. Phyu, D. Naboulsi, R. Stanica, Machine learning in network slicing—
A survey, IEEE Access 11 (2023) 39123–39153, http://dx.doi.org/10.1109/
ACCESS.2023.3267985.

[17] R. Moreira, T. Carvalho, F. Silva, Designing and evaluating a high-reliable and
security-aware Identity and access management for slicing architectures, in: Anais
do XIV Workshop de Pesquisa Experimental da Internet do Futuro, SBC, Porto
Alegre, RS, Brasil, 2023, pp. 1–6, http://dx.doi.org/10.5753/wpeif.2023.722,
URL https://sol.sbc.org.br/index.php/wpeif/article/view/24653.

[18] A. Donatti, S.L. Correa, J.S.B. Martins, A. Abelem, C.B. Both, F. Silva, J.A. Su-
ruagy, R. Pasquini, R. Moreira, K.V. Cardoso, T.C. Carvalho, Survey on machine
learning-enabled network slicing: Covering the entire life cycle, IEEE Trans.
Netw. Serv. Manag. (2023) 1, http://dx.doi.org/10.1109/TNSM.2023.3287651.

[19] R. Pasquini, R. Stadler, Learning end-to-end application QoS from openflow
switch statistics, in: 2017 IEEE Conference on Network Softwarization (NetSoft),
2017, pp. 1–9, http://dx.doi.org/10.1109/NETSOFT.2017.8004198.

[20] Y. Cui, X. Huang, P. He, D. Wu, R. Wang, Qos guaranteed network slicing
orchestration for Internet of Vehicles, IEEE Internet Things J. 9 (16) (2022)
15215–15227, http://dx.doi.org/10.1109/JIOT.2022.3147897.

[21] B. Nougnanke, Y. Labit, M. Bruyere, U. Aïvodji, S. Ferlin, ML-Based performance
modeling in SDN-enabled data center networks, IEEE Trans. Netw. Serv. Manag.
20 (1) (2023) 815–829, http://dx.doi.org/10.1109/TNSM.2022.3197789.

[22] Z. Ge, J. Hou, A. Nayak, Forecasting SDN End-to-End latency using graph neural
network, in: 2023 International Conference on Information Networking (ICOIN),
2023, pp. 293–298, http://dx.doi.org/10.1109/ICOIN56518.2023.10048915.

[23] Z. Ge, J. Hou, A. Nayak, GNN-based End-to-end delay prediction in software
defined networking, in: 2022 18th International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2022, pp. 372–378, http://dx.doi.org/
10.1109/DCOSS54816.2022.00066.

[24] F. Laiche, A. Ben Letaifa, I. Elloumi, T. Aguili, When machine learning algorithms
meet user engagement parameters to predict video QoE, Wirel. Pers. Commun.
116 (3) (2021) 2723–2741, http://dx.doi.org/10.1007/s11277-020-07818-w.

[25] N. Abdelwahed, A.B. Letaifa, S.E. Asmi, Monitoring web QoE based on analysis
of client-side measures and user behavior, Multimedia Tools Appl. 82 (4) (2023)
6243–6269, http://dx.doi.org/10.1007/s11042-022-13427-5.

[26] S. Khan, S. Khan, Y. Ali, M. Khalid, Z. Ullah, S. Mumtaz, Highly accurate and
reliable wireless network slicing in 5th generation networks: A hybrid deep
learning approach, J. Netw. Syst. Manage. 30 (2) (2022) 29, http://dx.doi.org/
10.1007/s10922-021-09636-2.

[27] A. Thantharate, C. Beard, ADAPTIVE6G: Adaptive resource management for
network slicing architectures in current 5G and future 6G systems, J. Netw.
Syst. Manage. 31 (1) (2022) 9, http://dx.doi.org/10.1007/s10922-022-09693-1.

[28] N.P. Tran, O. Delgado, B. Jaumard, F. Bishay, ML KPI prediction in 5G and B5G
networks, in: 2023 Joint European Conference on Networks and Communications
& 6G Summit (EuCNC/6G Summit), 2023, pp. 502–507, http://dx.doi.org/10.
1109/EuCNC/6GSummit58263.2023.10188363.

[29] H. Yu, Z. Ming, C. Wang, T. Taleb, Network slice mobility for 6G networks
by exploiting user and network prediction, in: ICC 2023 - IEEE International
Conference on Communications, 2023, pp. 4905–4911, http://dx.doi.org/10.
1109/ICC45041.2023.10279739.

