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Survey on Machine Learning-Enabled Network
Slicing: Covering the Entire Life Cycle
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Abstract—Network slicing (NS) is becoming an essential
element of service management and orchestration in commu-
nication networks, starting from mobile cellular networks and
extending to a global initiative. NS can reshape the deployment
and operation of traditional services, support the introduction
of new ones, vastly advance how resource allocation performs in
networks, and notably change the user experience. Most of these
promises still need to reach the real world, but they have already
demonstrated their capabilities in many experimental infrastruc-
tures. However, complexity, scale, and dynamism are pressuring
for a Machine Learning (ML)-enabled NS approach in which
autonomy and efficiency are critical features. This trend is rela-
tively new but growing fast and attracting much attention. This
article surveys Artificial Intelligence-enabled NS and its poten-
tial use in current and future infrastructures. We have covered
state-of-the-art ML-enabled NS for all network segments and
organized the literature according to the phases of the NS life
cycle. We also discuss challenges and opportunities in research
on this topic.

Index Terms—Network slicing, ML-enabled slicing, machine
learning, slicing-as-a-service, ML-enabled resource orchestration,
and allocation.
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I. INTRODUCTION

VER the last decade, wireless networking technology

has been mainly driven by advanced networking
applications such as Industry 4.0, immersive media appli-
cations (e.g., virtual/augmented/mixed reality), and mission-
critical services (e.g., self-driving vehicles and automated
traffic control systems) [1]. Following this trend, the fifth-
generation (5G) cellular networks have been designed to
provide higher latency, bit rate, and reliability performance,
fostering the digital transformation of vertical industries [2].
A requirement to achieve this goal is to support different
communication services, e.g., Machine Type Communication
(mMTC), Enhanced Mobile Broadband (eMBB), ultra-
Reliable and Low-Latency Communications (URLLC), with
highly different needs, over a shared network infrastruc-
ture [3]. To address this challenge, 5G and beyond 5G
networks embrace the concept of Network Slicing (NS) [4],
[5], [6], which logically divides the operator’s network into
isolated, service-tailored, end-to-end networks referred to as
network slices. The NS concept brings several advantages to
network operators [7]. First, NS allows multiple tenants to
share the same physical network infrastructure and reduce
network deployment and operation costs. Second, with NS,
each network slice is instantiated to satisfy a particular set
of applications, enabling service differentiation and guaran-
teeing Service Level Agreement (SLA) for each application
type. Finally, NS increases flexibility in network management,
as network slices can be created, modified, and decommis-
sioned as needed. However, to fully exploit the advantages
of NS, operators have to provide dynamic resource allocation,
service assurance, isolation and protection, and optimized par-
titioning of resources across all network domains, i.e., Radio
Access Network (RAN), Transport Network (TN), and Core
Network (CN), and throughout the entire slice life cycle, from
the slice preparation to the slice decommissioning. Therefore,
the benefits of NS come at the price of higher complexity in
operating and managing wireless networks.

Currently, the realization of the NS concept relies heavily
on paradigms such as Network Function Virtualization (NFV),
Software-Defined Network (SDN), and cloud computing.
Together, these technologies provide the means of control
for dynamically allocating the necessary resource capacities
across the network and resizing and moving workloads at
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runtime to meet the needs of services, regardless of network
conditions [14]. However, although these means of control are
already available, the decision-making process that triggers
their execution depends on static policies and human inter-
vention [1], [22]. Therefore, the full realization of the NS
paradigm depends on further automation and the closure of
management control loops.

Due to advances in algorithms and the increase in computa-
tional power, in recent years, Artificial Intelligence (AI), and
Machine Learning (ML) in particular, has become an essential
enabling technology to achieve good performance in com-
plex decision-making problems [23]. Indeed, ML techniques
are enablers of numerous problems involving multiple objec-
tives subject to many heterogeneous and dynamic require-
ments [7], [24]. NS, in turn, is a current trend that, as a
problem, inherently has multiple objectives, potentially deals
with many domains and technologies, and supports numer-
ous users and heterogeneous requirements. Therefore several
works have applied ML to deal with distinct challenges
during the slice life cycle. Yang et al. [25] proposed an
intent-driven optical NS that maps high-level intents into
slice requirements for the transport network using Latent
Dirichlet Allocation. Sciancalepore et al. [26] designed an
online network slice broker that decides which slices to accept
while opportunistically pursuing the NS multiplexing gain
maximization using a variant of the Multi-Armed Bandit
(MAB) model. Kibalya et al. [27] formulated the multi-
domain slicing as a multisubstrate Virtual Network Embedding
(VNE) problem and proposed a Deep Reinforcement Learning
(DRL) algorithm to solve it. Bega et al. [28] proposed a
Deep Learning (DL) algorithm that anticipates future slice
needs and timely reallocates/deallocates resources where and
when they are required. Although these works have shown
the potential of ML for supporting the emerging need for
autonomous network slice operation and management, the
literature has only unsystematically addressed individual prob-
lems. Consequently, there is a need to investigate and reorga-
nize the current proposals for a comprehensive view of the
fundamental network slice Life Cycle Management (LCM)
problems and the existing ML proposals to deal with them.

A. Related Surveys

Several existing surveys have discussed the implications
of the NS concept for next-generation mobile networks.
Foukas et al. [6], Afolabi et al. [8], Kaloxylos [9], Zhang [10],
and Khan et al. [11] provided the research community with a
general understanding of the topic, addressing NS in terms
of basic concepts, enabling technologies, use cases, and
challenges.

Some surveys have discussed the implementation aspects
of NS. Barakabitze et al. [12] provided a comprehensive
review of solutions for NS using SDN and NFV. Various 5G
architectural approaches were compared in terms of practi-
cal implementations in their work. Chahbar et al. [13] and
Ordonez-Lucena et al. [14] focused on the ongoing work on
NS modeling in RAN, TN, and CN domains performed by dif-
ferent Standards Developing Organization (SDO). Wijethilaka

and Liyanage [15] studied the contribution of NS to the
Internet of Things (IoT) realization.

The algorithmic aspects of NS have also been discussed in
the literature [16], [17], [18]. Specifically, Vassilaras et al. [16]
formulated NS as an optimization problem of placing
Virtualized Network Functions (VNFs) over a set of candidate
locations and deciding their interconnections. Su et al. [17]
surveyed the resource allocation schemes for NS using three
mathematical models: game theory, prediction techniques,
and robustness/failure recovery models. Debbabi et al. [18]
reviewed the state-of-the-art NS regarding two algorithmic
challenges: slice resource allocation and slice orchestration.
Nevertheless, these surveys considered only a few algorithmic
aspects of NS, and none focused on ML solutions. Indeed, the
need to use ML for network slice operation and management
was first discussed by Kafle et al. [20]. The authors described
the management functions of network slices that could be auto-
mated using ML and listed relevant techniques for automating
such functions. However, the authors did not survey existing
works and proposed solutions. More recently, Shen et al. [7]
surveyed ML solutions applied to intelligent NS management.
Nevertheless, the authors considered only three specific RAN
problems: flexible radio access NS, automatic Radio Access
Technology (RAT) selection, and mobile edge caching and
content delivery. Wu et al. [21] discussed a broad picture of
the role of Al in sixth-generation (6G) networks, highlighting
potential NS problems where Al could be applied to facili-
tate intelligent network management. However, similar to [20],
the authors did not survey existing works and proposed solu-
tions. Ssengonzi et al. [19] presented a survey of 5G NS and
virtualization from a Reinforcement Learning (RL) and DRL
perspective. Nevertheless, the authors focused only on exist-
ing RL and DRL approaches and a few NS problems, such as
resource allocation, admission control, and traffic forecasting.

Table I summarizes the main characteristics of existing sur-
veys and our work, comparing them in terms of their main
focus (i.e., NS concepts, NS implementation aspects, or NS
algorithmic aspects), whether ML is considered, whether exist-
ing solutions are discussed, and the main criteria driving the
study. As illustrated in the table, a comprehensive survey of
ML applied to solve network slice LCM problems is still
missing.

