
ConForm: In-band Control Plane Formation
Protocol to SDN-Based Networks

Marcelo Silva Freitas, Romerson Oliveira, Diego Molinos,
Juliano Melo, Pedro Frosi Rosa, Flavio de Oliveira Silva

Faculty of Computing
Federal University of Uberlandia

Uberlandia, Brazil
{msfreitas, romerson, diego.molinos, julianoco, pfrosi, flavio}@ufu.br

Abstract—Although OpenFlow-based SDN networks make it
easier to design and test new protocols, when you think of
clean slate architectures, their use is quite limited because
the parameterization of its flows resides primarily in TCP/IP
protocols. Besides, despite the many benefits that SDN offers,
some aspects have not yet been adequately addressed, such
as management plane activities, network startup, and options
for connecting the data plane to the control plane. Based on
these issues and limitations, this work presents a bootstrap
protocol for SDN-based networks, which allows, beyond the
network topology discovery, automatic configuration of an in-
band control plane. The protocol is designed to act only on layer
two, in an autonomous, distributed and deterministic way, with
low overhead and has the intent to be the basement for the
implementation of other management plane related activities. A
formal specification of the protocol is provided. In addition, an
analytical model was created to preview the number of required
messages to establish the control plane. According to this model,
the proposed protocol presents less overhead than similar de-facto
protocols used to topology discovery in SDN networks.

Index Terms—Bootstrap, In-Band Control Plane, Clean Slate
Architectures, Protocol Design, Self-establishment

I. INTRODUCTION

In Software Defined Networking (SDN), the control and
data planes are decoupled. Network intelligence and state
management are logically centralized, and the underlying
network infrastructure is transparent to applications [1]. This
decoupling is implemented, for example, by OpenFlow tech-
nology, which allows the creation of distinct flows based on
OpenFlow protocol parameters.

The SDN philosophy breaks the old vertical integration of
the network, in which the control and data functions coexist in
a single plane. In spite of this, the discussion about deployment
of the control plane, out-of-band or in-band, initially untreated,
has recently gained more prominence among research in the
area.

In out-of-band mode, controllers are connected to the
switches through dedicated links used exclusively for traffic
of control messages. But for many use cases, this is not eco-
nomically feasible. In in-band mode, control and data packets
share the same infrastructure, making it necessary to initialize
the network, that is, establish a controller communication for
the controlled switch via a shared infrastructure [2], [3].

As the network paradigm is changing, all aspects related
to it, including network management aspects such as boot-
strapping, resilience, security, monitoring, among others, must
also change to allow its evolution [4]. In this sense, since
startup activity is related to the management plane, it can be
stated that a bootstrap protocol is one that operates in the
management plane to configure the control plane, acting during
a pre-operational stage of the network.

In addition, although OpenFlow-based SDN networks facil-
itate the design and testing of new protocols, when you think
of clean slate architectures, their use is quite limited. This
is due to the fact that the programming capability allowed
by the OpenFlow technology is oriented to the implemen-
tation of flows in the network elements based only on the
protocol headers of the TCP/IP stack. Besides that, several
disadvantages of the OpenFlow switch are highlighted in [5]
and limitations of OFDP (OpenFlow Discovery Protocol) is
discussed in [6]. Finally, there is no flexibility for link layer
programming, i.e., no programmability is applicable to the
Medium Access Control (MAC).

Motivated by the issues and limitations described above,
this article presents ConForm (Control plane and network
Formation), a network formation protocol for SDN-based
network architectures, which allows, beyond topology dis-
covery, automatic bootstrapping of an in-band control plane,
establishing control paths, like a spanning tree, from the
controller to every network element. With the purpose of
be SDN-generic and independent of TCP/IP protocols, the
proposed protocol was implemented over layer two.

The remainder of the document is structured as follows:
section II presents the state-of-the-art related to SDN boot-
strapping methods. Section III presents the formal specification
of ConForm. Section IV develops an analytical model to the
protocol and finally, section V offers a discussion about the
protocol, some concluding remarks and makes suggestions for
future work.

II. RELATED WORK

This section presents an overview of the literature regarding
topology discovery and control plane configuration on SDN-
based networks. The problem of automatic initialization and

574978-1-7281-4199-2/20/$31.00 ©2020 IEEE ICOIN 2020
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:48:11 UTC from IEEE Xplore. Restrictions apply.

configuration of SDN-based networks has been addressed in
several ways.

