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Abstract Forwarding Information Base (FIB) plays an essential role in Named-
Data Networking (NDN) since it allows contents identified by unique hierarchi-
cal names to be reachable anywhere. Over the last few years, the advances in pro-
grammable switches have become possible to implement data structures for FIB in
hardware to run at line rate. However, such implementations are not trivial in these
devices, taking into account its architectural constraints and some NDN features like
the complexity of dealing with variable-length names and the FIB size being orders
of magnitude larger than the current IP routing tables. Despite all the benefits that
high-speed switches may bring to NDN as a whole, the literature has been missing
a survey that covers the data structures for FIB designed specifically to run in phys-
ical switches. To this end, we present a review on recent FIB implementations for
both fixed-function and programmable high-speed switches. Our main contribution
includes a fair and new comparative analysis among different approaches to imple-
ment the FIB highlighting its features and limitations. We also provide new insights
and future research directions in this field.

1 Introduction

Information-Centric Networking (ICN) [1] is a clean-slate approach aiming to ad-
dress the limitations of the current Internet. By using concepts like in-network
caching, name-based forwarding, and data-centric security, ICN can better sup-
port emerging applications in Vehicular Ad Hoc Network (VANET), the Internet
of Things (IoT), and 5G/6G.
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Among several ICN-based architectures in literature, Named-Data Networking
(NDN) [2] is currently the most mature. In contrast to IP, NDN forward packets
by using hierarchical and variable-length names. The communication is based on
the exchange of two types of packets: 1) Interest Packet (Ipckt) and 2) Data Packet
(Dpckt). The former contains a unique name the consumer uses to retrieve the data.
A Dpckt stored at any intermediate node is sent back to the consumer following the
reverse path. The routing is performed through a data structure called Forwarding
Information Base (FIB). FIB plays an essential role in NDN because it guarantees
the reachability of any data content in the NDN domain. Such importance of FIB
has been motivating the research community to adapt existing data structures like
Trie, Bloom-Filter (BF), and Hash Tables (HT), to store name prefixes taking into
account parameters such as lookup speed and memory footprint.

There are many FIB implementations in software such as NFD [3], NDN-DPDK
[4], and YaNFD [5]. However, to scale up the NDN, it is necessary to move forward
and implement its main data structures in hardware to enable forwarding packets
at high speed. Recent developments in hardware and programmable switches make
this possible, even though in most cases, native features in NDN such as caching and
name-based forwarding do not fit naturally with the constraints of such devices like
the limited on-chip SRAM/TCAM memory. Many solutions have been proposed
recently to address these issues that use different techniques in several target archi-
tectures. However, although some surveys in the literature cover how NDN forward-
ing strategies are implemented in software [6, 7, 8], we still lack a comprehensive
survey on specific FIB implementations for physical switches.

This work provides a review and a comparative analysis of recent FIB imple-
mentation for high-speed switches. Our goal is to answer the following questions:
What do we know about how to implement the FIB in both programmable and fixed-
function switches? What is the most used method to do so?, and What are the gaps
in this field?. To answer these questions, the papers we reviewed are classified ac-
cording to what switch technology the FIB is designed for and what method they
used. We do not intend to provide a full systematic literature review. Instead, the
idea is to present an overview of the most used methods to implement the FIB that
is deployable in hardware and provide a fair comparison among relevant aspects of
each paper, highlighting its main features and limitations.

The remain of this paper is organized as follows: In §2 we present a brief
overview of the NDN architecture. In §3 we present 15 papers that focus on FIB
implementations for both programmable and fixed-function switches. §4 brings a
discussion and future research directions. Finally, we conclude the paper in §5.

2 NDN Overview

The NDN project was funded by the National Science Foundation (NSF) as part
of the Future Internet Architecture Program. The central concept behind NDN is to
replace the thin waist of today’s Internet with a content-oriented network layer. In
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contrast to IP, the core communication of the NDN layer-3 protocol is based on the
asynchronous exchange of Ipckts and Dpckts. The NDN Routers deliver contents
based on hierarchical variable-length names carrying on both Ipckt and Dpckt. To
do so, NDN Routers implements three data structures: Content Store (CS), Pending
Interest Table (PIT), and Forwarding Information Base (FIB).