B. Research Scope and Methodology

The primary goal of this work is to provide the reader
with a comprehensive survey of the use of ML for intel-
ligent network slice LCM, from the slice preparation to
their decommissioning, after the 3rd Generation Partnership
Project (3GPP) life cycle [29] and covering all network
domains (RAN, TN, and CN). We studied and assessed high-
quality research published since 2016, available in the vehicles
Institute of Electrical and Electronics Engineers (IEEE)Xplore,
Association for Computing Machinery (ACM) Digital Library,
Science Direct, and Wiley Online Library. We introduce the
existing works in terms of the problem they address (e.g., slice
admission control, resource allocation, VNF placement) after
the 3GPP slice life cycle. Fig. 1 illustrates the organization
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TABLE I
COMPARISON OF RELATED SURVEYS

Paper Main focus Focus on ML | Existing works are surveyed Study’s Orientation
[6] NS concepts X v Background-oriented
[8] NS concepts X v Background-oriented
[9] NS concepts X v Background-oriented
[10] NS concepts X X Background-oriented
[11] NS concepts X v Background-oriented
[12] NS implementation aspects X 4 SDN and NFV-oriented
[13] NS implementation aspects X v SDO-oriented
[14] NS implementation aspects X 4 Network segment-oriented
[15] NS implementation aspects X v IoT-oriented
[16] NS algorithmic aspects X X VNF placement-oriented
[17] NS algorithmic aspects X v Resource allocation perspective
[18] NS algorithmic aspects X 4 Resource allocation perspective
[19] NS algorithmic aspects v v Resource allocation perspective
[7] NS algorithmic aspects v v RAN-oriented
[20] NS algorithmic aspects v X LCM-oriented
[21] NS algorithmic aspects v X LCM-oriented
This survey NS algorithmic aspects v v LCM-oriented
of the article while Table V summarizes the commonly-used Overview e NS concepts
abbreviations (Section II) e  Machine learning paradigms
At the beginning of the . slice life cycle, i.e., in the Preparation e Service profile for NS requirements
preparation phase, ML is mainly employed to translate ser- 1(3;”5? i e Slice admission control
. . . . . . ection
vice profiles into slice requirements and to provide a slice
admission control. In the commissioning phase, ML is applied C}?mmiSSioning . 5?\?;0 resource sharing
. . . . ase L] acement
for slice resource allocation, slice VNF placement, and slice fSemon V) e Path c%nﬁguraﬁon
path configuration. Next, when the slice becomes operational, ML-enabled
i 3 : : network slicing e Network slice elasticity
ML is .employed for numerous 'runtlm.e tasks, 'm'cludlng user e User admission control
admission control, task offloading, slice elasticity, anomaly Operation e Traffic classification and prediction
detection, RAT selection, traffic classification and prediction, phase : ?;i“:;gé;ﬁ:m
congestion control, and mobility management. We point out (Eesiiton ) e Congestion control
that our survey did not find works applying ML to problems . I‘}é‘T ?Z‘lectl?llt
L. . . . .. . with mobility
related to slicing termination, i.e., to the decommissioning
phase. Therefore, decommissioning is not illustrated in Fig. 1. A. Intelligent translation for NS requirements
In addition, our survey classifies each article according to B.  Datasets and experiment reproduction
. . . Open issues C.  Suitability of the ML technique for NS
the main problem it addressgs, even when the article focuses (Section V) b Bnd-to-end NS
on multiple problems and life cycle phases. For example, E.  Open RAN intelligent slicing
F.  From theory to practice

some research efforts describe using Al in two or more life
cycle phases, such as [30]. We classify such works accord-
ing to their main addressed problem. Finally, although some
works have proposed solutions to network slice LCM problems
using heuristic and genetic algorithms, our survey focuses on
supervised, unsupervised, reinforcement, and emerging learn-
ing paradigms. In summary, our main contribution as a survey
is to bring a big picture of the state-of-the-art ML-enabled
NS and organize the existing works from the network slice
life cycle perspective, illustrating the AI/ML methods used in
the distinct phases of the network slice life cycle. Therefore,
we carefully analyze every article and decide the life cycle
phase it fits based on the problem addressed.

This article is organized as follows. Section II presents an
overview of the main concepts related to NS, focusing on NS
management. Next, we thoroughly review the state-of-the-art
solutions for intelligent NS management. We split the related
discussion into ML-enable solutions for NS problems during
the preparation phase (Section III), the commissioning phase
(Section IV), and the operation phase (Section V). We discuss

Final Considerations
(Section VII)

Fig. 1. The structure of the survey.

some open research issues and summarize potential future
directions in Section VI. Finally, Section VII concludes the
article.

II. OVERVIEW AND BACKGROUND

This section focuses on background concepts and key enti-
ties related to NS implementation and slice LCM to get
deeper insights into the NS life cycle problems. Following
the nomenclature proposed by 3GPP, a network slice, or
slice, is a logical network comprising one or more service
chains formed by virtualized or physical network functions
and the (physical/virtual) links connecting them. This logi-
cal network is created with appropriate isolation, resources,
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and optimized topology to serve one or more communica-
tion services [29]. Communication service is the term used
to refer to the tenant-ordered service. Usually, the commu-
nication service is expressed by a service profile comprising
the service type, and a service graph, where nodes represent
computing/storage resources and service instances and edges
denote constraints on link bandwidth or packet loss. A network
slice can host multiple communication services if they do not
impose conflicting requirements.

A network slice is an end-to-end concept, i.e., the logical
network can span across all the technical domains (or seg-
ments) within the operator’s network, including the RAN, TN,
and CN domains. In the 5G architecture, the RAN domain
connects User Equipment (UE) to the operator’s network
using various access technologies. The TN domain provides
infrastructure connectivity between the RAN and the data
network using any technology (Internet Protocol (IP), opti-
cal, microwave, or other technology), tunnel (IP/Multiprotocol
Label Switching (MPLS)), and layer functions [13]. Finally,
the CN domain allows UE to send/receive data to/from the data
network, providing signaling procedures such as connection,
registration, mobility management, and session management.
The part of the slice spanning a technical domain is called a
Network Slice Subnet (NSS). Each NSS is usually deployed
as a set of network functions.

Since a network slice can host multiple services, its
life cycle within the operator’s network is independent of
its associated service(s) life cycle. In particular, the life
cycle of a network slice has four main phases: Preparation,
Commissioning, Operation, and Decommissioning. In the
preparation phase, the slice does not exist. Indeed, the prepa-
ration phase comprises all planning steps that precede slice
instantiation, such as slice design, slice onboarding, and slice
admission control. In the first step, the tenant defines the ser-
vice profile from which the slice requirements will be derived.
In the second step, the tenant uploads the VNFs that constitute
the slice to the operator’s system. The last step in the prepa-
ration phase decides whether the tenant NS request should be
accepted or rejected based on current system utilization. In the
commissioning phase, resources are assigned to the admitted
slice request. Therefore, the slice is instantiated, configured,
and activated over the operator’s infrastructure according to its
requirements. In the operation phase, the slice instance goes
into operation, and its behavior is monitored to ensure com-
pliance with the defined requirements. In this phase, runtime
tasks such as upgrade, reconfiguration, scaling, and capacity
changes can be carried out to modify the slice instance and
ensure that it is optimized for its purpose. Finally, the slice
instance is terminated in the decommissioning phase, and its
allocated resources are released.

Since our focus is on AI/ML solutions to NS problems, it
is imperative to introduce the ML paradigms, which are tradi-
tionally classified into three types: Supervised Learning (SL),
Unsupervised Learning (UL), and RL. SL uses labeled train-
ing datasets to build models and is usually employed to solve
classification and regression problems to predict outcomes.
UL creates models using unlabeled training datasets, mainly
employed for clustering problems. In RL, an agent interacts

with the environment via perception and action to learn a
reward or utility. Therefore, an RL agent learns by exploring
the environment instead of being taught by exemplars. The
literature has applied the aforementioned paradigms to solve
some of the NS problems we cover in this survey. In addi-
tion, emergent learning paradigms such as Federated Learning
(FL) and Transfer Learning (TL) have also been employed in
some works. FL focuses on decentralization learning, where
distributed servers train models with local data. TL aims to
utilize the built knowledge of a certain system to solve a dif-
ferent but related problem. We refer readers unfamiliar with
these paradigms to an introduction in [24], [31], [32].

III. ML FOR NS IN THE PREPARATION PHASE

State-of-the-art NS solutions applied ML techniques for two
problems in the preparation phase. First, we discuss the trans-
lation of service profiles into slice requirements. Afterward,
we present the slice admission control.

A. Translation of Service Profiles Into NS Requirements

From the tenant’s perspective, designing a network slice is
a complex task that involves a complete description of the
service topology, details on service configuration and work-
flows, and SLA definitions for service assurance. To make
this task easier, network operators provide generic slice tem-
plates to be used as a reference by the tenants when ordering a
network slice. However, some services may not have a direct
mapping to a predefined slice template since service require-
ments may vary widely. For instance, some services may have
ultra-low latency, high bandwidth, and high-reliability require-
ments at the same time. An alternative to this problem is
to derive the slice requirements from service profiles defined
through high-level intents. Despite much work on intent-driven
networking [33], [34], we found only two articles addressing
the intent-based design of network slices.