[30] F. Chiariotti, M. Drago, P. Testolina, M. Lecci, A. Zanella, M. Zorzi, Temporal
characterization and prediction of VR traffic: A network slicing use case,
IEEE Trans. Mob. Comput. (2023) 1–18, http://dx.doi.org/10.1109/TMC.2023.
3282689.

[31] R. Dangi, P. Lalwani, Harris hawks optimization based hybrid deep learning
model for efficient network slicing in 5G network, Clust. Comput. 27 (1) (2024)
395–409, http://dx.doi.org/10.1007/s10586-022-03960-1.

[32] A.C. Baktır, A. Özgövde, C. Ersoy, End-to-end network slicing for edge computing
optimization, Future Gener. Comput. Syst. 157 (2024) 516–528, http://dx.doi.
org/10.1016/j.future.2024.03.001, URL https://www.sciencedirect.com/science/
article/pii/S0167739X24000724.

[33] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F.
Antonelli, A. Vespignani, A. Pentland, B. Lepri, A multi-source dataset of urban
life in the city of Milan and the Province of Trentino, Sci. Data 2 (1) (2015)
150055, http://dx.doi.org/10.1038/sdata.2015.55.

[34] A. Cassandra, Cassandra stress | apache cassandra documentation, 2023, URL
https://cassandra.apache.org/doc/latest/cassandra/tools/cassandra_stress.html.
(Acessado 04 setembro 2023).

[35] J. Bergstra, D. Yamins, D. Cox, Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures, in: S.
Dasgupta, D. McAllester (Eds.), Proceedings of the 30th International Conference
on Machine Learning, in: Proceedings of Machine Learning Research, vol. 28,
PMLR, Atlanta, Georgia, USA, 2013, pp. 115–123.

[36] G. James, D. Witten, T. Hastie, R. Tibshirani, et al., An Introduction to Statistical
Learning, vol. 112, Springer, 2013.

[37] Z. Wang, W. Yan, T. Oates, Time series classification from scratch with deep
neural networks: A strong baseline, in: 2017 International Joint Conference
on Neural Networks, IJCNN, 2017, pp. 1578–1585, http://dx.doi.org/10.1109/
IJCNN.2017.7966039.

[38] I. Oguiza, Tsai - A state-of-the-art deep learning library for time series and
sequential data, 2023, URL https://github.com/timeseriesAI/tsai, Github.