Overall, CS plays an essential role in providing a Quality-of-Service (QoS) to
applications because it can significantly alleviate the traffic in the core network,
improving both latency and throughput. The CS is responsible for storing Dpckts
in buffers to support in-network caching, one of the main features of an ICN-based
architecture. In-network caching is used to ensure the independent-location property
in NDN, seeing as not only the producer can serve the consumer with data but
also any intermediate node storing a copy of it. The NDN specification foresees
the need for CS to support a cache replacement policy to avoid overflowing the
buffer capacity with too many Dpckts. The replacement policy uses the metadata
information in Dpckt that includes the freshness time.

From a perspective of an incoming Ipckt, when the CS cannot find a Dpckt that
matches exactly with the name in the Ipckt, the PIT table needs to be checked. The
PIT stores all pending Ipckt that have been forwarded but not been satisfied yet, to
avoid sending unnecessary information to the network. In other words, only the first
Ipckt needs to be sent out to the network, and all the subsequent requests for the
same data are aggregated in PIT together with the incoming port. Thus, similarly to
CS, PIT can alleviate the traffic in the network.

FIB is the most important data structure in NDN because it is responsible for
interconnecting consumers and producers worldwide. When a given Ipckt arrives at
the NDN router for the first time, and both CS and PIT can not satisfy that request,
FIB comes into play and forwards such Ipckt to one or more interfaces configured
by a routing strategy. The FIB stores name prefixes and performs a Longest Name
Prefix Matching (LNPM) whose definition is the same as the longest prefix match-
ing of IP, except in FIB, the entries are variable length. Even though FIB can be
implemented as HT [9] and BF [10], trie-based data structures are primarily used to
reduce memory consumption in software, as we can see in [11, 12, 13]. Fig. 1 shows
how CS, PIT, and FIB are connected.

Fig. 1 Operational flow in the NDN forwarding plane and its main data structures.
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3 FIB Implementations in Hardware

The FIB implementations we present in this review are classified into two cate-
gories: 1) FIB designed for Fixed-Function Switches, and 2) FIB designed for Pro-
grammable Switches. In each category, we classify the papers according to their
methods (HT, Trie, and BF) and present the publications in chronological order.
Both fixed and programmable switches mean that the proposed mechanisms can be
deployed either in traditional routers or in real programmable devices, not necessar-
ily meaning they were implemented in such real devices. As we will see, some of
them were implemented in software like BMv2 [14], others in FPGAs, and some of
them the authors provide simulation analyses.

3.1 FIB for Fixed-Function Switches

3.1.1 Hash Table

The first content router that supports name-based forwarding at high speed is Caesar
[15]. Caesar distributes the FIB across multiple line cards and performs the LNPM
accordingly. To optimize memory allocation, rather than duplicating the same for-
warding table with S entries at each line card, each line card stores a different subset
of entries S

′
such that, summing up all of them, we get S. The downside of this ap-

proach is a possible increase in switching operations and complexity that may harm
the performance. The authors suggest using CRC-64 as a hash function to store the
prefixes into the FIB. A numerical evaluation of Caesar is performed by using the
Xilinx Virtex-6 FPGA family as reference design. The main metric evaluated is the
number of prefixes supported that depends on the number of line cards. A Caesar
router with 600 line cards handles up to 600 million content prefixes.

The authors in [16] proposed a framework focusing on LNPM in NDN. Such a
framework consists of two key components: a name prefix transformation and FIB
instrumentation. When a router receives a name prefix announcement, it first ap-
plies the name reduction algorithm to transform the hierarchically structured name
prefix into a compressed key. This transformation is achieved through hashing. For
instance, if they have the NDN name /ufu/facom/mehar, they generate three keys
by hashing /ufu, /ufu/facom, and /ufu/facom/mehar. As we can see, the redundant
information (/ufu, /ufu/facom) is incorporated into the keys, which harms memory
consumption. On the other hand, such an approach can easily be adapted to run in
programmable switches. The evaluation was performed in both CPU and GPU and
it used three name datasets. To measure the performance of the LNPM algorithm,
the throughput was the only metric evaluated.

