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Abstract In order to deliver network services using Software-Defined Networking
(SDN) elements of the three layers, namely infrastructure, control, and application
are necessary. Infrastructure and Control layer elements are in a more mature state.
They had received more extensive research and already count with some product
options available in the market. SDN Applications, however, are not commodity
software that can be deployed into different control and infrastructure layers. Ap-
plications should be built in a more customized fashion, and seamless integrated
with existing SDN infrastructure and control. This paper explores the Interfacer,
a Model-Driven Development (MDD) approach to SDN application development
and integration in order to deliver high-quality network services. This method uses
ontology-driven conceptual modeling to capture essential aspects of existing and to
be developed components of a SDN network architecture as well how they should
better interface and integrate into models. These models are transformed into source
code that respects the requirements of existing components and enforce the require-
ments of SDN applications been developed leading to higher continuity and lower
time to market and maintenance cost of SDN services. These models also promote
communication and learning improvements in developer community accelerating
the development process and minimizing risks. A case study is reported illustrating
the application of the method. In this case study we perform the analysis and refac-
toring of the Entity Title Architecture (ETArch), an SDN based network architecture
that is deployed over an OpenFlow capable infrastructure.
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1 Introduction

Software Defined Networking (SDN) facilitates the implementation of network ser-
vices by combining components in a bottom-up approach. However, high quality
network services rely on complex SDN applications which also demand a top-
down approach to materialize a unified service view throughout the network while
compatibility with underlying components is enforced by the bottom-up approach.
Moreover, such SDN application implementation strategy requires additional pro-
cesses and artifacts to manage and automate the development. Generally, this fea-
tures are delivered by Model-Driven Development (MDD) methods. To our knowl-
edge there is no model-driven development approach specific for developing com-
plex SDN applications. In this paper we explore the Interfacer, a model-driven de-
velopment approach for SDN applications.

SDN starts from three simple ideas: generalize network hardware establishing
common interfaces in order to provide a standard collection of packet-processing
functions, a logically centralized and decoupled control layer makes decisions upon
an up-to-date global view of network state and summarizes the network state for ap-
plications and translates application requirements to low-level rules. Additionally,
applications are programmable and network aware so that they can enforce their
communication requirements. These principles make it possible to evolve the net-
work infrastructure without having to change the underlying hardware, to evolve
network applications with fewer changes in the underlying control software and
enable expressing network algorithms in terms of appropriate abstractions for par-
ticular applications [1] [2]. However, obtaining these appropriate abstractions is not
an easy task. Despite several initiatives in the related work the problem still is con-
sidered challenging.

This paper explores the fact that proposing good abstractions frequently require
deep knowledge and long experience in a system or domain. It proposes a structure
to support knowledge and experience, helping to materialize a top-down approach
to manage SDN application development complexity. it uses Ontology-Driven Con-
ceptual Modeling (ODCM) to build shared and formal conceptualizations of the
problems, the method helps to isolate development responsibilities by introducing
artifacts and promotes more core reuse by transformations. Additionally it provides
a formal and shared understanding of the domain that developers can use learn,
communicate, and write and test code. ODCM is the activity of formally capturing
community knowledge about a domain or system. The aim of this method is to in-
troduce representations of knowledge in the form of artifacts simplifying interface
and abstraction definition and accelerating the development process.

The remainder of this work is organized as follows: Section 2 presents the state
of the art by comparing our approach with the related work. Section 3 describes the
Interfacer, a method that applies model-driven development to SDN applications.
Section 4 shows a case study that applied the Interfacer into an SDN based network
architecture, called Entity Title Architecture (ETArch). Finally, Section 5 presents
some concluding remarks and future work.



2 Model-Driven Development for Networks

This Section presents the related literature available. We have first realized that re-
search addressing the problem of SDN application development are frequently re-
lated to the concept of interface. Much research has been made in order to improve
SDN application development (i.e. NetKAT [3], Frenetic [4], Ravel [5], Gavel [6])
and ONF initiatives such as Intents [7] Northbound Interface (NBI) and the Open
Information Modeling (CIM) of Open Network Foundation (ONF). Besides the ad-
vancements in programming languages and interfaces, complex SDN application
development continues to be a challenge.

Complexity of SDN application development makes modeling an ideal candi-
date for improvements as already verified by related works. Although the SDN ar-
chitecture enables network programmability, SDN does not make it easy for de-
velopers and network operators [8]. The Model-Driven Networking also applies
Model-Driven Development (MDD) to SDN development recognizing the benefits
(e.g., reduced complexity, less error-prone, meaningful validation) to the develop-
ment and management of applications but it aims at delivering simpler generated
source code that can be executed. In other related work, MDD is applied to cloud
computing. It defines MDD as a methodical software development approach based
on three primary activities i.e. modeling, model transformation, and verification.
It acknowledges that the application of such methods incorporates the features of
fast development, reusability, and portability. Such sophisticated features are highly
supportive and aligned with the implementation requirements of cloud computing.
Consequently, MDD is considered an effective and attractive development approach
for cloud computing [9].