The automatic initialization procedure proposed by [2] is
a pioneering work on this theme, which basically follows
three steps: (i) assignment of switch-controller connection
identifiers, such as switch IP and controller IP; (ii) instantiating
an OpenFlow session with the controller, establishing a route
from the switch; and (iii) network topology discovery. The
solution uses Dynamic Host Configuration Protocol (DHCP),
Address Resolution Protocol (ARP), OpenFlow Protocol, and
Link Layer Discovery Protocol (LLDP). Therefore, it is about
a method and not a novel protocol specific to bootstrapping.
Furthermore, resilience aspects as presented in ConForm are
not considered.

The work [7] presents a model for distributed control plane
project that stabilizes itself from any initial setup. Its main
contribution is the design of an In-Band control system that
coordinates distributed controllers in a self-organizing way, to
perform the bootstrapping of connectivity between controllers
and switches. The method is based only on OpenFlow. The
controller installs rules on neighboring switches, which can
be used to install rules on two-hop switches, successively
expanding the controller domain to manage remote switches.
Virtual LANs (VLANs) are used to implement configurations
on the intermediate switches. In the control plane, two distinct
spanning trees are created: a spanning tree bidirectional by
region, which spreads across the area managed by a controller;
and another spanning tree that enable each controller to
reach any other controller. Every switch initially broadcasts
its connection attempts addressed to the controller anycast
address. This address needs to be previously configured in
each switch.

Current SDN controllers use the OpenFlow Discovery Pro-
tocol (OFDP). It is the de-facto protocol for discovering the
underlying network topology. After each switch has been
manually configured with the controller address and port, an
initial handshake establishes the connection between the SDN
controller and the switches, and OFDP is started. The SDN
controller begins by sending LLDP frames encapsulated in
Packet-Out messages to each active port on each switch in
the network. By default, after receiving an LLDP packet from
ports other than the controller port, each active switch must
send a Packet-In message that contains the received LLDP to
the controller. Send out a packet for each port of the network
make OFDP inefficient. Thus, several works like [8] and [9],
have analyzed this protocol and proposed variations to solve
its flaws and limitations with respect to efficiency, security and
functionality.

As can be seen, the solutions above depends on OpenFlow,
directly or indirectly, and other traditional protocols. So it
does not fit with clean slate architectures projects. ConForm
proposes a new and independent protocol, acting in layer two,
decentralized and efficient in compose a control tree only with
authenticated switches.

III. CONFORM PROTOCOL SPECIFICATION

A protocol specification must consider five essential ele-
ments to reach a consistent and well formed protocol. In
this sense, the five ConForm elements are presented in this
section: assumptions about environment, services, vocabulary,
formatting and procedure rules [10].

A. Assumptions about Environment

ConForm is designed to setup the in-band control channels
from the controller to every network element. It is assumed
that there is a logically centralized controller and that control
and data planes are decoupled. In addition, it assumes no
standard interfaces between the planes. Therefore, the protocol
is designed for a generic SDN-based network.

In this sense, the network is composed by SDN switches
interconnected with each other by full-duplex links. Further-
more, a controller must be initially running, ready to process
requests, and connected to one of the switches. More specifi-
cally, the protocol proposed in the current version is capable
of configuring control channels for a SDN local network, i.e.,
the region comprised of switches under the domain of one
Controller. It is understood that interconnection of Controllers
may involve political aspects beyond physical connectivity.

Additionally, since the proposed protocol is a clean slate
one, and acts in layer two, its implementation would be
facilitated if the network element could be programmable at
data plane level [11].

B. Protocol Services and Vocabulary

The ConForm protocol design was driven by efficiency
and effectiveness requirements with a minimum number of
messages to minimize the impact on switch design and
Controller overhead. Table I shows the relation between the
protocol services and their respective messages. The messages
follow the taxonomy of confirmed services, Request/Indication
and Response/Confirmation, i.e., message MSG_request, for
example, has the same content as message MSG_indication,
differing semantically from the moment it occurs.

C. Message Formatting

The message format is shown in Fig. 1. The meaning of
fields and PDUs will be further gradually explained in the next
section. ConForm messages were designed to be encapsulated
in Ethernet frames. However, frame address fields carry the
identifiers of the source and destination entities instead of the
Ethernet MAC addresses. This decision keeps compatibility
with current network cards, allowing the reuse of available
technology and preserving investment.

Figure 1. Message format.

575
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:48:11 UTC from IEEE Xplore. Restrictions apply.

