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Abstract. The Internet is a crucial infrastructure for the digital era of
a fully connected society. However, the design of the Internet’s protocols
occurred several decades ago based on entirely different assumptions,
and this motivated several initiatives to propose the replacement of the
TCP/IP protocol stack. Some of these efforts are known as Future Inter-
net Architectures (FIAs), and some examples of these projects are RINA,
MobilityFirst, XIA, CCNx, ETArch, and NovaGenesis. Each architec-
ture has its particular purpose and its own set of design goals, but all
of them try to advance several aspects related to the current Internet
architecture. Considering that these network architectures use discon-
nected assumptions, their integration would be impossible. Neverthe-
less, a possible approach would be the coexistence of a set of FIAs or
even interconnection with the current Internet architecture. This work
presents the architecture of the Future Internet Exchange Point (FIXP),
a software-defined infrastructure that will contribute to the deployment
of future network architectures by leveraging the concept of current Inter-
net Exchange Points (IXPs). Using a P4 switch for the interconnections
of the TCP/IP and ETArch architectures, we implemented a FIXP proof
of concept. Obtained results are promising for incoming data packets
processing times, rule adding, and flow completion times.

1 Introduction

The current Internet architecture employs different communication protocols and
its core is the same as four decades ago. The available technologies, computing
capabilities and assumptions for the design of these protocols were very different
from those we have today.
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Some of today’s Internet limitations encompass multimedia applications that
require network Quality of Service (QoS), seamless mobility across different
access networks, security, and multicast support for efficient content delivery.
Another concern is the recent rise of the Internet of Things (IoT), which presents
scalability challenges.

Several solutions to solve these and other limitations concerning to the
TCP/IP stack have been presented. Nevertheless, their deployments are chal-
lenging, and raise issues regarding the management of a complex control plane.

Consequently, the need for a new network architecture for the Internet of
the Future has appeared since the late nineties, and this subject has caught the
attention of the network research community to date. For example, initiatives
such as NewArch [1], Future Internet Design (FIND) [2], Future Internet Archi-
tecture (FIA) [3], and Future Internet Architecture Next Phase (FIA-NP) [4]
indicate that this subject has been in research since the beginning of this cen-
tury in the United States. In Europe, FP6, FP7, and H2020 framework programs
have funded several projects that have focused on new network architectures, and
this topic will also be present in the FP9 framework program under the Next
Generation Internet (NGI) initiative [5].

The current scenario concerning FIAs shows that there are several network
architectures with prototypes in different stages of implementation, different
architectures with specific design goals and communication paradigms. Thus,
it is not possible to identify a unique network architecture that comes up as
an answer and address all the current Internet limitations. In this way, the
quest for a single network architecture capable of unifying the disconnected
communication requirements, that can support a new Internet, is a possible
race. However, this search does not seem to be the best approach.

This work considers that the best approach is to create the conditions for a
Future Internet where different network architectures will be interconnected and
executed in parallel in the same infrastructure. In this way, a right place for this
interconnection to take place is in a Future Internet Exchange Point (FIXP),
which takes advantage of the network’s softwarization tendencies, such as Soft-
ware Defined Networking (SDN), Network Functions Virtualization (NFV) and
more recently, network programmability.

This article presents the design and implementation of FIXP, which consists
of a set of control plane components, as well as a protocol to program data plane
P4-capable switches. FIXP is entirely designed from scratch, using the capability
of modern network programmability features. In this paper, we present the FIXP
components which are agnostic about the Internet architecture it interconnects,
which means that it is easy to add interconnection support to new FIAs as long
as they appear.

We did an initial evaluation using two Internet architectures: ETArch [8],
an FIA representative, and the traditional TCP/IP (which will naturally co-
exist for a long time). The initial evaluation shows that the proposal is feasible,
extensible, and lightweight, and in line with current in-network solutions.
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This work is organized as follows: firstly, Sect.2 presents some background
and related work. Section 3 highlights the FIXP architecture, its components and
their functionalities. Section4 presents FIXP implementation and evaluation.
Finally, Sect. 5 concludes the paper and gives some future works.