http://dx.doi.org/10.1109/MWC.006.2200407
http://dx.doi.org/10.1109/MWC.023.2200557
http://dx.doi.org/10.1109/MNET.003.2200641
http://dx.doi.org/10.1016/j.comnet.2023.110085
http://dx.doi.org/10.1016/j.comnet.2023.110085
http://dx.doi.org/10.1016/j.comnet.2023.110085
https://www.sciencedirect.com/science/article/pii/S1389128623005303
https://www.sciencedirect.com/science/article/pii/S1389128623005303
https://www.sciencedirect.com/science/article/pii/S1389128623005303
http://dx.doi.org/10.1016/j.comcom.2021.07.028
https://www.sciencedirect.com/science/article/pii/S0140366421002917
https://www.sciencedirect.com/science/article/pii/S0140366421002917
https://www.sciencedirect.com/science/article/pii/S0140366421002917
http://dx.doi.org/10.1016/j.comcom.2023.02.009
https://www.sciencedirect.com/science/article/pii/S0140366423000464
https://www.sciencedirect.com/science/article/pii/S0140366423000464
https://www.sciencedirect.com/science/article/pii/S0140366423000464
http://dx.doi.org/10.1016/j.compeleceng.2023.108852
http://dx.doi.org/10.1016/j.compeleceng.2023.108852
http://dx.doi.org/10.1016/j.compeleceng.2023.108852
https://www.sciencedirect.com/science/article/pii/S0045790623002768
https://www.sciencedirect.com/science/article/pii/S0045790623002768
https://www.sciencedirect.com/science/article/pii/S0045790623002768
http://dx.doi.org/10.1002/ett.4693
http://dx.doi.org/10.1002/ett.4693
http://dx.doi.org/10.1002/ett.4693
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4693
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4693
http://dx.doi.org/10.1109/ACCESS.2023.3264592
http://dx.doi.org/10.1109/MWC.001.2100338
http://dx.doi.org/10.1016/j.dsm.2023.06.001
http://dx.doi.org/10.1016/j.dsm.2023.06.001
http://dx.doi.org/10.1016/j.dsm.2023.06.001
https://www.sciencedirect.com/science/article/pii/S2666764923000279
https://www.sciencedirect.com/science/article/pii/S2666764923000279
https://www.sciencedirect.com/science/article/pii/S2666764923000279
http://dx.doi.org/10.1016/j.comnet.2023.110054
https://www.sciencedirect.com/science/article/pii/S1389128623004991
http://dx.doi.org/10.1109/ACCESS.2023.3292788
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb14
http://dx.doi.org/10.1109/MIC.2019.2958545
http://dx.doi.org/10.1109/MIC.2019.2958545
http://dx.doi.org/10.1109/MIC.2019.2958545
http://dx.doi.org/10.1109/ACCESS.2023.3267985
http://dx.doi.org/10.1109/ACCESS.2023.3267985
http://dx.doi.org/10.1109/ACCESS.2023.3267985
http://dx.doi.org/10.5753/wpeif.2023.722
https://sol.sbc.org.br/index.php/wpeif/article/view/24653
http://dx.doi.org/10.1109/TNSM.2023.3287651
http://dx.doi.org/10.1109/NETSOFT.2017.8004198
http://dx.doi.org/10.1109/JIOT.2022.3147897
http://dx.doi.org/10.1109/TNSM.2022.3197789
http://dx.doi.org/10.1109/ICOIN56518.2023.10048915
http://dx.doi.org/10.1109/DCOSS54816.2022.00066
http://dx.doi.org/10.1109/DCOSS54816.2022.00066
http://dx.doi.org/10.1109/DCOSS54816.2022.00066
http://dx.doi.org/10.1007/s11277-020-07818-w
http://dx.doi.org/10.1007/s11042-022-13427-5
http://dx.doi.org/10.1007/s10922-021-09636-2
http://dx.doi.org/10.1007/s10922-021-09636-2
http://dx.doi.org/10.1007/s10922-021-09636-2
http://dx.doi.org/10.1007/s10922-022-09693-1
http://dx.doi.org/10.1109/EuCNC/6GSummit58263.2023.10188363
http://dx.doi.org/10.1109/EuCNC/6GSummit58263.2023.10188363
http://dx.doi.org/10.1109/EuCNC/6GSummit58263.2023.10188363
http://dx.doi.org/10.1109/ICC45041.2023.10279739
http://dx.doi.org/10.1109/ICC45041.2023.10279739
http://dx.doi.org/10.1109/ICC45041.2023.10279739
http://dx.doi.org/10.1109/TMC.2023.3282689
http://dx.doi.org/10.1109/TMC.2023.3282689
http://dx.doi.org/10.1109/TMC.2023.3282689
http://dx.doi.org/10.1007/s10586-022-03960-1
http://dx.doi.org/10.1016/j.future.2024.03.001
http://dx.doi.org/10.1016/j.future.2024.03.001
http://dx.doi.org/10.1016/j.future.2024.03.001
https://www.sciencedirect.com/science/article/pii/S0167739X24000724
https://www.sciencedirect.com/science/article/pii/S0167739X24000724
https://www.sciencedirect.com/science/article/pii/S0167739X24000724
http://dx.doi.org/10.1038/sdata.2015.55
https://cassandra.apache.org/doc/latest/cassandra/tools/cassandra_stress.html
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb36
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb36
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb36
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1109/IJCNN.2017.7966039
https://github.com/timeseriesAI/tsai

R. Moreira et al. Future Generation Computer Systems 174 (2026) 107971
[39] S. Bai, J.Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling, 2018, CoRR abs/1803.01271
arXiv:1803.01271 URL http://arxiv.org/abs/1803.01271.

[40] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I.
Webb, L. Idoumghar, P.-A. Muller, F. Petitjean, InceptionTime: Finding AlexNet
for time series classification, Data Min. Knowl. Discov. 34 (6) (2020) 1936–1962,
http://dx.doi.org/10.1007/s10618-020-00710-y.

[41] M. Rußwurm, M. Körner, Self-attention for raw optical satellite time series
classification, ISPRS J. Photogramm. Remote Sens. 169 (2020) 421–435.

[42] J. Howard, S. Gugger, Fastai: A layered API for deep learning, Information 11
(2) (2020) 108.

[43] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation
hyperparameter optimization framework, in: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 2623–2631.

[44] L. Yang, A. Shami, On hyperparameter optimization of machine learning al-
gorithms: Theory and practice, Neurocomputing 415 (2020) 295–316, http://
dx.doi.org/10.1016/j.neucom.2020.07.061, URL https://www.sciencedirect.com/
science/article/pii/S0925231220311693.