Table I
PROTOCOL SERVICES AND VOCABULARY

Service Messages Functional Description

Switch
Registration

reg_req
reg_resp+
reg_resp-

Confirmed service used by switches to
request registering and authentication
to the Controller. Through this service,
each switch learns the Controller ID
and the port that leads to it.

Topology
Update

upd_req
upd_resp

Confirmed or Unconfirmed service used
by switches to send information about
their neighbors to the Controller.

Switch
Advertisement

adv Unconfirmed service used by switches
to gather current state information
about neighbors.

Network
Reboot

reboot Unconfirmed service used by Controllers
to restart bootstrapping of switches.

D. Procedure Rules

In this section, the services from Table I are better explained.
It is assumed that the switch is manually configured by

engineers involved in network management in two moments.
First, when it comes to making the physical connectivity of the
equipment, at which point the equipment is powered up and
turned on. Second, when the analyst configures the device’s ID
(unique) and Cryptographic Key, that only the Controller can
validate. These are the only procedures at which the equipment
is manipulated. From that point on, there is no longer any need
for manual setup. The next version of the protocol, is intended
to eliminate any manual configuration.

The protocol rules are specified through a Finite State
Machine (FSM). The diagram in Fig. 2 formally describe the
behavior of the protocol services. Each transition is repre-
sented by the combination of input and output in the format
input
output . The symbols ? and ! represent, respectively, the actions
of Receiving and Sending messages.

1) Registration and Authentication: When a switch is
powered on, it sends the message reg_req through all its
connected ports, that is, those ports that have a wired device
attached. The message reg_req contains, in its payload, the
switch key for authentication.

An UNREGISTERED(S0) switch remains in semi-
operational mode and can only send the message reg_req
and should discard any other messages.

As Fig. 2 shows, when a switch sends a registration request
(!reg_req), its state changes to WF_REG_CONF(S1) state.
This is the state at which the switch is waiting for (WF)
confirmation to its registration request. If there is a timeout
in state S1 or a corrupted message (error) is received, the
switch returns to the state S0 and another request will be sent.

The periodic sending of reg_req messages is interrupted
if a reg_conf+ is received, when the switch goes to
REGISTER (S3) state. Upon receiving such a confirma-
tion, the switch stores the (ControllerID), i.e. the source

Figure 2. Switch automaton.

address of the message, and the port by which the confir-
mation arrived (ControllerPort). This will be important
to routing and relay functions of active switches, as will be
described in section III-D4. Otherwise, if registration fails,
a reg_conf- message is received. For security reasons,
this message hides the Controller ID, since the switch has
not been authenticated and should not know about that ID.
The Controller should log the event. In case of receiving
this negative confirmation, the switch disables all ports and
stays SUSPENDED(S2) until a manual intervention of the
network management team takes place and turn the switch
again to initial state (S0). According to our experience of
more than twenty years in the telecommunication industry and
wide area networks, this possibility is very unlikely and the
cases experienced have required intervention from the security
office.

2) Topology Update: In REGISTERED state, the switch
cannot forward messages, thus, other higher ranking switches
cannot be registered yet. A higher ranking means they are
farther from the controller. However, in this state the switch
can receive reg_req or adv messages from its neighbors.
The sender ID is extracted from this messages, and the switch
neighbors table is updated (upd_table). Thus, when all
neighboring switches are identified and inserted into the neigh-
boring table, the switch sends the payload-encoded table into
a upd_req message addressed to the Controller. Eventually,
this table reaches the Controller where its information is
processed and used to compose the logical topology repre-
sentation. Next, the Controller sends a upd_resp to the
switch. When switch receives this confirmation, its state finally
moves to ACTIVE(S5) and then all of its relay functions are

576
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:48:11 UTC from IEEE Xplore. Restrictions apply.

enabled. As shown in Fig. 2, the update is confirmed service
in the state (S3). For this reason, the state (S4) represents
the waiting for confirmation.

3) Advertisement: Entering the ACTIVE state triggers the
advertisement service on each connected port, that is, the
switch advertise the neighbors of its presence. Besides that,
it is advertised of the presence of neighbors. This service is
a one-hop keep alive signaling. Messages from this service
have no confirmation because they are periodically transmitted
from one switch to each of its neighbors through fast links,
frequently fiber optical links, where error rates are very low.

