
Designing and Prototyping of SDN Switch for
Application-Driven Approach

Diego Nunes Molinos, Romerson Deiny Oliveira, Marcelo Silva Freitas, Natal
Vieira de Souza Neto, Marcelo Barros de Almeida, Flávio de Oliveira Silva and
Pedro Frosi Rosa

Abstract Currently, the Internet has become a limiting factor for its evolution.
Applications are being developed from a new perspective of network utilization,
demanding more Quality of Service (QoS) and Quality of User Experience (QoE).
Approaches that aim to redesign the architecture, for example, Software Defined
Networks (SDN), have become popular in the field of computer networks in an
attempt to minimize the problems experienced by TCP/IP. In theory, SDN Networks
naturally leave all the flexibility and programmability of the network in charge of
the control plane, disregarding the data plane’s ability to improve the QoS and QoE
for users. This work presents the specification and the development of a prototype

Diego Nunes Molinos
Faculty of Computing, Federal University of Uberlandia (UFU), Joao Naves de Avila Avenue,
2121, Santa Monica, Uberlandia, Brazil, e-mail: diego.molinos@ufu.br

Romerson Deiny Oliveira
High Performance Networks Group, University of Bristol, Woodland Road, Bristol, United King-
dom, e-mail: romerson.oliveira@bristol.ac.uk

Marcelo Silva Freitas
Department of Exact Sciences, Federal University of Jataı́ (UFJ), Jataı́, Brazil, e-mail: msfre-
itas@ufg.br

Natal Vieira de Souza Neto
Faculty of Computing, Federal University of Uberlandia (UFU), Joao Naves de Avila Avenue,
2121, Santa Monica, Uberlandia, Brazil, e-mail: natalneto@ufu.br

Marcelo Barros de Almeida
Electrical Engineering Faculty (FEELT), Federal University of Uberlandia (UFU), Joao Naves de
Avila Avenue, 2121, Santa Monica, Uberlandia, Brazil, e-mail: marcelo.barros@ufu.br

Flavio de Oliveira Silva
Faculty of Computing, Federal University of Uberlandia (UFU), Joao Naves de Avila Avenue,
2121, Santa Monica, Uberlandia, Brazil, e-mail: flavio@ufu.br

Pedro Frosi Rosa
Faculty of Computing, Federal University of Uberlandia (UFU), Joao Naves de Avila Avenue,
2121, Santa Monica, Uberlandia, Brazil, e-mail: pfrosi@ufu.br

1



2 Authors Suppressed Due to Excessive Length

of Switch with MAC driven by the applications for SDN networks. Although it is
possible to reconfigure the behavior of the network element, the MAC remains the
same. Compared to other similar approaches, this proposal can expose, through the
fine-grained, the low-level forwarding rules logic to the control plane through an
orchestrator module, systematically allowing reprogramming. We carried out a case
study using the Entity Title Architecture (ETArch) to show the ability of Switch to
handle parameters, such as priority and bandwidth, in real-time.

1 Introduction

Internet applications are demanding more and more resources from the network. Al-
though those applications require mobility, security, energy efficiency, bandwidth,
QoS, and QoE, they usually leave to the network the best scenario to satisfy their re-
quirements. Therefore, SDN networks have offered better and more efficient control
over networking devices from a logically centralized controller to improve network
management.

Due to the decoupling of the data plane and control plane in SDN, a distance
from the functions implemented in hardware and software was created, making the
infrastructure level a single granular network fabric. Furthermore, it contributed so
that all flexibility and programmability were carried over to the control plane, dis-
regarding the data plane’s ability to improve the QoS and QoE for users.

Some proposals aim to explore the flexibility of the network through software
solutions, for example, [15] and [9]. However, these solutions typically assume
link-level connectivity and bypass data plane resources to provide QoS and QoE.
In general, SDN implementations use OpenFlow-based switches or some virtual-
ization technique. Although it is possible to reconfigure the behavior of the network
element, these actions do not offer flexibility, making it challenging to manipulate
QoS and QoE parameters at the MAC level.