[45] C. Mesh, Chaos mesh: Cloud-Native chaos engineering platform, 2024, URL
https://chaos-mesh.org. (Acessado 11 fev 2025).

Rodrigo Moreira received his Ph.D. from the University of
Uberlândia (UFU) in 2021. He is currently a Professor at
the Federal University of Viçosa, where he also obtained
his B.S. degree in 2014. He earned his M.Sc. degree from
the Federal University of Uberlândia, Brazil, in 2017. He has
several papers published and has presented at conferences.
His research interests include the future of the inter-
net, quality of service, cloud computing, network function
virtualization, software-defined networking, computational
intelligence, and edge computing.

Rafael Pasquini received his M.Sc. and Ph.D. in computer
engineering from the State University of Campinas in 2006
and 2011, respectively. From 2015 to 2017 he was a Visiting
Researcher in the Department of Network and Systems
Engineering (NSE) at KTH Royal Institute of Technology.
Since 2011, he has been an associate professor and has led
the Distributed Systems and Networks (DSN) research group
at the Department of Computer Science of the Federal Uni-
versity of Uberlândia. His research interests include network
management, slicing of softwarized infrastructures, machine
learning, cloud computing, and software-defined networks.
15
Joberto S. B. Martins (Life Senior Member, IEEE) Ph.D.
in Computer Science at Université Pierre et Marie Curie
(UPMC), Paris (1986), PosDoc at ICSI - Berkeley Uni-
versity (1995), and PosDoc Senior Researcher at Paris
Saclay University - France (2016). International Professor
at Hochschule für Technik und Wirtschaft des Saarlandes
(HTW), Germany (since 2004). Full Professor at Salvador
University (UNIFACS) on Computer Science, Director of
NUPERC research group with research interests in Net-
work Slicing, Resource Orchestration, Machine Learning,
and Smart City. He is a key speaker, teacher, and invited
lecturer at various international congresses and companies
in Brazil and Europe.

Tereza Cristina Melo de Brito Carvalho Associate Profes-
sor of Escola Politécnica University of São Paulo (USP) and
visiting professor at Université Paris 1 Panthéon-Sorbonne.
She has been the founder and general coordinator of LASSU
(Laboratory of Sustainability on ITC) since 2010 and CEDIR-
USP (Center for Reuse and Discard of Informatics Residuals)
since 2009. She is a former assessor of CTI USP (Information
Technology Coordination) from 2010–2013 and CCE-USP
(Electronic Computing Center) director from 2006–2010.
She is a Sloan Fellow in 2002 from MIT (Massachusetts
Institute of Technology). She has coordinated international
and national R&D projects since 2000 in: Green Computing,
Cloud Computing, IT Energy Efficiency, IT Governance,
Digital Technologies applied to the Amazon Production
Chains, WEEE (Waste Electrical and Electronic Equipment),
Future Internet, Scientific DMZ, and Security. She holds
several international patents.

Flávio de Oliveira Silva (Member, IEEE) received the
Ph.D. from the University of São Paulo (USP) in 2013. He is
a Professor at the Faculty of Computing (FACOM), Federal
University of Uberlândia (UFU). He is also a professor in
the Department of Informatics (DI), School of Engineering
of the University of Minho in Braga, Portugal, and a
researcher with the ALGORITMI Centre. He has published
and presented several papers at conferences worldwide.
His research interests include future networks, the IoT,
network softwarization (SDN and NFV), future intelligent
applications and systems, cloud computing, and software-
based innovation. He is a member of IEEE, ACM, and SBC.
He is a reviewer of several journals and a member of TCP
at several IEEE conferences.

http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://dx.doi.org/10.1007/s10618-020-00710-y
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb41
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb41
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb41
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb42
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb42
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb42
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb43
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb43
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb43
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb43
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb43
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb43
http://refhub.elsevier.com/S0167-739X(25)00266-3/sb43
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://chaos-mesh.org

	AI-driven orchestration at scale: Estimating service metrics on national-wide testbeds
	Introduction
	Related Work
	Proposed Method
	SFI2 slicing architecture
	Problem Setting and Method
	Service Infrastructure Statistics and Service-Level Metrics
	Dataset Generation

	Experiments and Model Computation
	Testbeds
	Model Training

	Evaluating Results
	Impact Analysis in a Large-Scale Network
	Model Tunning
	Basic Model Performance
	DNN-based Model Performance

	Concluding Remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

