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Abstract—With the variety of applications and the different
user requirements, it is necessary to offer tailored resources
efficiently not only in access but also in the core of the network.
Inspired by the definition and standardization of mobile net-
works, especially 5G that focused on business verticals, the term
network slicing has received numerous state-of-the-art efforts to
materialize an approach that meets dynamism, programmability,
and flexibility requirements. Leveraged by SDN and NFV tech-
nologies, network slicing is inspiring by resource sharing similar
to virtual machine management, allowing standard network
hardware to accommodate a wide variety of logical networks
with specific requirements and data and control planes. However,
state-of-the-art approaches do not address resource slicing at
the core of the network in detail and appropriately. Therefore,
we built NASOR to provide network slicing over the Internet
data plane spanning across multiple domains through a segment
routing and a distributed-based approach. Our approach excels
those found in state-of-the-art by delivering an open policy
interface that allows third-party applications to manage network
slices dynamically. In this sense, this paper exploits this interface
through a mechanism of convolutional neural networks that
classifies network traffic, instructing the path-setting agent to be
aware of application which predominantly runs on the network
improving dynamism in the network slices deployment. Exper-
iments showcase the convolutional neural network applicability
and suitability as an enabling technology to enhance and instruct
NASOR to establish network slices over multiple domains.

Index Terms—SDN, NFV, Segment Routing, Network Sllicing,
Deep Learning, Convolutional Neural Networks

I. INTRODUCTION

To deal with different granularity levels of requirements
that applications impose on the network, management, and
orchestration mechanisms are increasing in the state-of-the-art
[11, [2], [3]. The service-aware feature is massively present in
the specification and standardization of mobile networks, es-
pecially at 5G, which emerged network slicing as a consensual
enabling technology [4], [5].

Network slicing inherits virtualization concepts in comput-
ing that provides resource sharing of standard hardware for
tenants owners privately [6]. To employ sharing notions within
networks, the community is proposing and combining enabling
technologies in this ecosystem. Software-defined Networking
(SDN) is a paradigm that decouples data and control plane of
the network [7], providing an interface for programmability
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and customization of the desired behaviors for the network [8].
This technology has provided findings in numerous network
management and operation approaches.

Jointly, Network Function Virtualization (NFV) has mod-
ified a way of delivering network functions, commonly pro-
vided through traditional vendors that offer specific network
functions, separating software and hardware functions [9],
[10]. Similarly, the segment routing which materializes its en-
visioning meets in active networks and source routing concept
raising as an enabling technology increasing the dynamicity in
packet forwarding in with a stateless control plane approach
[11], [12]. Thus, combining SDN, NFV, and segment rout-
ing, many challenges were addressed, filling the management
and orchestration gap in the network slicing ecosystem [13]
materialized in the NASOR proposal [14].

Thereby, this paper presents the exploitation of the interface
Open Policy Interface (OPI) of NASOR [14], which enables
third-parties applications to change the network slicing path.
We ran experiments to measure how potential third-party
applications provide applicability and performance to instruct
the network slice configure agent, taking into account the pre-
dominant traffic type running on interfaces where slices will be
configuring. Hence, we combine PacketVision [15], previously
proposed, with our newest OPI approach to materialize a smart
network slice establishing.

The main contributions of this paper are summarized as
follows: (1) Exploiting the applicability and suitability of the
Open Policy Interface as a designed approach to enhance
network slice deployment in NASOR ecosystem through third-
party implementations; (2) The PacketVision method for build-
ing a dataset basing on the full-packet structure, considering
both header and payload; (3) A quantitative comparison of the
performance of three pre-trained CNN architectures in terms of
classification accuracy, precision, recall, f1-score, and training
time.

The remainder of this paper is organized as follows: Sec-
tion II brings related work. Section III presents our approach to
network slicing and traffic classification. Section IV explains
our evaluation scenario. Section V discusses the results. Con-
clusion and future work are presented in Section VI
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II. RELATED WORK

In [16], is proposing a traffic classification mechanism based
on convolutional neural networks. The proposed mechanism
extracts the payload bits from the packets and divides them
into a specific ratio to build a square matrix. When bits
are missing to establish a perfect division, bits-padding had
been adding. Thus, the representation of an application class
corresponds to the figures set, wherein each pixel of a specific
figure is the result of a mathematical operation that combines
all the payload bits of the packet into a single pixel. In this
sense, to build a class figure set, it is necessary to take several
flows of the same application into account. Our proposal goes
further by considering the fully-packet structure.