This work presents a new switch for SDN networks with MAC driven by the ap-
plication. This prototype is Linux-based, and it enables flexibility and programma-
bility in the network’s data plane. With our approach, the MAC remains the same,
offering backward compatibility, and we go further to provide control to QoS and
QoE parameters that impact the MAC decisions. In addition, we present a case study
using the Entity Title Architecture (ETArch) to demonstrate and validate our switch.
ETArch uses the SDN paradigm and is an architecture with features and support to
context-oriented algorithms that allow adjustments according to the application re-
quirements [2]. With our work, ETArch can modify the switches parameters chang-
ing their operation’s context to guarantee the QoS and QoE driven by the application
[2].

The remainder of the document is structured as follows: Section 2 presents the
overview of flexibility in the SDN Data Plane and the background of the ETArch.
Section 3 offers Switch prototype design details. Section 4 provides the results, and
finally, Section 5 presents the conclusion and future work.



Designing and Prototyping of SDN Switch for Application-Driven Approach 3

2 Background

This section provides a background about the programmability and flexibility in the
SDN field and a brief about ETArch architecture.

2.1 Programmability and flexibility in SDN Data Plane

SDN-based networks present an innovative way of rethinking computer networks
in the Future Internet field. According to [13], this paradigm aims to create a well-
defined logical interface for network control, abstracting the network and providing
reconfigurability of services at runtime. Its uniqueness lies in the fact that it gives
programmability for the network by decoupling the control and data planes in the
architectural design of the network.

Since the beginning of SDN, there has been an adhesion to use the OpenFlow
technology. According to [4], OpenFlow enables the creation of configurable flows
from a central software-based controller. It separates the data plane from the control
plane and presents a centralized programming model to manage the network ele-
ments. It offers an easy way to develop an L2 solution to support SDN scenarios
through the abstraction of the network infrastructure level.

The interface between the centralized control plane and the forwarding elements
is established by the OpenFlow protocol [4] [15]. It is an out-of-band interface in
which the controllers are connected to the network devices through physically dedi-
cated links used exclusively for control traffic [7]. Fig. 1 illustrates OpenFlow from
the point of view of communication interfaces with details of the data plane.

Fig. 1 OenFlow architecture
interface. Figure adapted from
[10]

As shown in Fig. 1, there is a dependency on using OpenFlow on legacy hard-
ware platforms, making it difficult to improve any low-level network features [6].
From the point of view of actions implemented by flow, the OpenFlow has a coarse-
grained concerning managing flows. There is an entry of flows and one action as-



4 Authors Suppressed Due to Excessive Length

sociated with each entry, and the action is applied to the entire flow. There is no
treatment for each primitive but a limited set of actions per stream.

The drawback observed in the OpenFlow-based switches is that it requires, be-
fore startup, a manual configuration of your controller’s IP address and TCP port
[7]. Besides, it is necessary to evolve OpenFlow, expanding the range of equipment,
protocols, content headers to support new network architectures, and this requires
continuous modification in its specifications [8].

Solutions OpenFlow-based make it challenging to implement new features at
the network’s low level. Their policies are applied to the entires flows and not per
primitives. In addition, the low level of OpenFlow switch the MAC remains the
same.

In response to OpenFlow difficulties, the Programming Protocol-Independent
Packet Processors (P4) [14] emerged, a high-level programming language for pro-
gramming network devices in the data plane. The drawback in using P4 is that the
solution requires a translation infrastructure to be implemented down to the proces-
sor level. In addition, using high-level synthesis tools to generate custom hardware
can be an approach that introduces additional complexity into the design, with re-
sults that are still not so satisfactory.

2.2 Programmability and flexibility in ETArch Data Plane

The ETArch has been designed to approximate the Application layer semantically to
the lower layers, allowing the requirements defined by the applications to permeate
through the architecture layers. ETArch is based on SDN and presents innovations
related to addressing network elements by the separation of location and identifica-
tion, which intrinsically enables multicast transmissions and network mobility [1].

From the ETArch perspective, it’s essential to comprehend the concepts of entity,
Workspace, and the control agent to understand how the architecture works.

Entities are elements that want to communicate in a distributed environment [2].
It can be applications, devices, computers, network elements, etc. Entities are only
identified by a title and a set of capabilities.