SACS [17] is another method that focuses on LNPM, like [16]. It consists of a
shape and content search framework for TCAM and SRAM. In SACS, a TCAM-
based shape search module is first used to determine a subset of possible matching
name prefixes, and then an SRAM-based content search module is used on the sub-
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set to find the longest matching prefix. The shape of a given prefix is a sequence of
its lengths. For instance, the shape for the prefix /a/ab/abc is /1/2/3. These shapes are
stored in TCAMs, pointing to hash tables located in SRAM. Compared to traditional
hash-based methods, such an approach improves latency because many memory ac-
cesses are eliminated since the shape guides the search to a small subset of keys.
However, SACS requires more memory than NFD [3], for instance, because it needs
to maintain dual fingerprints and cells in a slot of hash tables. The experiments were
conducted on a set of public name datasets and a public TCAM modeling tool [18]
were used to test the performance of TCAM-based shape search. For the SRAM-
based content search, the experiments were conducted on a server with Intel Xeon
CPU E5-2640x2 and 94 GB of main memory. The main metrics evaluated were
throughput and memory consumption.

3.1.2 Trie

Name Component Encoding (NCE) [19] is a mechanism to reduce memory con-
sumption by assigning a unique code to a given name component in such a way
that LNPM can be applied with the same semantics. For instance, the NDN names
/ufu/facom/mehar and /facom/lsi can be converted to /1/2/3 and /2/4, respectively,
by mapping a name component into an integer. The encoded name is then stored in
the FIB implemented as a trie-based data structure. The LNMP is performed start-
ing from the root to the full NDN name. The main limitation of NCE is the frequent
access to a slow memory and the extra time to perform the encoding. Theoretical
analysis and experiments conducted by using real dataset on a PC with an Intel
Core 2 Duo CPU of 2.8 GHz and DDR2 SDRAM of 8 GB demonstrate that NCE
can compress a FIB containing 3M entries to about 272 MB, 32.45% less than the
baseline. Packet delay and average packet lookup time are also evaluated. For the
same dataset, the former correspond to 1.9 us (7.7 faster than baseline) and the lad-
der 2,975.26 cycles. The benefits in terms of memory reduction and latency in NCE
comes at the expense of a building time of 34s to encode the prefixes.

The second trie-based method proposed to fixed-function switches is [20]. Its
main design goal is to have a compact data structure so that FIB with a few mil-
lion entries can still fit in SRAM for fast lookup. Thus, the authors propose to use
dual binary Patricia trie to minimize the redundant information stored. The binary
representation provides more opportunities to compress shared parts between dif-
ferent prefixes. On the other hand, binary tries tend to increase the depth of the tree,
impacting the lookup speed. Moreover, they introduce the idea of speculative for-
warding, which uses the Longest-Prefix Classification (LPC) instead of the Longest
Prefix Match (LPM). Unlike the LPM, LPC lookup guarantees that if there is a
match, the packet will be forwarded to the same next hop that LPM would use but, if
there is no match, the packet is still forwarded. However, for speculative forwarding,
the imprecise forwarding of the LPC may cause forwarding loops. The evaluation
is performed analytically and the metric used is the memory footprint. For a dataset



6 Eduardo Castilho Rosa and Flávio de Oliveira Silva

containing about 3.7M name prefixes, the memory footprint is around 31MiB, 50%
less compared to tokenized Patricia trie.

3.1.3 Bloom-filter

An Adaptive Prefix Bloom Filter (NLAPB) is presented in [21]. The key idea of
NLAPB is to split NDN prefixes into two segments and conduct the lookup oper-
ation with a combination of CBF (Counting Bloom Filter) and trie. The first seg-
ment contains prefixes with m name components (B-prefix) stored in BF, whereas
the second (T-suffix) contains variable-length prefixes stored in trie. NLAPB is im-
plemented in a commodity router equipped with eight interfaces. The experiments
illustrate that NLAPB achieves a fairly guaranteed scalability in terms of memory
consumption when huge namespaces are considered. The limitation of NLAPB in-
cludes the possibility of false positives, which can impair the forwarding. Memory
cost, lookup processing rate and false positive rate are the main metrics measured.

MaFIB [22] is another BF-based data structure for FIB. It uses a data structure
called Mapping Bloom Filter (MBF), proposed in [23]. The MBF consists of a reg-
ular BF and a Mapping Array (MA), which are bit arrays in fast on-chip memory
(SRAM). With the BF, the elements are verified whether they are in the MBF or
not. The value in MA is utilized as the offset address to access the output face(s)
stored in slow off-chip memory (DRAM). In comparison with [19] and other meth-
ods, MaFIB can provide a better compression ratio. However, its main limitations
include frequent high access to DRAM to extract the output faces(s), and false pos-
itives may occur, impairing the accuracy of the forwarding. The performance of
MaFIB is compared with the FIB based on NCE [19] in terms of the on-chip mem-
ory consumption, false positive probability, and building time.