A proposal that also uses convolutional neural networks to
provide application classification and traffic categorization is
available in [17]. The proposal integrates feature extraction
and classification through deep neural networks of the type
stacked autoencoder (SAE) and convolutional neural network
(CNN). The method takes into account, in the pre-processing
phase, the entry of the packet capture (pcap), which proceeds
with header extraction, modification, and bits normalization,
and IP address masking. After being processed and converted
into bit strings, the data feeds into the neural network input.
In contrast to the present proposal, the authors assume the bit
chain that represents a semantics of the packet data as an input
for learning the neural network.

The approach seen in [18] combines CNNs and Long Short
Term Memory (LSTM) for traffic classification considering
108 classes. The classifier mechanism is flow-based, and its
pre-processing approach considers the initial 20 packets of a
flow. This approach relies on feedback that the final CNN
tensor transforms the vector of characteristics into a matrix
acting as an input to the LSTM. In contrast to the proposed
work, the [18] approach considers as inputs to the machine
learning mechanism a set of information extracted from flows.

Other detection approaches for security and privacy pur-
poses had been seeing in [19]. The proposal brings a gener-
alist mechanism for classifying traffic based on deep learn-
ing and a taxonomic model for schematizing state-of-the-art
contributions. Additionally, the framework includes the pre-
classification stage for cleaning and normalization. In contrast
to the [19] proposal, we have advanced the state-of-the-
art by materializing the implementation of an online traffic
classification approach.

The proposed presented in [20] combines the Reproducing
Kernel Hilbert Space (RKHS), and CNN approaches to pro-
vide IP traffic classification. The approach consists of extract-
ing statistical flow characteristics in tuple format, considering
the mathematical model RKHS transforming them into six
channel images. However, this study raises questions about
the overfitting possibility since the packets of the same class
lead to having the same size and sequencing behavior. Our
proposal goes beyond the [20] approach by providing a traffic
classification mechanism in a free and straightforward flow
pre-processing way.

III. PROPOSAL

This section presents the integration of a third-party CNN-
based approach with NASOR through OPI for instructing
network slice establishment spanning across multiple domains
taking into account the kind of application running on the
network.

A. NASOR Overview

The state-of-the-art does not fully deliver network slicing
at the core of the network. In this sense, the Network and
Slice Orchestrator (NASOR) [14] approach makes it possible
for the network to be shared and allocated to multi-tenants
similar to what befalls in the management of virtual machines.
The challenges facing network slicing are diverse, especially
in a scenario of multiple domains that have technological and
political autonomy.

The NASOR framework establishes logical connectivity
that spans multiple domains, known as Autonomous Systems,
and each logical connectivity has independent management
and control available to owners. To act as a network slice
manager, NASOR comprises SDN, NFV, Segment Routing,
and distributed domain information repository technologies.

As depicted in Fig. 1, NASOR has entities settled in blocks
that communicate and perform instructions to provide logical
connectivity for a user. The first NASOR an independent entity
within each domain, which implements network slicing based
on Segment Routing. The entity is responsible for managing
and handling requests for creating network slices, exchanging
computer and network resource information for each domain,
and instantiating NANO, which is the network slice manager
made available to owners/users.
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Fig. 1. NASOR Framework Overview.

B. The Open Policy Interface

The Open Policy Interface (OPI) is a set of methods that
allows third-party implementations to be attached to NASOR
to provide a specific function. Fig. 2 depicts the components
build-block of the NASOR architecture and its third-party
applications enablement. This relationship happens through the
RestAPI interface exchanging messages such as topology path
parameters. The abstraction that this interface proposes enables
third-party implementations to operate on a data structure that
defines the path to the network slice by exchanging asyn-
chronous messages on the interface. In this context, dynamism
in the management and implementation of a network slice is
guaranteeing.
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Fig. 2. NASOR Third-party applications enablement.

To increase dynamism in network slicing, especially in
specifying alternative paths to routing algorithms, NASOR has
two approaches for defining paths between multiple domains.
First, one considers the data plane path provides through
routing algorithms, such as BGP and OSP. In the second one,
to exploit the OPI, we combine a third-party mechanism based
on convolutional neural networks (PacketVision) to choose
the network slice path, taking into account the predominant
application running on the network.