The Workspace represents an instance of communication driven by the applica-
tion and carries a set of capabilities of the communication domain. As an example
of the application requirements, can be mentioned the VoIP applications, where the
transmission delays can be smaller than 150ms. However, delays above 400ms can
impair transmission. Therefore, the Workspace created to serve a VoIP communi-
cation must operate with a transmission delay between 150ms and 400ms. For it
to happen, all the architecture layers must be able to understand the application’s
requirements [2].



Designing and Prototyping of SDN Switch for Application-Driven Approach 5

2.2.1 Domain Title Service - DTS

A Domain Title Service (DTS) represents a set of ETArch controllers in a distributed
system. The goal of DTS agents is to separate the network into manageable sub-
nets within ETArch [2]. A Domain Title Service Agent (DTSA) acts in the control
plane, managing the network elements. In addition, DTSA is responsible for creat-
ing, managing, and dropping Workspaces on network elements. A typical ETArch
environment is illustrated in Fig. 2.

Fig. 2 Typical ETArch Envi-
roment with Data Workspace,
Control Workspace, DTSA
and entities. Figure from [11].

As shown in Fig. 2, DTSAs act on the network control plane and all commu-
nication between DTSA’s and network elements is performed through a Control
Workspace. In turn, the network elements act on the network data plane level, al-
lowing entities to communicate within a communication domain, a Data Workspace.

3 Designing and Prototyping of SDN Switch Application-Driven
Approach

This section will be present the design and prototyping of SDN Switch.

3.1 ETSCP Protocol

ETArch Switch Control Protocol (ETSCP) was designed by [11] to manage the con-
trol communication between DTSA and Switches in the ETArch network. There is
no application entity involved in this control communication, which means, appli-
cations do not use ETSCP. The ETSCP format is similar to Ethernet protocol (802.3
[12]) to maintain compatibility with the current network interface cards, allowing
the reuse of available technology. The changes in the content of the Ethernet header
are in the source MAC address and destination MAC addresses field to support the



6 Authors Suppressed Due to Excessive Length

identification of the Title (Workspace) + Source Entity and the control message type
added in the payload. Fig. 3 illustrates the message format used by ETSCP.

Fig. 3 ETSCP message for-
mat

About Services and Vocabularies, the ETSCP messages are Add Workspace, Edit
Workspace, Update Workspace and Remove Workspace. All the ETSCP services
are connectionless with acknowledgments, and ETSCP messages follow the taxon-
omy of confirmed services, Request/Indication, and Response/Confirmation. A new
service in the ETSCP that acts on the scheduling policies to ensure QoS through
non-ETArch communication was instituted, the Update Regular Connection service.
Table 1 offers a clear association between the protocol services and their messages.

Table 1: ETSCP Services and Vocabulary

Service Messages Functional Description

Create AddWkpREQ Confirmed service.
Workspace AddWkpRESP To create new Workspaces in the switch.

Edit EditWkpREQ Confirmed service.
Workspace EditWkpRESP To modify parameters of the Workspace.

Remove RemWkpREQ Confirmed service.
Workspace RemWkpRESP To remove a Workspace in the Switch.

Update UpdateWkpREQ Confirmed service.
QoS Parameters UpdateWkpRESP To modify the QoS parameters of the switch’s schedulers.

Regular Connection UpdateRegConREQ Confirmed service.
QoS Parameters UpdateRegConRESP To modify the QoS parameters of the switch’s schedulers.

3.2 SDN Switch FSM - Finite State Machine

Modeling a solution means building processes capable of interpreting messages and
acting according to the context. The design of the SDN Switch was specified using
a finite state machine (FSM). The diagram in Fig. 4 formally describes the behavior
of the services defined by the ETSCP protocol.

The state ACTIVE is the initial and final state. All the other states are signalized
in different colors according to each service. The state PARSER is responsible for
analyzing all the messages and forwarding them to the other states according to each
service. In the sequence are presented a brief description of the modeled services.