B-MaFIB [24] is an improvement of MaFIB. It has the same features as MaFIB,
but the authors changed MBF by using a bitmap-mapping bloom filter (B-MBF)
index. The idea of B-MBF is to allow dynamic memory allocation to reduce mem-
ory consumption. However, B-MaFIB still needs to access slow DRAM to read the
packet information, such as output port(s) and stale time. Besides the evaluated met-
rics in Ma-FIB [22], B-MaFIB also includes throughput.

3.2 FIB for Programmable Switches

3.2.1 Hash Table

NDN.p4 [25] is the first attempt to implement the NDN in the P4 language. They
considered the original TLV name encoding to parse the NDN name content, al-
though they concluded the P4 language restricts many operations on this kind of
field. The FIB in NDN.p4 is implemented as a single P4 table with fixed-size en-
tries. The number of table entries for a single FIB entry is proportional to the max-
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imum number of components in processed packets. For instance, to store a prefix
/ufu/facom/mehar, they calculate the hash of each part of the name, which is h(/ufu),
h(/ufu/facom), and h(/ufu/facom/mehar), similarly to [16], and store all of them in
the FIB. The LNPM is performed very quickly, in only one cycle, by using a ternary-
matching operation. However, in a realistic scenario, this process can lead to ineffi-
cient memory use as the need to store m entries in the FIB for only one name prefix,
where m is the maximum number of components. Also, the collision problem can
increase memory consumption significantly.

To improve the NDN.p4, the authors in [26] designed an NDN router to address
the scalability issues of the proposed FIB in NDN.p4 and to extend the NDN func-
tionality, including the CS and multicast-capability. Similar to NDN.p4, the FIB in
[26] is implemented using only one P4 table. To deal with the problem that names
have variable length, they proposed a data structure called hashtray. The hashtray
is constructed from a name of max components, and it is divided into max blocks,
with each block i containing the result of the hash of component i. In contrast to
NDN.p4, such a technique requires a single table entry per FIB route, significantly
improving memory usage. However, using a 16-bit hash function to construct the
hashtray can cause lots of collisions. Furthermore, to store the hashtrays in the FIB
properly, it is necessary padding it from the index i up to the index max, where i
is the current number of name components in the name, and max is the maximum
name components supported by the architecture.

A similar approach based on hashtrays is presented in [27]. However, they focus
on the NDN routing mechanism primarily instead of forwarding. In addition to the
limitations of a hashtray-based method [26], [27] stores the only single FIB table
at the egress pipeline. As SRAM/TCAM are distributed equally across both ingress
and egress pipelines, such an approach wastes half of the on-chip memory available
in the switch.

The first attempt to implement the NDN router in a real programmable ASIC is
[28]. The key idea is that Dpckts are forwarded by a switch ASIC alone, whereas an
NDN engine forwards Ipckts at a server. The main limitation of such an approach is
that FIB implemented in DRAMs can severely impact the latency. The data structure
used to implement the FIB is HT. However, the authors do not provide any details
about it. In terms of memory usage, the PIT is distributed across many different
stages of pipeline to optimize TCAM and SRAM resources. However, there are
a couple of open research issues such as re-designing the integrity maintenance
method of PIT entries between pipelines, using the server as testers is not a good
solution since the number of ports on a router is more than 100, and the degradation
from the ideal throughput due to smaller Dpckt sizes.

3.2.2 Trie

On-Chip-FIB [29] is a FIB implemented as a Binary Search Tree (BST) in FPGA.
Although FPGA is a P4-capable target [30], the OnChip-FIB was not designed to
be P4 compatible. The content name is represented as a collection of strides of the
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same size. For instance, the name /ufu/facom is represented as ’/ufu’, ’/fac’ and
’om’, using stride size four. Those strides are inserted in the BST, and the LNPM is
performed by traversing the BST starting from the root node down to a leaf node.
In terms of memory consumption, the complexity of OnChip-FIB is O(n), where n
is the number of names in the dataset. However, in the worst case, OnChip-FIB is
O(nk), where k is the number of strides. When it comes to lookup speed, the time
complexity of OnChip-FIB is O(n), where n is the name size.