C. Data Processing Method

Building the traffic classification mechanism and coupling
its functionalities with the NASOR through OPI required
data transformation in a preliminary phase. Our approach
considered two datasets from different sources to construct
the image classes according to their traffic characteristics. In
the training and validation stage, the deep learning mechanism
operates over a dataset intending to train the model to be used
later in the classification.

The classes which comprise the dataset are the Bit Torrent
and DNS classes extracted from the dataset available at [21].
Additionally, we built VoIP class from two entities communi-
cating by ~ 90 seconds by voice with data chunks processed
by the g711 codec through a network slice deployed through
NASOR. The IoT class comprises our dataset, including
packets originated by 27 heterogeneous devices [22]. The final
dataset generated from the raw data structure contains 5797
images, divided into Bit Torrent (1217), DNS (1412), VoIP
(1320), and IoT (1848).

To connect the traffic classification into OPI, a CNN model
had trained and validated. Subsequently, the data collection
mechanism, built and accessed by the NASOR of each domain
through gRPC and pcaplibrary, collects and forwards to
the classifier, which returns the packet class. Therefore, the
training and validation phase of the model befalls only once,
making the classification later on-the-fly.

The packet capture step happens through the Wireshark tool,
enabling the evaluation and export of the packet contents, es-
pecially in raw format. After collected, raw data are extracting
from each packet, including headers and payloads in a Byte
Array format. These bytes are organized in a decimal-matrix

and following changed into a data model suitable for machine
learning training.

Packets with the same source or destination may eventually
have the related bytes in the same place, especially standard-
ized fields such as TCP or UDP control headers, implying in
pixels placing at the same location. Therefore, we proceed
with the shuffling of information in the matrix of decimal
numbers. This approach does not increase or provide data loss
on the drawing-packet, but avoid bias, overfitting providing a
classification on-the-fly.

The creating image dataset relies on transforming matrices,
including decimal numbers into drawing-packet, and placing
it correctly according to their traffic. Following the drawing-
packet dataset and their classes have been built, it is possible
to proceed with the training and validation mechanism of
the traffic classifier, which takes into account the gray-scale
drawing-packet dataset.

Fig. 3 depicts the construction phase for traffic class
building. Extracting raw data allows collecting from packets
hexadecimal data in the byte-array format. It is the leading
information that enables our method to build and train a deep
learning model comprising a PacketVision dataset. Therefore,
the packet represents a hexadecimal byte-array containing its
headers and payload.
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Fig. 3. Drawing-packet transformation method [15].

The PacketVision converts hexadecimal raw-data to decimal
notation in the form of a square matrix. When the number of
bytes precludes build an array, padding bytes are added to the
end of the array until it is possible to construct it. In order to
avoid bias, it was standardized to add OxFF of padding to the
end of the array until a matrix is possible to build.

The format that the pcaplibrary exports byte-array packets
straight implies the size of the matrices. Thus, the difference in
size from one packet to the other is represented in the matrix
with rows and never columns, so the notational size of the
matrix is 7 X 8. An 18-byte packet will be a 3 x 8 matrix with
bytes padding in the last line. Another packet of 136-byte
generates a 17 x 8 matrix without additional padding bytes.
There is no bytes padding in the last line when the number of
bytes in the array is precisely n x 8.

PacketVision performs a normalization of the decimal ma-
trix, allowing the numbers ranging from 0 - 255. In the next
step, the PacketVision shuffles the decimal numbers, according
to Poisson distribution, avoiding bias or overfitting in the
model since bytes eventually stay at fixed locations implying
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in similar pixels locations. Further, the transformation of the
shuffled-decimal matrix into a grayscale PNG figure. The end
of the last step has the output of a set of images organized by
the class representing a traffic class data suitable for input in
the convolutional neural networks model.

Transforming the raw data into an image is necessary
because the learning model requires data suitable for machine
learning. Alternative approaches considering textual semantic
representation or flow statistics are known [23]; however,
our approach goes further, relying on the capabilities of the
graphics processing hardware for traffic classification.

Fig. 4 depicts an example of drawing-packets produced
through PacketVision. The figure brings a drawing-packet
for each class considered in this paper; this set of drawing-
packet is presenting to the deep learning mechanism in the
training phase. It is possible to point out the toughness of
the classification problem since the drawing-packet has varied
features, even though they belong to the same class.