Designing and Prototyping of SDN Switch for Application-Driven Approach 7

Fig. 4: Switch SDN - Finite State Machine (FSM)

1. Create Workspace: add support to the new schedulers’ policies when the DTSA
needs to create a control logic domain to respond to an entity request to create
a data Workspace. When DTSA wants to create a Workspace, it sends an Ad-
dWkpREQ message to SDN Switch (AddWkpIND). Then, it verifies the existence
of Workspace on the WorkspaceDataBase and checks the Switch availability to
support this new Workspace, whether both of those actions before were true the
Workspace will be created, and an ACK is sent or a NACK if not.

2. Edit Workspace: attach or remove a Entity in the existing Workspace, extending
the Workspace’s domain to reach out to the new Entity and update the sched-
uler’s policies. When DTSA needs to edit a Workspace, it sends an EditWkpREQ
message to SDN Switch (EditWkpIND). It verifies the existence of Workspace
on the WorkspaceDataBase, the Workspace will be edited, and an ACK is sent
or a NACK if not.

3. Update Workspace: change the QoS parameters of the existing Workspace. The
QoS parameters used for schedulers policies are Priority that define the frame’s
prioritization per port, Rate and Ceil define the assigned bandwidth to each
Workspace, Burst and CBurst determine the size, in bytes, to control the duration
of the bursts.

4. Remove Workspace: remove the existing Workspace from the SDN Switch. When
DTSA needs to remove a Workspace, it sends a RemoveWkpREQ message to



8 Authors Suppressed Due to Excessive Length

SDN Switch (RemoveWkpIND). Then, it verifies the existence of Workspace on
the WorkspaceDataBase, whether it was true, the Workspace will be removed,
and an ACK is sent or a NACK if not.

5. Update Regular Connection: change the QoS parameters of the existing regular
traffic. The QoS parameters used for schedulers policies are the same. Any frame
that is not a control frame or an ETArch frame will match the general forwarding
rule.

3.3 Architecture of SDN Switch

From the point of granularity, the SDN Switch proposed has a fine granularity con-
cerning the legacy switches. It allows forwarding policies oriented to frame and not
the physical or logical ports as legacy equipment. Figure 5 present a view of the
architecture and organization of SDN Switch.

Fig. 5 SDN Switch Architec-
ture and Organization

The Switch proposed in this work is a Linux-Based, the use Bridge module, sup-
port for 802.1 standards including 802.1P/Q and VLANs, and managing multiple
network interfaces (NIC) justify the adoption of the Linux operating system. Fur-
thermore, Linux Kernel natively supports several L2/L3 network functions, and the
Bridge and Traffic Control modules are essential to promote traffic aggregation and
manipulate forwarding traffic.

3.4 NEA-SWITCHD Module

This module is responsible for orchestrating all the elements in the SDN Switch,
aiming to offer all the SDN Switch programmability and flexibility. The NEA
SWITCHD module comprises NEA-Control, NEA-Parser, and NEA-Scheduler.
The entire SDN Switch architecture operates sequentially. All primitives are queued
and handled one by one by the NEA-SWITCHD module. Figure 6 present a view
of the architecture and organization of the NEA SWITCHD module divided into
software (Kernel Space and User Space) and hardware layer.



Designing and Prototyping of SDN Switch for Application-Driven Approach 9

Fig. 6 NEA SWITCHD mod-
ule Architecture and Organi-
zation

The NEA SWITCHD module interacts with Linux Kernel. In general terms, this
module analyzes all frames that pass through the Bridge, schedules them, and or-
chestrates the policies within the scheduler defined by the network controller.

4 Tests and Prototyping Experimentation

The test aims to validate the Switch’s ability to modify its control parameters to
ensure the QoS of the applications. As depicted by Fig. 7, sequence diagrams show
when messages are sent and received between Entities, Switch, and DTSA. For
Workspace creation or edition, an entity sends the first message, and it is a data
message addressed to a random Workspace. When Switch receives it, there is no
forwarding policy for this message addressed, and the controller is triggered to con-
figure or edit forwarding rules on the Switch. After that, DTSA sends a AddWkp Req
or EditWkp Req to configure the Switch.

Fig. 7 Message Exchange to
Service Executions. All mes-
sage exchange was performed
by a lightweight application
that sends frames directly
from the L2 layer. This appli-
cation was written using the
Python language and insti-
tutes ETSCP type messages.