2 Background and Related Work

The interconnection of different FIAs to enable the development of multi-
architecture applications presents several challenges. The first one is to define
the approach to interoperate and/or interconnect different FIAs. Machado et al.
[11] presented a taxonomy of possible solutions to combine FIAs and proposed
a solution for mapping identifiers of other proposals to XIA. Nonetheless, such
idea seems to require a profound adaptation of other FIAs to be compatible with
XIA. In Guimaraes et al. [9], it is proposed a framework called Future Internet
Fusion (FIFu) that aims to unify existing and future network architectures for
transparent interoperability while gradually accommodating new networks. In
this scope, a FIFu has an “adaptation layer”, in which several interoperable
entities called Future Internet Exchange Points (FIXP) emulate a connection
endpoint and act as a gateway among architectures, ensuring the interoperation
among proposals. Through this hardware, it was feasible to evaluate the premise
under three different scenarios. These were a web browsing application, having
the Named-Data Networking (NDN) and PURSUIT networks accessing IP web
pages, a live video streaming, in which video is available through a multicast
in the PURSUIT architecture for NDN and IP clients, and, finally, the last is
related with on-demand video, in which the same streamed video of the second
scenario was made available on-demand and split into multiple segments for IP
and NDN clients.

The second challenge is related to the network hardware required to sup-
port the FIXP. Some works, such as [10], proposed a Software Defined Internet
Exchange (SDX) to interconnect BGP traffic on the Internet. In this work, there
are two separate pipelines: (i) one that is called the Policy Compiler, receiving all
participant inputs, storing routing tables and routing via BGP-suggested routes;
and (ii) the Route Server, which emulates a default route server, receiving sugges-
tions from BGP and calculating the best forwarding route. Nonetheless, this work
does not consider the interconnection of different FIAs and it focuses only on
the interconnection of BGP WAN (TCP/IP) traffic using SDN-capable switches.
On the other hand [9], FIFu is based on the concepts of SDN and implemented
through two distinct layers, which enabled the interoperability among distinct
architectures. In brief, these are the already mentioned “adaptation layer” and
the “intelligent layer”, in which the control functions for the adaptation layer
are implemented, configured, managing and supporting FIXP operations.

The third challenge concerns the architecture of FIXPs and its components.
As a consequence, all the components must be defined as well as the integra-
tion among them. In addition, software-defined control is required to deal with
unknown data units according to each FIA and to properly configure new flows
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in the FIXP switch. Moreover, this software-defined control can combine trends
such as artificial intelligence, machine learning or deep learning to enable smarter
decisions while managing a network topology through the SDN concept, which
splits the data, or northbound, and control, or southbound, planes [12].

In this paper, we propose FIXP and its components, as well as the hardware
developed to support the approach for interconnecting FIAs. Other challenges
should be faced as the FIXP evolves and is deployed.

3 Future Internet Exchange Point (FIXP)

FIXP aims to foster the deployment of new network architectures by enabling
the interconnection of physically separated networks, not only based on TCP /TP
architecture, but also in alternative architectures, allowing traffic exchanging
among them. The concepts of Software-Defined Networking (SDN), Network
Functions Virtualization (NFV) and Cloud Computing are the basis for the
design of a FIXP. While the Software Defined Exchange (SDX) [10] uses the
notion of a software-based infrastructure for Internet traffic exchange, FIXP
uses this notion to provide traffic exchange among different FIAs deployed on
various ISPs.

The ability to interconnect FIA domains creates the condition to do a large-
scale deployment of different proposals, allowing their use for various applica-
tions, focusing on what each architecture better offers to them. Interconnection
is the crucial feature that enabled Internet dawn and success, and considering
that FIXP supports the TCP/IP interconnection, its concept leverages existing
IXPs.

The FIXP is the physical location where client Internet Service Providers
(ISPs) can connect to one or more provider ISPs, thus creating a network that
can span over the globe.