This related work joins Infrastructure as a Code technique with MDD in order
to deliver data-intensive architectures. It advocates that this trend of using software
engineering techniques that reduce the space, time, and efforts between software
development and operations, as well as the technical and organizational distance
between these two types of software teams, is known as DevOps. As part of the
DevOps menu, many practices entail re-using standard tools from software devel-
opment (e.g., code-versioning, code-revision management, etc.) to manage what is
known as the Infrastructure-as-Code (IaC) approach. In this context, it has experi-
mented with MDD and seen that power of abstraction and its automation potential
simplified [aC development[10]. Although model-driven development has been al-
ready proposed in other works, none of then focus specifically on SDN application
that is currently a very important issue.

3 The Interfacer

The Interfacer is a Model-Driven Development approach that helps to manage SDN
application development complexity by introducing artifacts in the development
process. One type of artifact that the Interfacer introduces is the model. Models



capture high level (architectural) abstractions, giving a complete view of the solu-
tion and the relationship between its parts, establishing a formal and shared vocab-
ulary that promotes developers team communication and learning. Another type of
artifact the Interfacer introduces is the transformation code. Transformation code
uses models as input and produces SDN application source code as output. The
goal of transformation codes is to reduce abstraction from model level to program-
ming language level (i.e. object-oriented, functional, procedural). These artifacts are
introduced and improved in a cyclic way divided into 4 phases: Modeling, Transfor-
mation, Implementation, and Testing as shown in Figure 1.

Modeling captures essential knowledge of community about the system using
ontology-driven conceptual modeling [11] and stores it into models expressed in
OntoUML language. Transformation incorporates architectural decisions and trans-
form model elements into generated code that instantiate good architectural patterns
using Eclipse Acceleo plugin and OntoUML meta-model [12]. Implementation is
the phase where SDN developers actually write some code. With knowledge and de-
sign issues isolated in precedent phases, this phase encompasses only programming
language specific decisions that must obey earlier phases constrains simplifying and
accelerating the implementation. In testing phase network services are tested and its
compliance with the model and the architectural elements can be verified. The re-
sults are used as feedback to fix implementation or improve the model in subsequent
cycles. Testing concerns not only code tests but also network service tests (such as
performance, security) that can also be generated from models and transformations.

network

Service

code

___’

knowledge

-

SDN Developer

1 Modeling Community

3 Implementation

code software

architecture
2 Transformation

Fig. 1 Interfacer: Model-Driven Development for SDN Applications

model

The models created in the modeling phase must work in a complimentary way
with SDN reference architecture. The concepts defined in these models should rep-
resent some SDN plane element and concepts from different planes must communi-
cate through standard interfaces. Interfacer helps to seamless integrate SDN appli-



cations into existing infrastructures as it can model the interfaces of reused software
(i.e. SDN Controllers) and abstraction of applications been developed. Additionally,
the Interfacer helps to define interfaces that do not compromise the general purpose
of SDN networks by leveraging a special application to manage application inter-
faces, so that network control can use standardized interfaces while (user) applica-
tions can define more specific interfaces when needed. Once development project is
mature Interfacer provides much less knowledge to service time for huge alterations
in the project meeting SDN demands for agility in network service deployments.

3.1 Knowledge to Model

In order to represent knowledge into models, we use ontology-driven conceptual
modeling [13]. Ontology-driven conceptual modeling is the act of capturing and for-
malizing how a community perceives a domain or system of interest, using model-
ing primitives inherited from a foundational ontology. Moreover, we use the Unified
Foundational Ontology (UFO) as foundational ontology to identify the fundamen-
tal distinctions between types and individuals, taking into consideration ontological
properties, such as rigidity, identity, and dependence. In software-defined network-
ing, the individuals can be the programmable switches, routers, or any hardware
composing the network, and processes running software that controls the network,
or provides some application to his users.

Unified Foundational Ontology [14] provides a set of universals that behaves as
a set of meta-properties and are used as class or association stereotypes. A model
is constructed by grouping some stereotyped classes and associations so that the
classes and associations of the models will follow a formal meta-property behavior
that represents an actual network behavior. Visually a model will appear like a UML
class diagram, but it carries a much more expressive semantic due to the use of
unified foundational ontology as stereotypes.

Models contain classes, which can be stereotyped as kind, subkind, phase, role
or relator. The classes are connected by associations, which can be stereotyped as
component of, member of, material, or mediation. The use of ODCM allows the
simultaneous modeling of diverse aspects of the network like architecture, perfor-
mance, security, energy-efficiency and user quality of service producing an agile,
cheap, compliant and consistent architecture design that can be refined in successive
cycles while automatically generates code that reflects model changes. It isolates
the high-level aspects of design concerns formally promoting its completeness and
soundness. A formal representation of knowledge about network leverages devel-
oper community communication and learning leading to more precise development
process and results.