The first work, proposed by Gritli et al. [35], takes into
consideration the set of tenant’s intents, expressed as Quality
of Service (QoS) requirements, and the operator’s grouping
policies defining the supported slice types and their QoS
characteristics. The goal is to determine all slice solutions
supporting the tenant’s order compliant with the operator’s
grouping policies. To this end, the approach first maps the
slice type(s) to each intent, mapping them separately to the
operator’s policies. It then merges these slices based on criteria
such as the operator’s policies they comply with and isolation
and placement constraints. However, the approach presented
in [35] is model-based and, thus, does not use ML. The sec-
ond work, proposed by Yang et al. [25], develops a mechanism
based on ML to translate service intents into a slicing configu-
ration language. The proposed mechanism employs the Latent
Dirichlet Allocation algorithm to extract keywords from an
optical network topic model and construct an intent theme
model. The intent issued by the users is a mixed distribution
of certain topics, which is also a probability distribution of
words. If the intent topic is found, the keyword in the topic
is also the core meaning of this intent. To associate intent
keywords with QoS constraints, the authors propose using an
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experienced database. The evaluation uses a discrete intent ser-
vice emulator and a network topology assembled by OpenAl
Gym.

B. Slice Admission Control

Over-provisioning is not possible in 5G and beyond 5G
since infrastructure resources (especially spectrum) are lim-
ited. Therefore, network operators must decide which slice
requests should be admitted or rejected in the infrastructure
to manage resources efficiently. Specifically, the slice admis-
sion control problem is formulated as follows. Upon receiving
a network slice request from a tenant, the operator’s system
must decide whether to accept or reject the tenant’s request,
pursuing a predefined objective while still honoring the agreed
SLAs for previously accepted network slice requests. Such
a decision is challenging as it must consider the total avail-
able system capacity, randomly arriving tenant requests, real
network utilization within the already instantiated slices, and
the Quality of Experience (QoE) perceived by the end-users.
This section introduces recent works that applied ML to solve
the slice admission control problem.

Bega et al. [36] address the problem of designing a slice
admission control that maximizes the network operator rev-
enue while satisfying the desired service guarantees. The
authors consider two types of slices: elastic, which does not
require any instantaneous throughput guarantees, and inelastic,
which requires a certain fixed throughput to be satisfied during
the entire slice life cycle. Only the RAN segment is consid-
ered in work. The slice type, slice duration, the slice size in
terms of the number of users, and the price per time unit
characterize a slice request. The problem is formulated as a
Semi-Markov Decision Process (SMDP), where the elastic and
inelastic network slice requests follow a Poisson process. Each
state is modeled as a three-sized tuple representing the number
of elastic and inelastic slices in the system at a given decision
time and the next event (new arrival of an elastic or inelastic
slice request or departure of a slice of any type) that triggers
a decision process. The possible actions include admitting a
new request for an elastic or inelastic slice or rejecting the
new request. In the first case, the resource associated with the
request is granted to the tenant, and the operator immediately
earns a reward, computed as the product of the slice type price
and duration. The second case has no immediate reward, but
the resources remain accessible for future requests. Requests
that are rejected are no longer considered by the system. The
SMDP problem is then solved using Q-Learning (QL), an RL
algorithm where the learning function that maps the input state
to the expected reward when taking a specific action is realized
as a lookup table. Simulations with the slice duration follow-
ing an exponential distribution showed that QL achieved close
to optimal performance.

Despite the good performance, an inherent drawback of RL
algorithms such as QL is their lack of scalability when the state
space becomes too large. Inspired by this limitation, in a later
work, Bega et al. [37] propose a Deep Q-Learning (DQL) algo-
rithm, named NS Neural Network Admission Control (N3AC),
to solve the slice admission problem. DRL algorithms use

Neural Networks (NNs) to generalize the experience learned
from some states to be applied to other states with similar
features. In particular, N3AC uses a feed-forward NN struc-
ture, where the neurons of one layer are fully interconnected
with the neurons of the next. In addition, N3AC relies on a
single hidden layer and uses the Gradient Descent approach to
back-propagate the measured error at the output layer to the
input layer. Furthermore, N3AC does not apply any ground
truth to train the NN. This training is achieved using output
estimations, which become more accurate as explorations are
performed. The performance of N3AC was evaluated through
simulation where the service time follows an exponential
distribution and slice request arrivals follow a Poisson process.

Similar to [37], Bakri et al. [38] proposed a DQL algorithm
to solve the slice admission problem. The authors compare the
performance of the DQL solution with two other algorithms:
QL, and Regret Matching. The QL and DQL approaches are
evaluated using the offline version of the algorithms, while
Regret Matching performs online. Results show that Regret
Matching reacts faster to load change than the other two
algorithms.

Dandachi et al. [39] propose a slice admission control con-
sidering communication, computing, and storage resources to
maximize resource utilization and operator revenue. The slice
admission control considers two types of slices, Best Effort
(BE) and guaranteed QoS slices, with elastic requirements.
Resources from the RAN and CN domains are considered.
The slice admission control comprises two steps: at the begin-
ning of each time slot, the slice admission control evaluates
the similarity between the income requests and the slices
already active in the system to identify slice instances that
can serve the new slice requests with a minimum amount of
additional resources. The first step uses a normalized spec-
tral clustering algorithm based on the Jaccard similarity, while
the second is implemented using State-Action-Reward-State-
Action (SARSA). In the second step, based on the current
state of system utilization, the admission control first decides
whether to scale down the resources allocated to BE slice
instances, then selects the income slice requests to admit.
Evaluation is carried out by simulation using slice templates
customized by the authors.

Reza et al. [40] propose an RL agent to decide whether or
not a new slice request should be accepted. A slice request
is specified in terms of its duration, service type (priority),
and the number of Central Processing Unit (CPU) and link
resources needed. The objective is to maximize the network
operator’s total revenue while matching the service require-
ments of the slices in operation as closely as possible. The
work focuses on the RAN domain. The RL agent is imple-
mented using a NN that receives the slice request and the
resources currently available in the system as input. NN mini-
mizes the loss of revenue derived by rejecting the slice requests
and the loss derived by degrading the service of a slice in oper-
ation. NN is trained in an episodic manner, and at the end of
an episode, the cumulative reward for all the actions up to the
current point in time is computed. Evaluation is performed
using a custom-built simulator, where the inter-arrival time of
requests and slice duration are exponentially distributed.
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Bakhshi et al. [41] propose a slice admission control in a
federated environment formed by one consumer and provider
domain. For a given slice request, the admission control
decides whether to deploy the slice in the consumer or the
provider domain or reject it. The decision is based on the cost
of deploying the slice locally (consumer domain) or remotely
(provider domain) and on the current resource availability. The
model is focused on computing resources, thus more suitable
for the edge, CN, and cloud domains. The authors compare the
performance of two RL algorithms for solving the problem:
QL and R-Learning, an average reward learning algorithm.
Results are obtained through simulation using customized slice
templates and show that R-Learning performs better than QL
for the federated problem due to QL‘s dependency on the
discount factor.

Sciancalepore et al. [26] propose the concept of slice over-
booking, where more slice requests are admitted than the
overall system capacity to maximize the operator revenue. In
their proposal, a slice request comprises the amount of physical
wireless resources assigned to the slice and its duration. The
slice admission control problem is formulated as an online
decision process using a variant of the MAB model. Each
tenant is a bandit that, if pulled at a certain round, returns a
particular reward. Multiple bandits can be pulled at a given
round, and tenants with active slices must be selected while
their slices are operational. If a lock-up period runs, the gam-
bler must select the same arm as in the previous round. The
reward accounts for the total amount of resources asked within
the slice request and the ratio between what has been used and
what is being asked, following the rationale that tenants under-
utilizing assigned resources are preferred for the ones fully
using them. The authors implement the MAB model using
three RL algorithms: Upper Confidence Bound (UCB), Online
NETwork Slice Broker (ONETS), and e-Greedy, providing a
trade-off between complexity and sub-optimality. Performance
evaluation is carried out by simulation. In addition, proof-of-
concept implementation is presented considering three network
slices: eMBB for Guaranteed Bit Rate, eMBB for BE, and
Public Safety. Table II summarizes the main characteristics of
the literature related to ML applied to NS problems in the
preparation phase.

IV. ML FOR NS IN THE COMMISSIONING PHASE

In the commissioning phase, NS problems are mainly
related to making resource allocation decisions for the admit-
ted slices. After being admitted to the system, the slice is
instantiated by allocating resources in the RAN, TN, and CN
domains. A RAN slice subnet comprises the radio access and
processing functions from a set of Base Stations (BSs) and
the allocated Physical Resource Blocks (PRBs) to support
a communication service. A CN slice subnet contains a set
of network services functionalities and associated computing
resources. A TN slice subnet, on the other hand, comprises a
set of connections between a group of virtual or/and physi-
cal network functions from both the RAN and the CN, each
one having its own SLA. This section discusses state-of-the-art
ML solutions for instantiating a slice within the RAN, TN, and

CN domains. First, we discuss ML resource allocation solu-
tions for instantiating a RAN slice subnet. Then, we present
ML resource allocation approaches for instantiating a TN and
a CN slice subnet.

A. Radio Resource Sharing

RAN slice subnet instantiation is usually formulated as the
problem where the resources of one or more BSs, i.e., spec-
trum, power, antennas, among others, must be shared between
multiple slices [42]. In the literature, the RAN slicing problem
has been tackled on two different levels: planning and runtime.
In the following, we discuss works dealing with RAN slicing
at the planning level. At the runtime level, RAN slicing is
realized through slice elasticity, which will be discussed in
Section V.