SEEN=

Bit Torrent DNs
Fig. 4. Drawing-packet examples.

D. Convolutional Neural Networks

To exploit OPI through a third-party application, we propose
a CNN network traffic classification. Deep Learning is a
field of Artificial Intelligence, specifically Machine Learning,
that uses multi-layer neural networks to learn features and
classifiers in different layers, at running time, and does not
require handcrafted feature extraction [24]. All deep learning-
based networks, especially CNN, allow extracting high-level
hierarchical representations of the data through multi-stage
image processing [25].

We exploit OPI with three CNN architectures as third-party
applications, and we chose them for experimental comparison
based on their past performance in image classification tasks.
The CNNs are: ResNet-50 [26], SqueezeNet [27], and VGG-
16 [28]. Also, the training of all CNNs was performed
using fine-tuning strategy [24] over models pre-trained with
ImageNet.

IV. EVALUATION

To compare the CNNs architectures to connects it to OPI,
we trained and tested using a stratified k-fold cross-validation
method [29] because this method is more robust to outliers
and eventual overfitting. The 5797 images in the dataset were
randomly sampled and partitioned into five folds. At each
iteration of the cross-validation, one of the folds was selected
for testing the trained model, and the k£ — 1 folds were used
for training. This procedure is repeated £ times, alternating the
testing folds. Thus, we ensure that each image will participate
in the training process and will also be part of the test.

We measure the average of the four performance indices
based on the number of true positives (TP), true negatives
(TN), false positives (FP), and false-negative (FN) classifica-
tions obtained from the confusion matrix.

Our experimental evaluation aims to answer the following
questions: (1) What is the most appropriate method based
on convolutional neural networks to classify network traffic
taking into account the metrics of accuracy, precision, recall,
and fl-score and the dataset and the proposed scenario? (2)
In terms of computational cost, what is the training time for
each traffic classification approach? (3) Is OPI a suitable and
scalable approach to increasing dynamism in management and
network slice establishment between multiple domains?

V. RESULTS

We carried some experiments to answer the previous ques-
tions, and their results are available in this section. All
experiments ran using the Google Colaboratory cloud service
with a machine Intel(R) Xeon(R) 2.20GHz processor, 12 GB
RAM, and a GPU NVIDIA Tesla T4. The experiments were
programmed using Python (version 3.6) and PyTorch 1.7 deep
learning framework.

After partitioning the dataset into five folds using the
stratified k-fold cross-validation method, we resized all images
to 224 x 224 pixels based on bilinear interpolation; no
information has been added or removed into images. The
applied resize aimed only to adapt each image to serve as a
suitable input into CNN architectures evaluated in this paper.

The data augmentation technique increased the training
data artificially, without introducing labeling costs [30]. We
performed the data augmentation using vertical and horizontal
flips and rotating each of the original images around its center
through randomly chosen angles of between —10° and 10°.

We trained the CNN architectures using Adam [31] opti-
mizer, with a learning rate of 0.001, batch size of 32, and
30 epochs. Further, we measure the standard deviation of
three CNNs architectures, and their results are as follows:
VGG-16: 0.042; ResNet-50: 0.018 and SqueezeNet: 0.016 (for
accuracy). These values indicate that our results, especially the
training method, are reliable.

Regarding the classifications performance, the Table I
presents metrics such as accuracy, precision, recall, and f1-
score. Accuracy refers to the ratio between the number of
correct classifications and the total of samples. On the other
hand, precision estimates among all positive classifications
(TP) how many are accurate. The recall is the ratio between
correct classifications (TP) on TP and FP simultaneously.
Finally, the fl-score defines the weighted average between the
Precision and Recall metrics.

As reported in Table I, the SqueezeNet performed better
than its peers, considering the dataset, the proposed scenario.
This performance relies on the architectural robustness, whose
main feature is the modules called “fire” that are stacked
and divided into compression and expansion of convolutional
filters, allowing large feature maps and, thus, allowing the
accuracy of 96.80%. Also, the results of SqueezeNet, designed
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TABLE I
5-FOLD AVERAGE VALUES OF THE PERFORMANCE INDICES.