Regarding removing Workspaces and updating QoS parameters, it begins with
the DTSA. DTSA sends a RemoveWkp Req, RenewReg Con Req, or UpdateWkp Req
to reconfigure the Switch, and after this, the Workspace is completely removed from
Switch, or its QoS parameters are updated.

Fig. 8 illustrates the environment developed for the verification of the SDN
Switch’s ability to configure and reconfigure the application-oriented QoS parame-



10 Authors Suppressed Due to Excessive Length

ters. The ETSCP control messages are sent to Switch from the lightweight version
of the DTSA. In addition to DTSA, there are two entities attached in a Workspace,
and one of them runs a stream application.

Fig. 8 Scenario to validate
the SDN Switch performance
concerning the control mes-
sages sent by the DTSA.
The Entities are applications
written in Python that ex-
change ETArch messages. At
the same time, Entity 02 has
been running an application
streaming.

The metrics observed are (i) the ability to understand control messages from
DTSA and (ii) the ability to configure application-oriented QoS parameters. Further-
more, the DTSA will act on the Workspace and regular flow to adjust the throughput
through the QoS parameters.

In Workspace communication, the Entity 01 sends frames with a payload size
of 58 bytes destined for the Workspace Classid 99. Parallelly, the Entity 01 sends
frames with a payload size of 1253 bytes with the target workspace Classid 99.
Although the frame sizes are different, stricter QoS policies allow less traffic in bytes
by Workspace, and less strict QoS policies allow more traffic through Workspace.

Fig. 9: Throughput (f/s) x Time interval (s) - Workspace and Application Streaming.

The SDN Switch throughput related to the Workspace during the time interval of
544 seconds is shown in Fig 9 (a), the QoS parameters are changed five times (Sce-
narios 1, 2, 3, 4, and 5), and in Fig. 9 (b), the QoS parameters were modified three
times (Scenario 1, 2, and 3). A clear association between the Traffic rate and QoS
parameters configuration about Workspace communication and Application stream-
ing is observed in Table 2. It is essential to point out that during the tests, the Burst



Designing and Prototyping of SDN Switch for Application-Driven Approach 11

and Cburst parameters were not changed, just the priority and available bandwidth
do. Both scenarios (a) and (b) presented in Figure 9 were evaluated concomitantly
using the same time interval, and all the results were collected in real time.

Table 2: Traffic rate and QoS parameters configuration

Entity/Worskpace Communication Traffic rate (f/s) QoS parameters

Entity 01 26,91 frames/s Scenario 01
Entity 02 39,11 frames/s Priority.: 2, Rate: 100Mbit, Ceil: 100Mbit.

Entity 01 10,04 frames/s Scenario 02
Entity 02 53,79 frames/s Priority.: 7, Rate: 100Kbit, Ceil: 100Kbit.

Entity 01 1,0 frames/s Scenario 03
Entity 02 10,4 frames/s Priority: 7, Rate: 10Kbit, Ceil: 10Kbit.

Entity 01 0,10 frames/s Scenario 04
Entity 02 2,10 frames/s Priority: 7, Rate: 1Kbit, Ceil: 1Kbit.

Entity 01 53,73 frames/s Scenario 05
Entity 02 56,70 frames/s Priority: 2, Rate: 1Mbit, Ceil: 1Mbit.

Entity/Application Streaming Traffic rate (f/s) QoS parameters

Entity 02 119,86 frames/s Priority: 6, Rate: 100Mbit, Ceil: 100Mbit.

Entity 02 30,84 frames/s Priority: 7, Rate: 100Kbit, Ceil: 100Kbit.

Entity 02 66,41 frames/s Priority: 4, Rate: 300Kbit, Ceil: 300Kbit.

Both scenarios (a) and (b) presented in Figure 9 were evaluated concomitantly
using the same time interval, and all the results were collected in real-time.

5 Concluding Remarks

This work presented the design and prototyping of SDN switch with an application-
driven approach. This proposal is a Linux-based SDN switch that allows the creation
and modifies of forwarding rules in the SDN data plane. This solution has a fine
granularity concerning other solutions used in SDN networks, allowing adjusting the
application-oriented QoS parameters, not by flow or port as most legacy switches.