At the planning level, RAN resources are allocated to each
slice before its operation based on capacity and isolation
requirements. In our survey, we observed that works deal-
ing with RAN slicing at the planning level fall into two
categories: those applying a combined slice admission con-
trol and resource allocation solution and those using slice
traffic/resource demand prediction. Since ML solutions for
the slice admission control problem have been introduced in
Section III-B, in this section, we discuss relevant works that
use ML for predicting traffic/resource usage for RAN slicing.

Gutterman et al. [43] proposed a metric for a slice named
REVA, defined per QoS Class Identifier (QCI) and traffic
direction. REVA measures the resource rate (in PRBs/sec)
available for a Very Active bearer, i.e., a bearer that con-
tinuously attempts to obtain more PRBs than a maximal
fair share available. The authors then developed a prediction
model for this metric and used it for slice provisioning. The
work collected traces of RAN resource allocation from a
custom-designed experimental Long Term Evolution (LTE)
testbed under various network usage patterns to build the
model prediction. The authors then designed a modified Long
Short Term Memory (LSTM) model to predict REVA tens
of seconds in advance. The accuracy of the LSTM was eval-
uated against the Autoregressive Integrated Moving Average
(ARIMA) model and traditional LSTM neural networks, show-
ing that the proposed model outperforms ARIMA and LSTM
by up to 31%. Finally, the authors designed a slice provision-
ing algorithm that exploits the prediction models to minimize
costs for service providers.

A network slice admission control coupled with resource
allocation guided by a forecasting module that predicts
network slices’ traffic and user mobility patterns is presented
by Sciancalepore et al. [44]. In their proposal, the authors
assumed that traffic requests within a slice follow a periodic
pattern, applying time-series forecasting based on the Holt-
Winters technique to predict the aggregate traffic for every
admitted slice. The authors also employed the Self-similar
least-action human walk (SLAW) mobility model for user
mobility prediction. Using traffic generated by this model, the
authors developed a Markovian chain to capture the mobility
pattern of a user and assumed that a weighted combination
of such patterns reflects the mobility of a tenant. The authors
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TABLE II
SUMMARY OF ML-APPROACHES FOR NS PROBLEMS IN THE PREPARATION PHASE

Ref. NS Learning Learning Resource Network Performance
: Problem Paradigm Method Type Segment Evaluation

[25] Service profile NLP Latent Dirichlet Network, computing, TN Emulation - Custom-built intent
translation Allocation storage service
Slice admission Simulation - Poisson distribution

[36] control RL QL Network RAN for request and exponential

distribution for slice duration

37 | Slice admission RL DQL Network RAN | Simulation - Similar to [36]
control

[38] | Slice admission RL QL. DQL. Network RAN | Simulation - Similar to [36]
control Regret Matching

[39] Slice admission UL. RL Norm. spectral clustering, | Network, computing, RAN, Simulation - Customized slice templates
control ’ SARSA storage CN

. . Simulation - Exponential distribution

Slice admiss Network, . . .

[40] \ce admission RL DRL etwor RAN for request inter-arrival time and
control computing . .

slice duration

[41] Slice admission RL QL, . Computing Edge, CN, Simulation - Customized slice templates
control R-Learning cloud

[26] Slice admission RL UCB, ONETS, Network RAN Simulation and experimental
control e-Greedy

then employed an UL method to learn the weights of each
tenant. Next, they combined the overall load predicted by the
Holt-Winters method and the mobility model to derive the
predicted amount of resources requested by the tenant under
a BS. Finally, the authors designed a RL algorithm to per-
form admission control considering the SLA of the different
tenants, their traffic usage, and user distribution. Performance
evaluation was conducted using a MATLAB simulation with
7 BSs, 10 tenants, and 100 UEs per tenant distributed uni-
formly. Results show that proper forecasting increases system
utilization, especially as the number of network slice requests
and system capacity grows.

Sapavath et al. [45] studied the Sparse Bayesian Linear
Regression (SBLR) and Support Vector Machine (SVM) tech-
niques to estimate and predict Channel State Information (CSI)
to make a decision about radio frequency slicing. The system
model was composed of infrastructure providers that sublease
their radio frequency for Mobile Virtual Network Operators
(MVNGOs) based on the requests coming from MVNOs and
their SLAs. Depending on the demands and requirements,
users are classified into three user groups (stationary, mobile,
and indoor) and the infrastructure provider’s wireless resources
are allocated to MVNOs to serve the users of individual
groups. Given the end-user demands, RAN resource pool, the
number of available antennas, and the total bandwidth of the
radio frequency slices, the solution assigns wireless resources
for the slice considering the data rate of each user of the slice.
This data rate, in turn, is computed based on the estimated CSI.
The training dataset was acquired through pilot-based train-
ing and data augmentation. Performance evaluation focused
mostly on the accuracy of the predictors and showed that
SBLR results in better outcomes than SVM, demontrating that
this technique is less sensitive to sparse CSI information.

B. VNF Placement

The TN and/or CN Slice Subnet Instantiation problem is
usually formulated as the placement of a set of VNFs towards

the underlying physical infrastructure. This approach is a typ-
ical VNE problem reformulated to consider specific require-
ments of the 5G system such as Random Access Memory
(RAM), CPU, disk, bandwidth, and latency constraints, as well
as node sharing. Indeed, in the VNF placement problem, given
a physical network G, representing the underlying physical
infrastructure, and a virtual network H, representing the slice,
we have to embed the virtual onto the physical network so that
each virtual node m € H is mapped onto a physical node in
G and each virtual link (m,n) € H is mapped to a loop-free
physical path in G connecting the two physical nodes to which
the virtual nodes m and n have been mapped [16]. The objec-
tive is to find an embedding with the least cost that satisfies
all link and node capacity constraints. The cost may represent
congestion, preference in terms of operator agreements, load
balancing, or real cost of operation.

The most relevant works that use ML to solve the VNF
placement problem formulate it as a Markov Decision Process
(MDP) and solve it using DRL. Yan et al. [46] proposed a com-
bined DRL with a neural network structure based on graph
convolutional networks to solve the VNF placement problem.
In their proposal, states are represented by eight attributes:
the number of CPU resources over all nodes, the amount of
bandwidth available in each node, the amount of free CPU
currently available in each node, the amount of bandwidth not
allocated in each node, a vector describing the embedding for
the current slice request, the number of CPU and bandwidth
resources needed by the current slice request, and the number
of unallocated virtual nodes in the current request. To reduce
the number of input features, links are not explicitly consid-
ered in the state representation. Instead, a Graph Convolutional
Network (GCN), a Convolutional Neural Network (CNN) used
to extract features from homogeneous graphs, is employed to
automatically extract link features from the physical network.
The action taken by the RL agent is the index of the physi-
cal node in which to place a specific VNF of the slice. This
way of modeling the actions breaks the process of placing one
slice in a sequence of VNF placements and reduces the size of
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the action space to the number of physical nodes. The reward
function combines the acceptance ratio, the placement cost,
and the load balance. The solution was evaluated through sim-
ulation using a substrate network topology generated following
the Waxman random graph. CPU and bandwidth resources of
the substrate network were uniformly distributed between 50
and 100 units, while slice requests were generated by a Poisson
process.

Rkhami et al. [47] also employed DRL and CNNs to
improve the quality of a VNF placement heuristic. However,
different from [46], the authors in [47] used a Relational
GCN, which operates over heterogeneous graphs. The authors
only consider resource-related features (CPU and bandwidth)
to represent the system state, while the action is represented
by a binary variable used to keep the same placement of the
current VNF or to modify it based on a computed heuristic.
The objective of the solution is to maximize the infrastructure
provider revenue. The evaluation was performed through sim-
ulation on a network topology following the Waxman random
graph. CPU and bandwidth requests are drawn uniformly, as
well as the number of VNFs in each request.

A Deep Deterministic Policy Gradient (DDPG) approach is
employed by Quang et al. [48]. Different from [46] and [47],
in [48], the state representation includes resource-related fea-
tures (CPU and bandwidth) and latency-related properties. The
action taken by the DRL agent is represented by two sets of
weights: one indicating the placement priority of each VNF
in the slice request on each physical node and the other indi-
cating the placement priority of each virtual link on each
physical link. The reward function of action is modeled as the
acceptance ratio. To assess the performance of the proposed
approach, the authors employed simulations using a real-world
network topology with 24 nodes and 37 links. Link capacities
are randomly chosen, the requested VNF resources are uni-
formly distributed, and virtual links are arbitrarily requested
with bandwidth in the range of 1 Mbps to 40 Mbps and latency
of 1 ms to 100 ms.