The adv messages are sent after specified time intervals,
nτ . When a switch receives this message, it uses the informa-
tion in its header and payload to update the neighbors table.
Upon a change in the neighbors table is detected, the update
service (upd_req) must be requested to the Controller, but
in state S5 there will be no confirmation message. Update
messages are also sent to the Controller if a switch does
not receive an advertisement message from a known neighbor
switch after a specified time, mτ . This is necessary to detect
when a neighboring switch has some kind of problem and
stops sending the adv message.

Still analyzing the Fig. 2, it should be noted that, active
switches also must relay Topology Update service messages
<up> to the Controller as well as <down> to other switches.

4) Routing: To enable switches ranked higher than zero to
succeed in their attempts to reach the Controller, there must
be a logical chaining of active switches to <route> regis-
tration requests toward the Controller as well as to <route>
Controller responses toward higher ranked switches.

With ConForm protocol this goals are accomplished using
marked ports and routes embedded in messages PDUs. Let’s
look at the example from Fig. 3 which illustrates an unregis-
tered (U) switch S2 trying to be registered. To do this, requests
from switch S2 must be forwarded by active (A) switches S1
and S0 to the Controller. To explain how requests are routed
upward and responses downward, the registration processes
will be reviewed from a routing point of view.

Figure 3. Registration procedure of a switch with rank=2.

The registration request (reg_req) of switch S2 will be
transmitted to its neighbors. This message have within its PDU
the ID of switch S2. One of the requests reaches active switch
S1 which adds its own ID to the PDU message and forward
it through the port ControllerPort to the next switch S0.
Switch S0 proceeds in the same manner, by adding its ID in
PDU message and dispatching it to Controller. The Controller

extracts the list of IDs from the received PDU and stores this
list (indeed a route) in a data base. This database will be
used to build a graph representing the network topology. If
there is an alternative route that connects the S2 switch to the
Controller, another request from S2 containing the other route
will be received by the Controller. If so, both routes will be
stored, but the Controller will use the inverse of the smallest
to compose the response to switch S2.

Each switch on the downward route will pull its own ID
from the list in the reply message, look up the next ID in
the list, use that ID to index the its neighbors table, and
forward the message to the next down switch. Finally, the
port by which the message was sent will be marked as a
DownstreamPort in table.

The routing mechanism described above is required for
the switch Registration service as well as Topology Update
service.

5) In-band Control Flow - ICF: It can be seen that, as
a consequence of the way the registration process was de-
signed, there will be a deterministic switch activation sequence
throughout the physical network topology, with the Controller
acting as a pivot, as shown in Fig. 4. Switch S0, directly
connected to the Controller, will always be the first to receive
registration response. It becomes active and begins relaying
messages from its neighboring switches. Then these neighbors
will be activated and so on. This process will result in an ac-
tivation wave that propagates until all switches in the network
has been activated. Note that this process is driven by state
machines within each switch and not by the Controller. Despite
the name (Controller), in this network formation phase, it acts
as an information assembler for the purpose of composing the
representation of the logical topology.

Figure 4. Activation wave and the ICF - In-band Control Flow.

When all switches in the Controller domain are in the Active
state, the ICF will be fully formed. ICF consists of a logical
set of port numbers formed by all ControllerPorts and
all DownstreamPorts.

It is noteworthy that the ICF tree, rooted in the Controller, is
an optimized spanning tree. This is true because the Controller

577
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:48:11 UTC from IEEE Xplore. Restrictions apply.

always responds to registration requests by choosing the
shortest route down to the switch.

E. Adaptability to topology changes

By analyzing the ConForm specification against resiliency
requirements, it can be stated that the protocol is capable of
reacting appropriately to some important scenarios, such as:

1) Network rebooting: in the event of a generalized power
outage, for example, on return, the switches will restart in
the UNREGISTERED state and the entire procedure will be
repeated. In this case, the TOPO_VER (Topology Version) field
value will be incremented by the Controller.

2) Deployment of new switch: If a new unregistered switch
is added to the infrastructure, connected to an active switch,
requests from new switch will be routed through a chain of
active switches up to the Controller. Both, the new switch and
its neighbor, where it is connected, will send update messages
and Controller will update the topology.

3) Switch/port fault: when a switch/port fails, the neighbor-
ing switches stop receiving adv messages. Thus, as soon as
a switch periodically detects missing messages adv, it sends
a message upd_req to the Controller to update the network
state. If the Controller deems it necessary, a new bootstrapping
could be started, through Network Reboot service, as an
attempt to correct the absence of this switch/port.