CNN Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet-50 95.00 95.50 94.75 95.00
SqueezeNet 96.80 98.00 98.00 98.00
VGG-16 91.75 92.60 92.00 92.00

to run on top of low-cost compute resources, suggesting
that our method is suitable to be used as an efficient and
scalable network traffic classifier mechanism on edge. Besides,
showcased the suitability of using CNNs as a third-party
application to support NASOR in network management and
slicing.

Combining third-parties CNNs traffic classifications with
the OPI enhances the management and establishment of inter-
domain network slicing. NASOR can use the predominant
traffic characteristic in the path establishing phase. Besides,
segmenting network traffic leads network management pre-
dictable.

For each CNN, we assess the learning behavior analyz-
ing the loss and accuracy values during the training phase
and consider the average of all k-fold iterations (Fig. 5).
Throughout the training, the behavior of the loss function
generated low values for all CNNs. This behavior suggests
that the training did not overfit the data, thus retaining the
generalization property of the CNNs.
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Fig. 5. Charts showing the evolution of accuracy and loss values for each
CNN considering the average 5-fold training set.

Also, to explore the classification quality, confusion matri-
ces for each CNN are presented in Table II. The confusion
matrices describe several aspects of the classification problem
investigated in this work showing the number of correctly
classified and misclassified images.

Note that except for SqueezeNet, the CNNs misclassified a
considerable proportion of the Bit Torrent images as IoT. Also,
VGG-16 architecture misclassified ~ 10% of IoT images as
DNS, which may require attention in future network traffic
investigations. Other less relevant misclassifications occurred
and varied with the CNN model.

We evaluated the training time for each CNN, taking into
account the submission time until the end of the workload pro-
cessing. Regarding traffic classification metric, the SqueezeNet
model performed the best result in all the metrics evaluated.
Besides, this model requires ~ 2.7x less computational time
than VGG16 and ~ 58.1% less than ResNet-50. Hence, VGG-

16 time consumption was 27:24 min, ResNet-50 17:24 min,
and SqueezeNet 10:07 min.

If time and performance in the training phase are essential,
SqueezeNet seemed to be the best choice. Additionally, it
has proven that in training scenarios in distributed systems,
SqueezeNet requires less communication between servers [32],
less bandwidth to export a model in the cloud, and a suitable
model for deployment on hardware with limited memory [27].
Also, the distributed nature of NASOR makes the classification
mechanisms capable of operating in distributed scenarios
compatible with SqueezeNet showcasing its suitability to work
with OPIL.

Accuracies upper 95% achieved from both ResNet-50 and
SqueezeNet architectures showcased the applicability of fine-
tuning on pre-trained models in the dataset. Using PacketVi-
sion as a third-party application, combined with data aug-
mentation based on horizontal and vertical flips and random
rotations, proved to be an effective method to provide traffic
classification for applications on different channels.

The Future Internet architectures, including mobile net-
works, can also rely on efficient traffic classification mech-
anisms to provide better management and quality in the
provision of tailored resources. In this sense, it is possible
to infer from this experiment basing on the accuracy of the
classification models, the applicability and suitability of OPI
to propose dynamism in managing and establishing network
slices between multiple domains.

VI. CONCLUDING REMARKS

This paper presents and evaluates the suitability of using
a third-party application with NASOR to increase dynamism
in managing and establishing network slices across multiple
domains. The NASOR approach [14] had been paving the
capability of handling network slicing challenges over the
Internet data plane, enabling the NFV service chaining across
multiple domains.

Exploiting the OPI, we overcome the traditional NASOR
path-setting mechanism based on the data plane built by the
routing algorithms. Hence, as explored in this article, OPI
seems a suitable approach to add dynamism in establishing
paths for network slices, mainly when basing the path on the
predominant type of traffic classified through AI methods. We
present a dataset construction method named Packet Vision,
which relies on the full-packet structure.

Regarding traffic classification performance, the best result
was achieved by SqueezeNet with an accuracy of 96.80%,
enabling it to act as a third-party connected to OPI, instructing
the NASOR in establishing the paths for the network slices.

For future work, we plan to evaluate the classification
performance considering several network slices over the same
channel and extending the set of classes to other traffic
categories. We propose to assess and contrast a mechanism
for defining paths based on combinatorial optimization and
other machine learning techniques against those evaluated in
this paper.
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TABLE II
5-FOLD VALUES OF CONFUSION MATRIX FOR EACH CNN MODEL.
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