Ensuring that a DRL agent converges to an optimal pol-
icy in the VNF placement problem is a challenge since
its performance depends on the exploration of a huge
number of states and actions. To overcome this problem,
Esteves et al. [49] introduced the concept of Heuristically
Assisted DRL, which combines a DRL algorithm based on
Advantage Actor-Critic (A2C) and a GCN with a Power of
two Choices heuristic to control the DRL convergence. The RL
elements of the solution (i.e., state, action, and reward) follow
the same approach in [46]. The performance evaluation is car-
ried out through simulation with three data center types (edge,
core, and cloud) and one slice type (eMBB). Slice requests
involve five VNFs, and arrival rates follow three network load
conditions (underload, normal load, and critical load).

Mei et al. [50] handled the VNF placement problem by cre-
ating a VNF pool. This pool integrates all individual VNFs
distributed in the network domains, providing a variety of
network abilities to meet the requirements of Vehicle-to-
Everything (V2X) services. An Intelligent Control Layer is
responsible for orchestrating the available VNF (e.g., allo-
cating VNFs and network resources to network slices). The
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solution intends to support the deployment of VNFs on remote
and edge clouds by using Deep Q-Network (DQN) with CNNS.
The solution was evaluated through simulation with an urban
scenario based on the Manhattan grid layout and two types of
Vehicle-to-Vehicle (V2V) services: traffic safety and efficiency
service and autonomous driving-related service.

Kibalya et al. [27] tackled the multi-domain slicing as a
multi-substrate VNF problem. In their proposal, a DRL algo-
rithm selects the optimal set of infrastructure providers among
all the feasible candidates to maximize the revenue-to-cost
ratio for deploying the slice requests. The DRL algorithm is
based on a NN that takes as input an M x N feature matrix,
where M is the number of infrastructure providers and N is the
number of extracted features. The latter reflects the attributes
of both the slice request and substrate network. The NN was
trained offline using demands of the size of 500 requests per
epoch, with the request delay uniformly distributed between
1 to 200 units. The evaluation considered an online scenario
where the request arrival follows a Poison distribution. A com-
parison with a combinatorial scheme showed that the DRL
algorithm presents a better performance, especially in the
presence of high request arrival rates.

Fantacci and Picano [51] proposed an NS strategy that uses
FL to support slice allocation through VNF placement in dis-
tinct service areas with different costs and processing and
storage capabilities. In their proposal, UEs are mapped into
three slice classes (high-rate communications; highly dynamic,
low-rate, and delay-tolerant communications; and URLLC),
and a FL framework is employed to foresee the UEs’ demand
of each service class. The goal is to use the forecast UEs’
demand to provide a VNF placement that maximizes the
infrastructure provider revenue while improving the end user’s
QoE. The FL framework applies ML models trained at the
UE level, and then a central layer aggregates to improve the
global learning model. To capture the UE request behavior, the
authors use Prospect Theory (PT). The latter aims at evaluating
a prospect (service area) defined over a set of outcomes (UE
service completion time) and the probability associated with
each of them. The proposed framework was evaluated through
simulation involving eight different areas with processing and
storage capacities, VNF types, and costs uniformly distributed.
The VNFs requests were modeled by using the MovieLens
dataset.

Panayiotou et al. [52] focused on the TN Slice Subnet
Instantiation problem. The objective is to define a trans-
port path considering a multi-domain network slice, which
could span many paths. In this context, the authors work on
the Quality of Transmission (QoT) estimation for sliceable
optical networks. The authors examine centralized and dis-
tributed NN-based QoT estimation model for sliceable optical
networks. The objective is to find QoT model(s) that are fine-
tuned to the diverse requirements of each slice. The centralized
problem is formulated as a multiclass classifier trained with
global network information while the distributed problem is
formulated as a set of binary classifiers, each of them trained
according to data that is relevant to a single type of slice. The
results show that the distributed QoT model performs better
than the centralized model, being independent of the number
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of slice types. Table III summarizes the main characteristics
of the literature related to ML applied to ML problems in the
commissioning phase.

V. ML FOR NS IN THE OPERATION PHASE

The network slice operation phase requires intense manage-
ment activity in run-time. In addition to activating the network
slice instance provisioned in the commissioning phase, the
operation phase also cares about the supervision, performance
reporting, modification, and resource capacity planning [29].
Therefore, the state-of-the-art brings several ML approaches
for various network slice operation tasks. In our review, we
find out that ML is often adopted to solve the following
NS problems in the operation phase: network slice elasticity,
user admission control; traffic classification and prediction;
anomaly detection, task offloading, congestion control, RAT
selection, and NS with mobility. This section details how
relevant works in the state-of-the-art tackle each problem.
Table IV summarizes the main characteristics of the litera-
ture related to ML applied to LCM problems in the operation
phase.

A. Network Slice Elasticity

Network slice elasticity embraces run-time tasks to modify
the current slice deployed to support a user demand or appli-
cation requirement. Li et al. [53] brought solid contributions to
reviewing the background of DRL and its usage for resource
management in NS. The work follows two main scenarios:
(i) resource management for RAN; and (ii) priority schedul-
ing in typical VNF. Relying on DQL, the authors proposed an
approach based on allocating resources regarding the users’
activity. Such solution performed better than other intuitive
approaches, such as demand prediction, no slicing, and hard
slicing.

Qi et al. [54] presented an enhancement to the applica-
bility of DQL. The authors show how to allocate/reallocate
limited spectrum across slices by improving the calculation
and approximation of the Q-value function. The authors argue
that their approach is suitable for NS tasks, having faster con-
vergence and better performance than typical DQL. However,
they point out that there is still space for research in aspects
such as SLA assurance.

Li et al. [55] proposed an algorithm for end-to-end NS
resource allocation based on DQN. However, we fit this work
into the network slice operation phase due to its contribution
to slice elasticity, which assumes slice instantiation and exe-
cution. The authors presented a framework for 5G resource
allocation, considering wireless resources on RAN and VNF
on CN. A DQN algorithm uses the feedback from the envi-
ronment dynamically and in real-time to update the wireless
resources and map the service links. Simulations support the
results in terms of access rate.

Bouzid et al. [56] demonstrated an intelligent solution for
dynamic capacity allocation in an end-to-end network slice
with multiple cloud-enabled virtualized segments for a video
replay service. A RL algorithm is used with predictive mod-
els (trend-based and parametric methods) for state estimation.
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Authors argue that the predictive models with RL can manage
the elasticity through a servicing gateway and Web servers and
cooperate to enhance the global system efficiency.

Guan et al. [57] proposed a hierarchical resource man-
agement framework that utilizes DRL to perform resource
adjustment within admitted end-to-end slices. The proposed
framework introduces 1) multiple local resource manager to
deal with the demand changes in resource requirements for
an individual slice; and 2) a global resource manager to con-
trol the local resource managers. The local resource manager
executes a DQL algorithm, where states represent the current
service quality satisfaction, actions denote whether slice adap-
tion is required, and reward is defined as the revenue obtained
by adjusting resources minus the resource consumption cost
and operational cost. Evaluation is performed using simulation
on network and computing resources.

Indeed, because of its flexibility, dynamism, and high appli-
cability for large-scale problems, ML techniques apply to the
most diverse network slice elasticity issues, such as network
performance and overall resource optimization and QoS guar-
antee. The vast majority of reviewed work in our survey
concentrates on this category (Table IV presents a summary
of all of them). In addition, most of these problems sit on
the RAN segment, and DRL is the most selected ML tech-
nique to deal with them [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67], [68], [69], followed by supervised learn-
ing [70], [71], [72], [73], [74], [75], [76]. The authors in [30]
use a Deep Neural Network (DNN) to decide on network slice
reconfiguration in a Metro-Core optical network.

B. User Admission Control

The user admission control NS problem aggregates arti-
cles regarding challenges in deciding whether a new user,
upon request, should be added to a running network slice
or not. The difference between user admission control and
slice admission control is that, in the former, the request is for
including a new user into an instantiated and running network
slice. Overall, user admission control is a process that pon-
ders what is being requested vs. what is or will be available to
be consumed (e.g., bandwidth, computing, storage, and radio
spectrum). Admitting new users into a running network slice
means that the operator commits to the availability of resources
(e.g., spectrum and bandwidth) to serve all the users hosted in
the slice.

In 5G networks, typically, user requirements may change
over time (e.g., depending on the running applications) and
a single UE may connect to up to 8 network slices simulta-
neously [77]. Therefore, ML techniques act in this decision-
making based on the time-varying user requirements, possible
resource allocation for newcomers, eventual slice elasticity,
and long-term SLA holding, for example.