Figure 1 presents an overview of the FIXP concept. In this case, FIXP inter-
connects different administrative domains of different network architectures, such
as TCP/IP and other FIAs. Regarding TCP/IP, FIXP is comparable to the IXP
functionality, and the traffic exchange happens by the interconnection of different
routers using the FIXP Infrastructure Layer that contains a fabric of P4 capable
switches. In this sense, FIXP is capable of exchanging traffic between two or
more independent Autonomous Systems, based on the TCP/IP architecture.

The interconnection, as seen in Fig. 1, assumes that different domains have
a deployment of the same FIA. FIXP is responsible for receiving the packets
from that network, for identifying its architecture and for forwarding the data
units to the corresponding output FIA, according to its forwarding rules. The
Control Layer of the FIXP stores the control entities of each supported FIA that
implements its forwarding rules.

The FIXP protocol is responsible for the communication between the Infras-
tructure and Control layers. The Infrastructure layer receives the data and, if it
contains primitives of the control protocols of a supported network architecture,
the FIXP protocol encapsulates the primitive and forwards it to the Control
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Fig. 1. FIXP architecture overview.

layer. The FIXP Abstraction Layer will inspect the control primitive and for-
ward it to its corresponding control entity.

3.1 FIXP Architecture

The subsection presents the FIXP architecture, its components and the primi-
tives of the FIXP protocol responsible for the internal communication.

Figure2 details the FIXP architecture presenting its internal components.
FIXP encompasses a physical switching infrastructure, and, on top of that, a set
of virtualized network functions of each FIA. These functions are responsible for
controlling the FIXP switches taking into account the integration among differ-
ent FTAs. A FIXP Switch should be capable of switching different protocol data
units (PDUs) used by each network architecture. Thus, it should be capable of
handling the different PDUs at line rates. The set of software network functions
supports the control plane of each network architecture implemented by FIXP.
These components are responsible for managing and controlling the interconnec-
tion rules between two or more different domains. To simplify, Fig.2 presents
only one physical switch.
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Fig. 2. Internal view of FIXP architecture.

The main modules of the FIXP architecture are the following:

e FIXP.Pj - This module contains the P4 language implementation that con-
trols the behavior of the switches. To support a new FIA, it is necessary to
update the code of this module.

e FIXP Rule Handle Service (FRHS') - This module runs inside the P4 switch
and modifies its internal tables. After this event, it sends a response to notify
the status of this modification.

e [IXP Switch Packet Handler (FSPH) - Handles the FIXP protocol primitives
that the P4 switch sends to the FIXP Abstraction Layer. The module inspects
the primitive data and forwards it to the corresponding network architecture
control entity in the Control Layer.

e FIXP Controller Packet Handler (FCPH) - This module is responsible for
handling the communication of the Control Layer with the infrastructure
layer. This module receives all the primitives sent by the Control Layer and
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forwards them to the corresponding P4 switches of the Infrastructure Layer.
In this sense, it hides from network architecture the physical topology of the
infrastructure layer.

The communication between these components uses the FIXP protocol prim-
itives. For simplicity, we will only describe their vocabulary and their service
without presenting their format. Below we define these primitives:

e FIXP-PACKET-IN (FPI) - This primitive contains in its payload the data
received by the P4 switch in its ingress port. It also contains p4 switches
metadata necessary for the proper handling by the upper layers, such as
ingress port.

e FIXP-PACKET-OUT (FPO) - The payload of this primitive is a response
that a network architecture needs to send to the infrastructure layer after
the occurrence of a F/PI event. It contains the egress port and the p4 switch
where this response should be forwarded.

e FIXP-FLOW-MOD-REQUEST (FFMREQ) - This primitive contains the
data necessary to update the match tables of the P4 switches such as table
names, match keys related to the network architecture that requested the
operation.

e FIXP-FLOW-MOD-RESPONSE (FFMRES) - This primitive contains infor-
mation about the status of a FFMRE( such as success or failure.