A second trie-based implementation of the FIB is presented in ENDN [31]. In
summary, ENDN extends the previous NDN data plane with a new P4 target ar-
chitecture. The authors claim this novel architecture allows multiple isolated P4
forwarding functions to be defined and executed. They also extend the P4 language
with several extern functions to enable the processing of strings. The FIB in ENDN
(EFIB) is implemented as a data structure called FCTree [32]. FCTree uses trie and
can compress name prefixes storing common sub-prefixes only one time. However,
as FCTree is proposed to run in software, the authors do not explain how FCTtree is
implemented in P4. ENDN uses a combination of trie and hashing because the au-
thors add a function that takes a name component position in parameter and returns
the hash of the component, which is used to query match tables and thus perform a
specific P4 action based on the value of a content name component. The time com-
plexity of LNPM, insertion, and deletion is O(n), which is the main limitation of
FCTree. Also, when it comes to implementing FCTree in P4, which the authors did
not address, is how to use a self-balancing binary search tree taking into account the
constraints that usually P4 targets impose.

3.2.3 Bloom-Filter

Finally, in [33] is proposed an FPGA-based FIB implementation for programmable
switches. Just like [29], the mechanism in [33] is not P4-compliant. However, in
contrast to [29], in which all FIB entries are stored in the same data structure (BST),
in [33] the name prefixes in the FIB are divided into two distinct groups: 1) Group 1:
Name prefixes with up to 4 components and 2) Group 2: Name prefixes with five or
more components. The Group 1 name prefixes are stored in an external lookup table,
i.e., in software, and the Group 2 name prefixes are stored in on-chip memory. Such
division makes sense considering the limited amount of on-chip memory available
in today’s FPGA boards. The main data structure used is BF [34] combined with a
hash function called H3 to store the prefixes into the FIB on an FPGA. The main
limitation of this approach is the high latency caused by the external name lookup.
A proof of concept system is implemented on a virtex-7 FPGA where both memory
consumption and packet processing rate are the metrics measured.
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Table 1 High-level comparison among FIB implementations for high-speed switches.

Cat. M Ref. Year Key Features Limitations Target

F

HT

[15] 2014

•Distributes FIB across multi-
ple line cards;
•FIB entries are stored by us-
ing CRC-64 hash;

•High #of switching operations,
which impacts the latency; FPGA

[16] 2014
•Focus on LNPM;
•Transform the name into a
compressed key;

•Redudant information increases
memory consumption; GPU

[17] 2018
•Stores shape of FIB entry;
•Content search framework;
•Low #of memory access;

•Need to maintain dual fingerprint
which increases memory usage; TCAM

Trie
[19] 2012

•Compress name prefixes;
•Component trie;
•Use State Transition Arrays;

•Frequent access to slow memory;
•Encoding process increases
the latency;

CPU

[20] 2015
•Speculative forwarding;
•Longest-Prefix Classification;

•Forwarding loop may occur;
•Higher depth of the tree(>latency); SRAM

BF

[21] 2014
•Split NDN prefixes into two
segments;
•Lookup based on popularity;

•False positives may occur;
•Dynamic memory allocation is
hard to achieve in hardware;

Router

[22] 2017

•Low on-chip memory cost;
•Support update operations;
•Stores large name datasets;
•Low building time;

•Frequent access to DRAM;
•High memory usage due to CBFs
in off-chip memory;
•Lots of hash functions executed
in the dataplane;

SRAM
DRAM

[24] 2018

•Idem [22];
•Leverage only one hash
function in the data plane;
•Dynamic memory allocation;
•Use of Bitmap as BF;

•Frequent access to DRAM to
access output faces increase
latency;

SRAM
DRAM

P

HT

[25] 2016

•FIB implemented as a single
P4 table;
•#table entries are proportio-
nal to #name components;
•LNPM executed at line rate;

•Waste of memory because many
tables entries are inserted for
each NDN name prefix;
•Not scale to millions of prefixes;

BMv2

[26] 2018

•FIB implemented as a single
P4 table;
•FIB can scale better;
•Use of hashtrays in TCAMs;

•Use of 16-bit hash functions can
cause lots of collisions, requiring
more scarce TCAMs

BMv2

[27] 2021
•Idem [26];
•Focus on routing;

•Idem [26];
•A large P4 table is used at egress
wasting TCAM/SRAM at ingress;

BMv2

[28] 2021
•FIB is stored in DRAM;
•Optimize memory usage by
splitting the PIT into stages;