Shome and Kudeshia [78] focused on the RAN and consid-
ered three different generic slice templates: mMTC, URLLC,
and eMBB. Based on a modified version of classical DQL,
users are allocated/reallocated to slices regarding their cur-
rent needs. In the literature, this type of problem is also called
Slice Selection. However, we consider it part of user admission
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TABLE III
SUMMARY OF ML-APPROACHES FOR NS PROBLEMS IN THE COMMISSIONING PHASE

Ref NS Learning Learning Resource Network Performance
) Problem Paradigm Method Type Segment Evaluation
Radio sharing with Modified Experimental - Traces collected from
43 SL Network RAN
[43] traffic prediction LSTM etwor a LTE testbed
Radio sharing with | Time-series. Holt-Winters . . .
44 ’ i Network RAN Simulation - SLAW mobilit del
(44 traffic prediction UL, and RL | Customized RL algorithm etwor taton fobriity mode
45 E:?&: ;?jngozlth SL SBLR, SVM Network RAN Simulation - Pilot-based symbols
: icti
[46] | VNF placement RL GCN Computing, TN. CN Simulation - Poisson distribution for
P network ’ slice requests
[47) | VNE placement RL Relational GCN Computing, TN. CN Simulation - Uniform distribution for
network ’ slice requests
[48] | VNF placement RL DDPG Computing, TN. CN Simulation - Uniform distribution for
P network ’ slice requests
[49] VNF placement RL HEL ch, LT, Cllorml (5 Simulation - Customized arrival rate
heuristic network Edge
[50] | VNF placement RL DQN, CNN Computin, Cloud, Edge | Simulation - Customized V2V services
p puting 8
127] | VNF placement RL CNN Computing, TN. CN Simulation - Poisson distribution for
p network ’ slice requests
(51] | VNF placement FL PT Computing, CN Simulation - VNF request generated from
P storage real-world dataset
T SL NN Network IN Slmulat%on - Poisson distribution for
connection request

since the process requires aggregating new users into running
slices. In [78], the authors set up an experiment simulation
scenario with multiple MVNOs sharing virtual BS resources.
The experiment sets 30 MHz bandwidth for each virtual BS,
distributing it among 100 users. Each one of the users has
requirements fitting them in at least one of the three generic
slice templates (mMTC, URLLC, eMBB). Results show that
the authors’ proposal keeps a high average user satisfaction
score during the experiment.

Nassar and Yilmaz [79] considered a 5G scenario and
discussed the limitation of resources at the network edge,
specifically at fog nodes supporting vehicular and smart-city
networks. The NS proposal includes creating a cluster of fog
nodes with a controller, referred to as Edge Controller (EC),
responsible for efficiently managing resources. The EC uses
DRL to adapt to optimal slicing policies, performing admis-
sion control tasks (e.g., serving or avoiding new users, serving
or avoiding specific requests) towards load balancing, saving
resources, and denying tasks better performed in the cloud.
The authors evaluate the proposal’s suitability for the edge
network using simulations.

C. Traffic Classification and Prediction

This category embraces works on the slice run-time using
ML techniques for traffic classification and/or prediction.
Traditionally, classifying network traffic involves three com-
mon approaches: port-based, Deep Packet Inspection (DPI),
and statistical. ML techniques are especially appropriate for
statistical approaches, which classify the traffic according to,
for example, the packets’ size and transmission direction.
Therefore, the state-of-the-art presents NS methods based on
classifying the traffic to infer running applications, predict
bandwidth, and dynamically allocate/reallocate resources.

Le et al. [80] presented early-state contributions for the
future Self-Organized Networks (SONs) NS. The authors aim
to build an architecture for NS based on mobile broadband
traffic classification. Based on past contributions working on
big data, ML, and SDN/NFV, the authors use K-means as
an UL algorithm for clustering mobile applications, resulting
in three slices (0.5Mbps, 1Mbps, 3Mbps). They also apply
several SL techniques (e.g., Naive Bayes, SVM, NN) for
classifying new coming traffic flows into the three distinct
slices.

Results show high accuracy in traffic classification and
therefore promising early-state contributions.

The authors in [81] used an FL method based on Key
Performance Indicator (KPI) data collection (e.g., network
traffic) at virtualized Central Units (CUs) to maintain dis-
tributed local datasets, referred to as Mini-Datasets. These
distributed Mini-Datasets compose the FL. model for resource
allocation with long-term SLA constraints. In this context, the
authors have another complementary publication [82] focusing
on the energy efficiency perspective of their approach.

Terra et al. [83] presented an analysis of eXplainable
Artificial Intelligence (XAI) methods applied to telecommu-
nication networks. XAI methods are applied to analyze the
cause of SLA violation prediction made in 5G networks. The
proposal analyzes the explanation directly generated from the
SLA violation prediction instead of expert knowledge. Local
Interpretable Model-Agnostic Explanations (LIME), SHapely
Additive Explanations (SHAP), Permutation Importance (PI),
and Extreme Gradient Boosting (XGBoost) XAl methods are
used to analyze SLA violation prediction causes, and these
methods are further compared among them.

Salhab et al. [84] proposed a micro-service-based exper-
imental prototype with a regression tree algorithm to val-
idate the impact of forecasting capabilities on the RAN
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TABLE IV
SUMMARY OF ML-APPROACHES FOR NS PROBLEMS IN THE OPERATION PHASE

Ref. NS Learning Learning Resource Network Performance
Problem Paradigm Method Type Segments Evaluation

[53] Slice Elasticity RL DQL Network RAN, CN Simulation

[54] Slice Elasticity RL DQL Network RAN Simulation

[55] Slice Elasticity RL DQN Network RAN, TN, CN | Simulation

[56] Slice Elasticity RL QL Network RAN, TN, CN | Not clear

[57] Slice Elasticity RL DQL Network, computing RAN, TN, CN | Simulation

[58] Slice Elasticity RL DQN Network RAN Simulation

[59] Slice Elasticity RL DRL Network RAN Simulation

[60] Slice Elasticity RL DQL Network RAN Simulation

[61] Slice Elasticity RL DDPG Network RAN Simulation

[62] | Slice Elasticity RL Duel. DNN, QL Network, computing, storage C-RAN Simulation

[63] Slice Elasticity RL DRL Network RAN Simulation

[64] Slice Elasticity RL DQN Network RAN Simulation

[65] Slice Elasticity RL DQN Network RAN Simulation

[66] Slice Elasticity RL DQN Network RAN Not clear

[67] Slice Elasticity RL LSTM, A2C DRL Network RAN Simulation

[68] | Slice Elasticity RL DQL Network, computing RAN, edge Simulation

[69] Slice Elasticity RL A2C Network RAN Simulation

[70] Slice Elasticity SL DNN Network RAN, CN Real-world dataset

[71] | Slice Elasticity SL LSTM Network RAN, CN Exp. & real-world dataset

[72] Slice Elasticity SL LSTM Network RAN, TN Real-world dataset

[73] Slice Elasticity SL DNN, LSTM Network RAN Simulation

[74] | Slice Elasticity SL DNN Network, computing RAN Not clear

[75] Slice Elasticity SL DNN Network, computing RAN, TN Real-world dataset

[76] | Slice Elasticity SL LSTM Network RAN, TN Experimental

[30] | Slice Elasticity RL DNN Network TN Simulation

[78] User Adm. Control RL DQL Network RAN Simulation

[79] | User Adm. Control RL DQN Network, computing RAN, edge Simulation

[80] Traffic Prediction UL, SL Naive Bayes, SVM, NN Network RAN, CN Experimental

[81] | Traffic Prediction FL Non-zero sum Network RAN Real-world dataset

[82] | Traffic Prediction XAl XGBoost, SHAP Network TN Experimental

[84] | Traffic Prediction SL Regression Tree Network RAN Experimental

[85] Anomaly Detection UL, SL HDBSCAN, DNN Network RAN Simulation

[88] | Task Offloading RL QL Network, computing RAN Simulation

[89] | Congestion Control RL TRPO Network RAN Simulation

[90] RAT Selection RL DDPG Network RAN Exp. & Simulation

[91] | NS Mobility RL DQN Network, computing F-RAN Simulation

[92] | NS Mobility SL DNN Network RAN, edge Simulation

[93] | NS Mobility RL A2C, DQN Network, computing RAN, edge Simulation

[94] | NS Mobility RL A2C, LSTM Network RAN Simulation

[95] | NS Mobility RL QL Network RAN Simulation

slicing management. The experimental prototype, based on the
OpenAirInterface deployment, collects data while managing
several [oT devices. This data then forms a time series used to
train the regression tree. The objective is to forecast the num-
ber of PRBs to be used by each slice to dynamically provision
the optimum slicing ratio out of the available pool of PRBs.
Results show that the forecasting model can increase substan-
tially the throughput of the network at the cost of increased
computing resources utilization.

D. Other Investigations

This subsection groups together relevant problems for the
network slice operation phase. However, in our research, no
substantial amount of articles discussed an ML approach to
solve them. In this sense, we present at least one publication
approaching each problem. Refer to Table IV for a complete
list of publications regarding the operation phase.

1) Anomaly Detection: Al-assisted anomaly detection is
a classical research field in computer networks [85], [86].