Noting that for all the cases described above, ConForm
is intended to support network resiliency in detecting and
reporting failures. Procedures for fixing failures are beyond
the scope of the protocol and can be considered as part of
a management plane. It is the responsibility of the network
(domain) Controller to reconstruct the logical representation
of the network topology, including ICF recovery. In the cur-
rent version, ConForm provides only the message reboot.
However, other messages intended to repair the network in a
less invasive way may be implemented in the future.

IV. ANALYTICAL MODEL

In this section, we model the behavior of a switch from
its registration until it becomes active. An analytical model
was developed to determine the time required for a switch
to become active. Our goal is not to offer a highly accurate
model. Therefore some simplifying assumptions were intro-
duced. For this purpose, the probabilistic model shown in Fig.
5 was derived from the switch automaton in Fig. 2.

Figure 5. Markov chain representing switch behavior.

The behavior of a switch was modeled through a Discrete
Time Markov Chain. Specifically, three states were considered:

U, R and A, that respectively stands for UREGISTERED,
REGISTERED and ACTIVE states. The probability matrix of
the Markov chain is as follows:

P =




1− PUR PUR 0
0 1− PRA PRA

0 0 1




Since the matrix has an absorbing state (A), the average
number of steps before entering state A can be evaluated as:

t =
1

PUR
+

1

PRA

Each switch goes from state U to state R with probability
PUR, which is the probability that the switch will register suc-
cessfully. For this to occur, after sending a registration request,
the switch must receive a positive confirmation, without error
or timeout:

PUR = Preg_conf .Pno_error

Let Pe be the probability of an error or timeout, and let
Pfa the probability of authentication failing. The probability
that the switch receives a positive registration confirmation
depends on whether the authentication does not fail. Hence:

PUR = (1− Pfa).(1− Pe)

For the sake of simplicity of analysis, we assume that all
authentications are successful and therefore Pfa will be 0.

Similarly, the probability that the switch state will go from
R to A, that is the probability of receiving positive update
confirmation, after sending update request, is:

PRA = Pupd_conf = (1− Pe) = PUR

The probability Pe depends on the distance from the switch
to the Controller. This means that the more hops a message
makes on its journey to reach the Controller, the more likely
errors or timeouts occur. Let r (rank) be the number of
switches (hops) in the path; then this probability could be
expressed, for instance, as:

Pe(r) = ρ+ (1− e−ρr)

Where ρ expresses the error rate for the switch directly
connected to the controller.

The average number of steps t for a switch to reach
the active state, calculated above, from the matrix, will be
interpreted as the number of time intervals. For simplicity,
this time will be associated to the mean time to a message to
traverse a link between two switches.

From this reasoning, we produce another strategy for de-
terministically calculating the number of time intervals until
a specific switch becomes active, that is, instead of sticking
to the average of the probabilistic method above, we also
calculate the exact number of time intervals for activation as
a function of the switch rank.

Initially, let’s think about the required number of sent
messages until the activation of S2 from Fig. 3 takes place.
The reg_req message is sent/forwarded three times up to

578
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:48:11 UTC from IEEE Xplore. Restrictions apply.

C, as the reg_resp message is sent three times downward.
Similarly, the messages upd_req and upd_resp count six
forwardings. That is, twelve message forwardings are needed
until S2 has been activated. However, messages required to S0
and S1 activation also must be accounted for S2 activation.

Extrapolating the reasoning above, using simple induction
and arithmetic series, one can deduce the number of messages
sent M(r) and the time intervals T (r) required for activation
of a specific switch with a generic ranking r:

M(r) = 4.(r + 1)

T (r) = 4.
r+1∑
a=1

a = 2.(r + 1).(r + 2)

For this deduction, only messages that are not discarded
were considered. For example, while a switch is not yet
registered, at each time interval, it sends registration requests.
That messages were not considered.

It is also worth mentioning that it was considered the best
case to calculate M(r) and T (r), i.e. there are no errors or
timeouts along the path from the switch to the Controller.

Finally, we can say that the Controller sends only two
distinct messages, namely reg_resp and upd_resp, to
activate each switch. Therefore, when analyzing Controller
overhead, it is comparable to that offered by OFDPv2, which
is an enhanced version of the OFDP protocol. According to
[8], with OFDPv2, the number of Controller LLDP Packet-
Out messages is reduced to just one per switch, or N in total,
with N being the number of switches on the network. In our
case, the Controller needs to respond two messages, that is,
it will be 2N , but still O(N). The difference comes from the
cost of in-band control channels.