•LNPM in DRAM adds to latency; ASIC

Trie

[29] 2019

•Content name is represented
as strides;
•Exploits the massive parallel
processing of FPGAs;

•Worst-case memory complexity
is O(nk);
•Transverse the trie is time
consuming;

FPGA

[31] 2020

•Extern to process strings;
•Support of wildcards
searches;
•Compress prefixes whose
share common sub-prefixes;

•NLPM, insertion and deletion is
O(n) impacting the latency;
•Supporting self-balance trees is
costly in P4 targets;

BMv2

BF [33] 2019
•Prefixes are splitted into 2
groups; •External lookup increases latency; FPGA

(Cat=Category; F=Fixed-Function Switches; P=Programmable Switches; M=Method; HT=Hash
Table; BF=Bloom-Filter)
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4 Discussion and Future Directions

Table 1 shows a preference for implementing the FIB by using HT weather in fixed-
function or programmable switches. The main reason is probably the simplicity of
calculating hashing in such devices since there are several dedicated chips to do so
at line rate. Also, hashing optimizes the latency, which fits well with high-speed
switches. However, when it comes to FIB in NDN, hashing increases the memory
footprint due to the redundancies in the name structure and the space necessary to
deal with collisions [35].

On the other hand, BF is also a compelling data structure but is less used. False
positives and large memory to deal with it could explain that. Considering that the
most memory-efficient methods reported in this review are MaFIB [22] and B-
MaFIB [24], both using BF as its primary data structure, such techniques should
be better explored in future research.

Trie-based methods are widely adopted in software implementations of the FIB
[6] but, as Table 1 shows, when it comes to FIB implemented in hardware, there
are just a few in literature. All of them were implemented in FPGAs and software
switches like BMv2, which are more flexible but less restrictive than ASICs. The
main reason for that resides in the limitations in hardware such as no-loops, no
pointers, and no dynamic memory allocation that all trie-based methods rely upon.

Since HT, tries, and BF are the methods used in all the papers we reviewed and
also since such methods are widely used in software as well [6], one possible re-
search direction is to come up with solutions to implement such data structures in
hardware overcoming its limitations and constraints. Given the fact that some pro-
grammable ASICs like Tofino have been open-source recently [36] and the open P4
specification allows the definition of new target architectures, researchers can even
develop new hardware design in the future to better support the implementation of
the data structures aforementioned.

Finally, from all papers we reviewed, we can also observe that [28] was the only
one that provided a prototype of an NDN router in an actual programmable switch
(Tofino ASIC). However, only the PIT data structure is fully implemented in the
hardware. Both CS and FIB are stored externally in DRAMs, which may impact
the performance negatively. Given the crucial role that FIB plays in NDN, this gap
needs to be filled. Therefore, efficient implementations of FIB and CS in the ASIC
besides HT, tries, and BF is a worthy topic of research with excellent opportunities
to innovate, mainly because P4 language is a trend now, and NDN has been gaining
momentum over the last few years due to its standardization process at NIST [37].
Since on-chip memory in today’s programmable ASICs is minimal but, at the same
time, the scalability of NDN depends on processing packets at Tbps, the study of
new compression techniques that takes into account both the flexibility of current
programmable pipelines and the hardware constraints is a good direction towards
filling this gap. Such an approach goes beyond the scope of NDN and can bene-
fit all fields in computing that use cache-based systems implemented in hardware
that makes use of string processing. Examples of such use-cases may include Direc-
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tory Caches in Operating Systems (DCache), Content Delivery Networks (CDN),
Domain Name System (DNS), and many others.

5 Conclusion

Forwarding Information Base (FIB) is one crucial data structure in Named-Data
Networking (NDN) that aims to provide connectivity between consumers and pro-
ducers. This work reviewed some recent FIB implementations for both fixed and
programmable switches. Our observation is that implementing FIB data structure in
hardware is quite challenging due to matching NDN rules to switch constraints and
limitations. A total of 15 reviewed papers have shown that Hash Table is the most
used method to implement the FIB in hardware, followed by Trie and Bloom-Filter.
Such data structures are compelling, but, at the same time, they were not designed
for the specific purpose of FIB.

Therefore, we argue that the research community needs to fill this gap and come
up with new data structures for FIB that are aware of the architecture constraints
while providing a good balance between memory footprint and lookup speed.
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