Analyzing the network behavior (e.g., based on KPIs such
as packet loss and downlink delay) is a management task dur-
ing the network slice operation phase. In [87], the authors
implemented an Al-based module for assisting administrators
in detecting anomalies among services in slices deployed on a
virtualized infrastructure. The solution of the authors, aiming
to classify network traffic, has three phases: (i) pre-processing
and feature selection, (ii) clustering, and (iii) anomaly detec-
tion. Data is modeled as a time series composed of the
following features: number of lost packets per service and user,
uplink and downlink delay, Reference Signal Received Power,
transfer protocol, and UE received bytes. In the second phase,
the time series is processed by a Hierarchical Density Based
Spatial Clustering (HDBSCAN) clustering algorithm, which
divides the dataset into three groups: normal, moderate, and
anomalous behavior. Such clusters are used to label the sam-
ples in the time series. Finally, in the third phase, the labeled
dataset is used to train a feed-forward DNN to perform a clas-
sification task. After, the DNN is used to predict anomaly and
assign a cluster to new data in real-time. Preliminary results
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using the Network Simulator 3 (NS-3) discrete-event simulator
show a high accuracy score. However, increasing the num-
ber of clusters and the algorithm granularity decreases the
prediction performance.

2) Task Offloading: The task offloading problem category
addresses articles regarding decision-making on the most suit-
able domain to run a task (e.g., UE, cloud, fog). In this sense,
the authors of [88] discuss the adaptive mode selection in
Fog-RAN (F-RAN), which refers to the communication mode
serving each UE (e.g., Cloud-RAN (C-RAN), fog-radio access
point, device-to-device).

3) Congestion Control: Selected works approaching the
congestion control problem with ML fall into the scenario
of connection establishment for RAN and traffic congestion
control in general for 5G/6G wireless networks. The authors
in [89] argue that Machine-to-Machine (M2M) network traffic
may surpass Human-to-Human (H2H) in the future. However,
current approaches for dealing with M2M traffic rely on legacy
congestion control schemes, which will no longer suit the
demand in 5G and beyond scenarios. Therefore, the authors
propose an improved congestion control scheme based on RL.

4) RAT Selection: Cellular networks adopting multiple dif-
ferent RAT impose the well-known RAT selection chal-
lenge [96]. The article [90] presents IRIS, a shared spectrum
access architecture for indoor neutral-host small cells. IRIS
adopts a RL algorithm based on DDPG to dynamically price
the cost of a radio spectrum block in an indoor shared envi-
ronment according to the previous price, tenants (operators)
demands, acquisition costs, and neutral-host revenue target.

5) NS With Mobility: This problem category considers
works discussing scenarios with mobility in terms that the UE
is not static. To the best of our knowledge, the main concerns,
up to now (the date of this research), in the context of NS with
mobility are coverage area [92]; content caching [91]; and slice
migration (e.g., UE moves out of the coverage and needs real-
location to another slice) [94], [95]. Addad et al. [93] propose
and evaluate two DRL-based algorithms for the intelligent
selection of triggers supporting NS mobility actions. Authors
argue their approach is new by considering users mobil-
ity, service mobility, and resource mobility among slices for
slice, service, and resource allocation. The run-time mobility
decision-making process is evaluated considering the A2C, a
hybrid DRL method combining value-based and policy-based
approaches and DQN.

VI. OPEN RESEARCH ISSUES AND FUTURE DIRECTIONS

This section identifies and discusses a non-exhaustive set
of open issues on ML for intelligent NS. The identified
challenges result from our analysis of the preparation, com-
missioning, and operation phases of the NS process, presented
in Sections III-V. Moreover, we highlight the main gaps
in the literature between requirements and proposals for
intelligent NS.

A. Intelligent Translation for NS Requirements

Translation of service profiles into NS requirements is
a complex task that requires low-level network slice con-
figuration parameters, such as virtual machine parameters,
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network configurations, topology, and protocols [97]. With
the evolution of networks toward beyond 5G, the complex-
ity of this task tends to increase [98]. Consequently, an intent
layer will be required to translate service profiles into slice
requirements [99].

Intent-driven networking was conceived to enable appli-
cations to express desired operational goals using high-level
descriptive specifications known as intents [100]. Addressing
this goal, however, poses several challenges, among them,
defining rich semantics to express the intent of verticals [101].
Although the integration with Al technologies, and Natural
Language Processing (NLP) in particular, can bridge this gap,
those technologies are still at their early stage and require fur-
ther research efforts before being integrated into the network
slice LCM [99]. This research gap can be evinced in our
survey, where only one work [25] uses ML to bridge this gap.

B. Datasets and Experiment Reproduction

High-quality datasets are essential to support the exten-
sive dissemination of ML in various application domains.
Intelligent NS, according to our research survey, is yet
another area where openly available high-quality datasets are
a research issue, regardless of the slice life cycle phase,
as can be seen in the column Performance Evolution of
Tables II, III, and IV. A directly related aspect of dataset
availability is experiment reproduction. In effect, the unavail-
ability of datasets for most of the research work is an
obstacle to allowing experiment reproduction and, to some
extent, the explainability of the proposed solutions and their
dissemination.

In our survey, most works (e.g., in [36], [37], [38], [40],
[46] [27], [47], [48], [49], [52], [53], [54], [55], [57], among
others) use data generated from simulation to evaluate their
ML solutions. However, to evaluate the effectiveness of ML
approaches when dealing with NS problems in practice, exten-
sive evaluations are needed taking more realistic scenarios into
consideration. To this end, some works [26], [43], [71], [76],
[80], [83], [84], [90] create specific experimental testbeds for
validating their model or algorithm. Although such initiatives
are important, data collected from testbeds still misses the rep-
resentative of the complexity and dynamicity of real-world
mobile networks [102]. In addition, none of such works have
made the collected data available for the research community,
hindering and compromising the reproduction of the experi-
mental parts deployed for validation purposes. Finally, 10% of
the surveyed works [51], [70], [71], [72], [75], [81] use real-
world network data. Although such data are much richer and
more representative than those generated from simulation or
testbeds, they still may suffer from noise, sparsity, and lack of
label, which limits the ML algorithms that can be applied. In
summary, rich and adequate data is still an issue for applying
ML in NS problems.

C. Suitability of the ML Technique for the Network Slice
Life Cycle Phase

While ML is an unquestionable enable for the realization of
NS, it is impossible to find a single technique that completely
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addresses the requirements of all the network slice LCM
problems. Thus, an open research issue in ML-enhanced NS
is the suitability of the ML techniques for the target network
slice life cycle phase with regard to, for example, granularity
or timing [23]. In the preparation phase, as the slice does not
exist, ML techniques using offline learning can be applied to
solve the problems of such phase. Indeed, the authors in [38]
conclude that offline training solutions for the slice admission
control problem require a training period before use but give
the best results.

In the slice commissioning and operation phases, SL, which
usually relies on offline learning, has been usually applied
to solve traffic prediction, traffic classification, and anomaly
detection problems [43], [45], [80], [84], [87]. However, prob-
lems that involve resource allocation, such as radio resource
sharing, VNF placement, and network slice elasticity, have to
make decisions on low scale and cannot afford for a period of
training time [103]. Thus, some works [44], [56], [88], [89]
use classical RL algorithms with online training for these prob-
lems. However, resource management in NS usually involves
multidimensional parameters, leading to a large state space
and a low convergence rate to the optimal policy [103]. In
practice, this means that, until the RL algorithm converges, it
can make bad resource management decisions. Although DRL
algorithms have been used to face this limitation (e.g., in [27],
[46], [47], [48], [49], [50], [53], [54], [55], [57], [79], among
others), DRL solutions present some shortcomings. First, DRL
algorithms usually rely on DQN to encode state. However, an
important component of DQN is a target network, i.e., a copy
of the estimated value function that is kept fixed for some num-
ber of steps to stabilize learning [104], [105]. This copy, in
turn, prevents the algorithm from reacting fast to environment
changes, a desired property of RL. More recently, other NN
algorithms (e.g., in [67]) have been investigated to deal with
this problem. Nevertheless, further investigations are required
to determine their efficacy and generalization in the context
of DRL. With this regard, TL has also been considered a pos-
sible solution [103]. Another problem with DRL algorithms
is that NNs with multiple layers cannot explain the essential
features that influence their decisions or the impact of data
bias on the uncertainty of outputs [106]. As network slices
are expected to host an increasing number of mission-critical
services in beyond 5G, trust will become critical. Despite this
need, our survey identified only one work [83] addressing
explainable ML-enhanced NS. Finally, it is important to high-
light that DRL algorithms have a high demand for computing,
memory, and energy resources [102]. Considering that beyond
5G networks will make pervasive use of intelligence [21],
DRL algorithms that make more efficient use of computing
and energy resources are still an open issue.