When a PDU arrives, the FIXP.Pj module parses the data and identifies
which is the corresponding architecture. Every architecture has its match tables,
and if no match is found, then an FPI event occurs. The FPI encapsulates this
PDU. The switch sends the FPI to the FSPH.

The FSPH forwards the FPI to the corresponding control entity in the FIXP
Control Layer. In the control layer, the right control entity, associated with the
network architecture, receives the FPI and provides the behavior associated with
that architecture. In an SDN based architecture, the control entity would be a
Controller, and in the TCP/IP architecture, it would be a Router.

The response of a FPI is an FPO primitive. The control entity encapsulates
the response in an FPO and forwards the FPO to the FCPH. The FCPH finally
forwards the FPO to the P4 switches. The Control layer generates a FPO to
each FPI received.

The Control Layer can also generate a FFMREQ. In this case, the control
layer forwards the FFMREQ to the FCPH in order to modify the P4 switches
behavior. The FCPH finally forwards the FPO to the P4 switches. When this
happens, the FRHS generates a FFMRES that is received by the FPSH which
finally forwards it to the corresponding network architecture control entity in
the Control Layer.

After this operation, the P4 switch is ready to handle data plane commu-
nication, and, in this case, the switch only forwards the data between ingress
ports and egress ports according to the forwarding rules of the switches in the
Infrastructure layer.
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Considering that these primitives belong to different network architectures,
one design goal of the FIXP protocol was that it should work independently
of the network architecture. To add support to new network architecture, the
only module that needs an update is the FIXP.P/ to configure the architecture-
related information such as match tables and headers. Also, it is necessary to
add to the Control Layer the new control entity of this new architecture.

4 FIXP Implementation and Proof-of-Concept Evaluation

As seen in Fig. 2, the FIXP implementation consists of several elements, includ-
ing a set of switches, an abstraction layer and the controllers. Inside every
FIXP switch there are two main applications being executed: the P4 switch
code (FIXP.P4) and the FRHS (presented in Subsect. 3.1).

The SDN switch was developed using the P4 packet processing language. It
has three main functional sections and follows the traditional P4 pipeline flow: a
parser, which receives the packets, extracts Ethernet frames and other protocols
and performs the architecture identification of the received packet by analyzing
the ethertype field from the Ethernet protocol; an ingress section, which defines
the packet forwarding tables with the key fields used in the routing rules and
the implementation of the forwarding actions for each of the defined FIAs; and,
finally, a deparser section, which reassembles the protocol fields on the packets
to forward to the correct switch port.

FRHS is an application implemented in Python using the Scapy library,
which listens the network interface port connected to the FIXP Abstraction
Layer (FAL) and waits to receive control packets. As soon as a packet is received,
the ethertype field is validated and the data required to create the forwarding
rule is extracted from the control packet. The retrieved information is converted
into a P4Runtime [6] command and executed. After the command execution, the
application uses Scapy to create a response control packet containing the result
of the operation and sends it to the controller.

The FAL is composed by two applications: FSPH and FCPH, both imple-
mented in Python using Scapy library. The FSPH uses Scapy library to listen the
network interface port connected to the switch. When a packet arrives coming
from the switch, the ethertype field is verified to identify the network architecture
and the packet is redirected to the correct controller through the interface port.
The FCPH uses Scapy library to listen all network interface ports connected to
the controllers. When a packet is received from the controllers, the ethertype field
is validated and the packet is redirected to the network interface port connected
to the switch.

In the current implementation, there are two controllers implemented, both
in Python: an ETArch controller and an IP controller. The IP Controller listen
to the network interface port connected to the FIXP Abstraction Layer. When a
packet comes to the controller, the ethertype field is used to identify the Internet
architecture. The controller assembles the packet and sends a control packet to
the network interface port connected to the FAL.
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The ETArch controller implements the same features described for the IP
controller, as well as some of the architecture-specific features, such as registering
and unsubscribing hosts to a workspace.

The proof of concept evaluation was conducted in a virtualized scenario where
each host, controller, the abstraction layer and the FIXP switch' ran on a virtual
machine. The benefit of running the FIXP switch over a virtualized environment
is the possibility of using the BMv2 to execute the switch.