The flexibility added to the Software layer makes it easy to add new fea-
tures and new support to new SDN architectures. The ETSCP guides a Switch to
Workspace support and changes in operation time on ETArch architecture. The
NEA SWITCHD module acts in the orchestration of the Linux Kernel modules re-
sponsible for the programmability.

The results presented in this work show the ability of the SDN Switch to receive
control messages from DTSA and act in the configuration of QoS policies (priority
and bandwidth) in real-time. To the road ahead, we look forward to using high-



12 Authors Suppressed Due to Excessive Length

performance hardware as the switch fabric implementation co-designed in a Kernel
Linux embedded software environment.

References

1. de Oliveira Silva, F., Gonçalves, M. A., de Souza Pereira, J. H., Pasquini, R., Rosa, P. F., and
Kofuji, S. T.: On the analysis of multicast traffic over the entity title architecture. In 2012 18th
IEEE International Conference on Networks (ICON) (pp. 30-35). IEEE (2012)

2. de Oliveira Silva, F., de Souza Pereira, J. H., Rosa, P. F., and Kofuji, S. T.: Enabling future
internet architecture research and experimentation by using software defined networking. In
2012 European Workshop on Software Defined Networking (pp. 73-78). IEEE (2012)

3. Kalyaev, A., and Melnik, E.: FPGA-based approach for organization of SDN switch. In 2015
9th International Conference on Application of Information and Communication Technolo-
gies (AICT) (pp. 363-366). IEEE (2015)

4. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., and
Turner, J.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2), 69-74. ACM (2008)

5. Farhad, H., Lee, H., and Nakao, A.: Data plane programmability in SDN. In 2014 IEEE 22nd
International Conference on Network Protocols (pp. 583-588). IEEE (2014).

6. Bifulco, R., and Rétvári, G.: A survey on the programmable data plane: Abstractions, archi-
tectures, and open problems. In 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR) (pp. 1-7). IEEE (2018)

7. Freitas, M. S., Rosa, P. F., and de Oliveira Silva, F.: ConForm: In-Band Control Flows Self-
establishment with Integrated Topology Discovery to SDN-Based Networks. In Workshops
of the International Conference on Advanced Information Networking and Applications (pp.
100-109). Springer, Cham (2020).

8. Oliveira, R. D., Molinos, D. N., Freitas, M. S., Rosa, P. F., and de Oliveira Silva, F.:
Workspace-based Virtual Networks: A Clean Slate Approach to Slicing Cloud Networks.
In CLOSER (pp. 464-470) (2019)

9. Bosshart, Pat and Daly, Dan and Gibb, Glen and Izzard, Martin and McKeown, Nick and
Rexford, Jennifer and Schlesinger, Cole and Talayco, Dan and Vahdat, Amin and Vargh-
ese, George and Walker, David (2014), P4: Programming Protocol-independent Packet
Processors, ACM SIGCOMM Computer Communication Review. New York, NY, USA,
doi:10.1145/2656877.2656890

10. Mehra, M., Maurya, S., and Tiwari, N. K. (2019). Network load balancing in software defined
network: A survey. International Journal of Applied Engineering Research, 14(2), 245-253

11. Oliveira, R. D., Freitas, M. S., Molinos, D. N., Rosa, P. F., and Mesquita, D. G. (2021, May).
ETSCP: Flexible SDN data plane configuration based on bootstrapping of in-band control
channels. In 2021 IFIP/IEEE International Symposium on Integrated Network Management
(IM) (pp. 711-715). IEEE.

12. IEEE. Ieee standard for ethernet, IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015),
pp. 1–5600, Aug 2018.

13. Kim, H., and Feamster, N. (2013). Improving network management with software defined
networking. IEEE Communications Magazine, 51(2), 114-119.

14. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., ... and Walker, D.
(2014). P4: Programming protocol-independent packet processors. ACM SIGCOMM Com-
puter Communication Review, 44(3), 87-95.

15. OF-CONFIG 1.2 (2014). In: OpenFlow Management and Configuration Protocol. Open Net-
working Foundation. Available via DIALOG.
https://opennetworking.org/wp-content/uploads/2013/02/of-config-1.2.pdf