D. End-To-End NS

NS is applied in challenging systems such as 5G and beyond
5G, Industry 4.0/5.0, and intelligent transportation systems.
End-to-end NS is an essential requirement and current trend
for these systems. However, in most surveyed works, ML sup-
port is focused on network segment solutions (e.g., RAN [88],
RAN —+ edge [79], TN [83], and RAN + CN [70], leaving
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end-to-end NS as an open research issue. We consider that an
article effectively approaches end-to-end NS if it deals with
the three network segments (RAN, TN, and CN) completely.
Howeyver, this issue is not a consensus in the literature. For
example, in [76], the authors assume that the end-to-end can
start inside the RAN, crosses a TN, and finishes at the frontier
of a CN. The authors do not consider the fronthaul, i.e., part
of the RAN is not sliced, nor the CN. In our survey, only a
few works effectively tackle the end-to-end slicing problem in
the three segments (RAN, TN, and CN) [55], [56], [57], and
the first two only deal with network resources. While [57] is
a more comprehensive work considering network and com-
puting resources, the performance evaluation in this article is
based on a small and simplified simulation. The authors are
focused on calling attention to the importance of ML-enabled
NS in 6G and the challenges in the real-world implementation.
Slicing by segment with ML support is undoubtedly rel-
evant. Nevertheless, the end-to-end design must consider
the interdependence of resource allocation and orchestration
among network segments. End-to-end intelligent slicing brings
another level of complexity, which involves issues such as the
need for a high-efficient (re)learning process and coordination
among multiple entities [57]. In this context, FL and other dis-
tributed learning approaches may be relevant since the works
can explore the spread processing capacity offered by edge
computing and reduce the amount of information exchange.

E. Open RAN Intelligent Slicing

RANSs are a fundamental part of the slicing process in 5G
networks and Open RAN (O-RAN) is one the most relevant
evolution aspect towards 6G in this segment. Not surpris-
ingly, O-RAN architecture has Al and ML workflows in its
design [107]. The O-RAN approach brings a new level of flex-
ibility for network operators allowing them to deploy the RAN
segment, potentially focusing on the business. NS has being
considered a very important capability in the O-RAN context
and has been already investigated in some articles [108], [109],
[110]. O-RAN slicing with ML allows efficient RAN deploy-
ment to accomplish challenging user requirements regarding
SLA, QoE, and user mobility.

The design, implementation, deployment, and evaluation of
O-RAN with ML is a hot research topic and open research
issue. In the context of O-RAN, an ML-based solution must
be designed and implemented as a xApp and/or a rApp,
depending on their time demands. While xApps run over a
near-real-time RAN Intelligent Controller (RIC) (10ms to 1s),
rApps run over a non-real-time RIC (more than 1s) [107].
Deployment and evaluation of xApps and/or rApps still depend
on simulation (e.g., [108]), previously collected (and so non-
interactive) datasets (e.g., [109]), or limited-size testbeds using
early-stage RICs (e.g., [110]). In fact, even the optimized
deployment and operation of the RICs components are chal-
lenging since they are a new software platform still under
development.

F. From Theory to Practice

Based on the literature presented in the previous sections,
it is clear that several theoretical works are using Al and ML,
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TABLE V
SUMMARY OF ACRONYMS

Acronym Definition Acronym | Definition

3GPP 3rd Generation Partnership Project N3AC Neural Network Admission Control
5G fifth-generation NFV Network Function Virtualization
6G sixth-generation NN Neural Network

A2C Advantage Actor-Critic NS Network Slicing

ACM Association for Computing Machinery NS-3 Network Simulator 3

Al Artificial Intelligence NSS Network Slice Subnet

ARIMA Autoregressive Integrated Moving Average O-RAN Open RAN

BE Best Effort ONETS Online NETwork Slice Broker

BS Base Station PI Permutation Importance

CN Core Network PRB Physical Resource Block

CNN Convolutional Neural Network PT Prospect Theory

CPU Central Processing Unit QCI QoS Class Identifier

C-RAN Cloud-RAN QoE Quality of Experience

CSI Channel State Information QoS Quality of Service

CU Central Unit QoT Quality of Transmission

DDPG Deep Deterministic Policy Gradient RAM Random Access Memory

DQL Deep Q-Learning RAN Radio Access Network

DON Deep Q-Network RAT Radio Access Technology

DL Deep Learning RIC RAN Intelligent Controller

DNN Deep Neural Network RL Reinforcement Learning

DPI Deep Packet Inspection RU Radio Unit

DRL Deep Reinforcement Learning SARSA State-Action-Reward-State-Action
DU Distributed Unit SDN Software-Defined Network

EC Edge Controller SDO Standards Developing Organization
FL Federated Learning SHAP SHapely Additive Explanations
F-RAN Fog-Radio Access Network SL Supervised Learning

GCN Graph Convolutional Network SLA Service Level Agreement

H2H Human-to-Human SLAW Self-similar least-action human walk
HDBSCAN | Hierarchical Density Based Spatial Clustering SMDP Semi-Markov Decision Process
IEEE Institute of Electrical and Electronics Engineers SMO Service Management and Orchestration
IoT Internet of IoT SON Self-Organized Network

P Internet Protocol SVM Support Vector Machine

KPI Key Performance Indicator TL Transfer Learning

LCM Life Cycle Management TN Transport Network

NLP Natural Language Processing TRPO Trust Region Policy Optimization
LIME Local Interpretable Model-Agnostic Explanations | UCB Upper Confidence Bound

LSTM Long Short Term Memory UE User Equipment

LTE Long Term Evolution UL Unsupervised Learning

M2M Machine-to-Machine URLLC ultra-Reliable and Low-Latency Communications
MAB Multi-Armed Bandit v2v Vehicle-to-Vehicle

MDP Markov Decision Process V2X Vehicle-to-Everything

ML Machine Learning VNE Virtual Network Embedding
mMTC Machine Type Communication VNF Virtualized Network Function
MPLS Multiprotocol Label Switching XAI eXplainable Artificial Intelligence
MVNO Mobile Virtual Network Operator XGBoost | Extreme Gradient Boosting

ZSM Zero touch network & Service Management

considering the life cycle phases of NS. However, scientific
research with practical and experimental approaches to NS is
still in the beginning. As mentioned previously, most works
use only simulation for validating their proposals, while some
works focus on real-world traces or datasets, which is very
useful for ML-based approaches. However, they also face hard
issues such as information from outdated pre-NS technologies
(LTE/4G, for instance) or data with low statistical relevance.

As expected, only few works [26], [43], [71], [76], [80],
[83], [84], [90] have already accepted the challenge of eval-
uating an ML-based approach in an experimental testbed.
In this context, not only scientific but also technological
issues become relevant. For example, technological advances
in telecommunications are increasingly based on native cloud
computing platforms. Nevertheless, these platforms were not

designed to support telecommunication services natively.
Indeed, in our survey, only the work [84] has validated
its proposal using a micro-service-based RAN experimental
prototype.

Pushing the frontier of science by integrating theoretical
advances in Al and ML with practical solutions for NS is an
open issue that needs further investigation and development
efforts.

VII. FINAL CONSIDERATIONS

This survey focused on presenting NS with ML research
contributions. The contributions are organized by the phases
of the slice life cycle as defined by standardization organi-
zations (preparation, commissioning, and operation phases),
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aiming to identify trends and correlated contributions for the
different slicing phases. The contributions are concentrated in
the 5G domain, with few NS solutions applied to other areas.
Specifically, in the 5G domain, the end-to-end solution is a
trend not yet fully explored, and ML is being extensively used
to provide intelligence for segmented solutions. 5G end-to-end
NS approach allows a global view of the resource allocation
problem allowing for optimizing resource sharing aiming, for
instance, to improve operation, achieve efficient management,
and optimize operational expenditure. Although 5G end-to-end
slicing is essential for service providers and telecommunica-
tions operators, the surveyed articles primarily focus on slicing
and optimizing segments like RAN and the CN.

We have observed that ML is already being investigated
to solve several tasks in slice preparation, commissioning,
and operation. In this context, different ML techniques and
algorithms have been employed, mainly the ones popularized
in the last decades, such as CNN, GCN, LSTM, DRL, and
XGBoost. ML has exhibited satisfactory or promising results
in many automation tasks in the slice life cycle, which is crit-
ical to provide many benefits related to the concept of Zero
touch network & Service Management (ZSM). However, the
practical and wide adoption of ML-enabled NS still faces
several challenges. Some of these challenges, such as large
and open datasets and the explainability of ML-based solu-
tions, are already being tackled by the academy and industry,
which can count on the experience from other areas such as
computer vision and natural language processing. However,
other issues, such as the demand for short-time for model
training, energy-efficient ML solutions, and distributed com-
putation of ML models, still need much investigation. Al
and ML are also evolving intensely, giving rise to new mod-
els, algorithms, techniques, and even hardware architectures.
Traditionally, these novelties are not designed or tested first in
networking. However, they must be imported and sometimes
adapted in NS, for example.

Finally, we highlight the availability of various multi-
technology (SDN, wireless, 10T, slicing, and others) testbeds
worldwide for experimental research development. These
testbeds, in most cases, inherently facilitate experiment repro-
duction using openly available software to control the exper-
iment and having the ability to create experimental datasets.
An essential point for researchers would be to evaluate to what
extent these testbeds can be used for developing and validating
research results in intelligent NS.
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