ETArch Controller IP Controller

/

FIXP
Abstraction
Layer

HOST1

HOST4

HOST2 — FIXP Switch

HOSTS

HOST3

Fig. 3. Topology used on the FIXP evaluation.

In this environment, five hosts have been configured as presented in Fig. 3:
three of these hosts for ETArch architecture and two hosts for IPv4. One FIXP
switch was used, initially with no previous forwarding rules.

Preliminary integration and evaluation tests to verify the behavior of IP and
ETarch packets through the FIXP environment were performed. Next, we show
the results obtained in the tests. To collect the numbers of Fig. 4, we repeated
the test 30 times and 100 packets were sent, varying the size of the packets from
500 bytes up to 1000 and 1500 bytes.

Figure 4(a) shows the average time to process data packets forwarded by the
FIXP switch. Observing the results, we can see that ETArch performed better
than the traditional IP2. Moreover, it can be concluded that the packet size does
not influence the data packet processing time.

! In this initial evaluation, we have only one P4 switch. However, the architecture is
generic and can support any number of switches.

2 Important to highlight that it is not our intention to make comparisons between
the Internet architectures. Our goal is to verify the FIXP switch performance for
different types of headers and packet size.
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Fig. 4. Average time to forward data packets and average time to process a forwarding
insertion rule.

Figure 4(b) presents the average time for adding forwarding rules in the FIXP
switch. This time considers the whole processing from the moment that a packet
is received in the switch (and there is no match-action) until the rule is installed
in the switch. This time considers the full path from the FIXP switch through
the FAL and then back to the switch. Note that the time taken by the controllers
to decide what to do with the packet is not considered in this whole processing
time. Such time is controller-dependent and is not part of the FIXP control
plane. In Fig. 4b, it can be seen that ETArch has only one measurement for the
control plane, which means that the evaluation did not vary with the size of the
packets. This was done because the architecture has a standard control packet
and the size of the payload does not affect the processing time.

It can also be observed that the average time of control packets processed
by ETarch is greater than the time of packets processed by IP. This is due to
the fact that ETArch architecture sends three control packets to perform the
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registration of the entity to a workspace and then send the control packet to the
FIXP switch to insert a new forwarding rule.

The last test performed was the flow completion time (FCT). For this eval-
uation, 2000 packets of 1500 bytes were sent for each architecture. The mean
time values obtained in this test are similar to the values presented in Fig. 4 for
each architecture. For IP, an average of 1.23 ms with a margin of error of 0.16;
and for ETArch, we obtained an average of 0.75ms with a margin of error of
0.81. The value of the margin of error obtained by ETArch results from the large
execution time of the control packets of this architecture.

5 Conclusion

In this work, we present the Future Internet Exchange Point (FIXP), its archi-
tecture, implementation, and a proof of concept. FIXP aims at interconnecting
distinct domains of different Future Internet Architecture (FIA) so that they
can co-exist. FIXP is composed of a physical switching infrastructure and a set
of virtualized network functions. The physical switching needs to identify PDUs
coming from different FIA domains, process them, and forward to the appropri-
ate output port. At the same time, the virtualized functions deal with the control
and management of software-defined flows. FIXP allows the development of per
architecture software-controllers, decoupling data and control planes for several
Internet architectures.

This first proof-of-concept implementation adopted TCP/IP and Etarch as
the Internet Architectures showing the capability of FIXP to deal with two dif-
ferent headers. We believe that the TCP /TP architecture will co-exist for a long
time, but yet novel FTAs will appear. Using a virtual P4 switch (BMv2) to
interconnect hosts running the TCP/IP stack and ETArch FIA, we evaluated
the FIXP. Obtained results are promising for incoming data packets processing
times, rule adding on BMv2 switch, and flow completion times. Future work
includes an extension for NovaGenesis [7] and NDN FIAs [13], evaluation on
hardware P4-based switches, larger-scale experiments, and evaluation for multi-
ple architecture applications.
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