About Packet-In messages received by the controller, yet
according to [8], with OFDPv2, the number is proportional to
active inter-switch links L; specifically, 2L. But in our case,
this number is always 2N too, that is, inferior to most cases.

V. CONCLUDING REMARKS AND FUTURE WORK

The main contribution of this paper is to present an SDN
bootstrapping control protocol and to specify how it configures
a control plane within a regular (in-band) SDN infrastructure.

The protocol can build an ideal spanning tree as a logical
multicast domain, bypassing closed loops on infrastructure
connections. Network performance is not affected as the most
intense message exchanges occur only at the time the control
plane is formed. In addition, the deterministic manner in which
the network is discovered is a desirable aspect for making
predictions about performance and scalability.

A protocol for automatic bootstrap is very welcomed for
resilience, as mentioned earlier. Also, the recovery time of
the control plane is significantly lower compared to human
intervention, thus reducing the cost of operation (OPEX).
Another key aspect of being emphasized is safety because
manual interference is restricted only to the moment the switch
is physically connected to the network and powered on.

In addition to the analytical model presented in this doc-
ument, future work should allow the implementation of a
simulator to test ConForm. To do this, the OMNet++ [12]
platform will be adopted.

In newer versions, the scope of the protocol should be
expanded to consider the presence of multiple Controllers in
the network and the cooperation between them.

Languages as P4 [11] introduced the notion of data plane
programmability, enabling faster development of novel proto-
cols. In this sense, future work is to use P4 to deploy a switch
capable of treating ConForm primitives. This will be very
useful to test, for example, scalability and timing questions of
the bootstrapping.

ACKNOWLEDGMENT

This project was built with the support of MEHAR team. We
would like to thank all who contributed with our research. This
work has been partially funded by Brazilian agency CAPES.

REFERENCES

[1] O. N. Foundation, “SDN Architecture Overview,” ONF, Palo Alto, CA,
Technical Recommendation Version 1.0, draft v08, 2013.

[2] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Automatic bootstrapping of OpenFlow networks,” in 2013 19th IEEE
Workshop on Local Metropolitan Area Networks (LANMAN), Apr. 2013,
pp. 1–6.

[3] A. Jalili, H. Nazari, S. Namvarasl, and M. Keshtgari, “A comprehensive
analysis on control plane deployment in SDN: In-band versus out-
of-band solutions,” in 2017 IEEE 4th International Conference on
Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017, pp.
1025–1031.

[4] S. Abdallah, I. H. Elhajj, A. Chehab, and A. Kayssi, “A Network
Management Framework for SDN,” in 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), Feb.
2018, pp. 1–4.

[5] A. Kalyaev and E. Melnik, “Fpga-based approach for organization of
sdn switch,” in 2015 9th International Conference on Application of
Information and Communication Technologies (AICT), Oct 2015, pp.
363–366.

[6] A. Azzouni, N. T. M. Trang, R. Boutaba, and G. Pujolle, “Limitations of
openflow topology discovery protocol,” in 2017 16th Annual Mediter-
ranean Ad Hoc Networking Workshop (Med-Hoc-Net), Jun. 2017, pp.
1–3.

[7] L. Schiff, S. Schmid, and M. Canini, “Ground Control to Major Faults:
Towards a Fault Tolerant and Adaptive SDN Control Network,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshop (DSN-W), Jun. 2016, pp. 90–96.

[8] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology
discovery in OpenFlow-based Software Defined Networks,” Computer
Communications, vol. 77, pp. 52–61, Mar. 2016. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0140366415003527

[9] A. Nehra, M. Tripathi, M. S. Gaur, R. B. Battula, and
C. Lal, “SLDP: A secure and lightweight link discovery
protocol for software defined networking,” Computer Networks,
vol. 150, pp. 102–116, Feb. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1389128618307916

[10] G. J. Holzmann, Design and validation of computer protocols. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1991.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and others,
“P4: Programming protocol-independent packet processors,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014. [Online]. Available: http://dl.acm.org/citation.cfm?id=2656890

[12] A. Virdis and M. Kirsche, Recent advances in network simulation:
the OMNeT++ environment and its ecosystem. Springer International
Publishing, 2019, oCLC: 1082225057.

579
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:48:11 UTC from IEEE Xplore. Restrictions apply.