Figure 2 is a model diagram that depicts our vision of a reference SDN appli-
cation consisting of several application components such as main, controller and
client components. The main component resides in the core of SDN application
layer. The controller component resides inside the SDN controller and is respon-
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Fig. 2 Example of SDN Application Model

sible for the translation between application and controller abstractions. The client
component runs inside the user device, it requests and uses network services pro-
vided by the main component. These components have different functions and may
have different behaviors under different circumstances. We model these using roles
(e.g. a controller component of the application may behave as a cloud controller
component or as a fog controller component depending if it is located in the core
or in the edge of the network). This models help to separate knowledge about the
SDN application from source code allowing knowledge reusability and improving
developer community learning and communication.

3.2 Model to Code

We use the Eclipse Acceleo [15], [16] plugin and the OntoUML meta-model in order
to transform network models into architecture and test code. Writing a template in
Acceleo model transformation language we can instruct Acceleo how to transform
network models into programming language interfaces, classes, methods, and vari-
ables. Transformation code [17] isolates intermediary design concerns, separating
architectural from implementation decisions.

The Menthor [18] tool is used to guide the model construction process and to
verify OntoUML syntax. Menthor is an OntoUML language editor to build and val-



idate the network models. OntoUML is semantically supported by Unified Founda-
tion Ontologies (UFO). The OntoUML metamodel contains all the UFO universals
that are used to interpret the network models. The metamodel is imported into an
Eclipse Acceleo Project where templates must be written with the instructions to
transform model to code. OntoUML is a UML profile extension that integrates well
founded ontological semantic with a graphical modeling language. Listing 1 shows
an excerpt of a model transformation language of Eclipse Acceleo plugin.

-

S

[comment encoding = UTF-8 /]
[module ExampleModule (" OntoUML’) ]

[template public generateControllerModule (aKind : Kind) ]

[file (aKind.name + ’.java’, false, 'UTF-8')]
public [aKind.name/] implements IOFMessagelListener,
IFloodlightModule {

@Override

public String getName () {

// TODO Auto-generated method stub
return null;

}

@Override
public boolean isCallbackOrderingPrereq(OFType type, String
name) {
// TODO Auto-generated method stub
return false;
}
}
[/file]
[/template]

Listing 1 Acceleo model transformation language example

public ControllerModule implements IOFMessagelistener,
IFloodlightModule {

@Override

public String getName () {

// TODO Auto-generated method stub
return null;

}

@Override
public boolean isCallbackOrderingPrereq(OFType type, String
name) {
// TODO Auto-generated method stub
return false;
}
}

Listing 2 Excerpt of SDN application source code generated in file ControllerModule.java




A profile in the Unified Modeling Language (UML) provides a generic extension
mechanism for customizing UML models for particular domains and platforms. Ex-
tension mechanisms allow refining standard semantics in a strictly additive manner,
preventing them from contradicting standard semantics. Profiles are defined using
stereotypes, tag definitions, and constraints which are applied to specific model ele-
ments, like Classes, Attributes, Operations, and Activities. A Profile is a collection
of such extensions that collectively customize UML for a particular domain.

Using a modeling transformation language SDN architects can specify which
type of programming structures should replace each occurrence of a determined
stereotype as shown in listing 1 and steer developers to implement known best pat-
tern as shown in listing 2. For example, each element of the model stereotyped with
the universal kind should be replaced by a Java interface or class with the same
name of the model element, and different role universals associated with this kind
should be replaced by specific methods within his respective interfaces or classes.

3.3 Code to Service

This phase embraces a more traditional development style, however, it benefits from
a formal and shared vocabulary delivered by the models of the first phase. This vo-
cabulary must be broadcast inside the developers’ team in order to facilitate com-
munication and speed the learning. Some code convention may also be delivered
from this vocabulary so that the whole code reflects the model concepts.

In order to transform the code into service developers must complete manda-
tory Java class methods and have a little understanding of how SDN infrastructure
works. With this methodology interfaces and software architecture decisions can be
separated from implementation decisions, and model improvements can be quickly
transmitted to code in a top-down approach.

An Infrastructure-as-Code is used to enforce control of model and code version
to allow reuse of implementation code compatible with different model versions.
Additionally, modeling and transformation can also be used to provide the testing
code to verify the service.

4 Applying Interfacer to the Entity Title Architecture (ETArch)

This section presents a case of study where we apply the Interfacer: Model-Driven
Development for SDN Application method to the Entity Title Architecture, dis-
cussing his limitations and some results.



4.1 Entity Title Architecture (ETArch)

ETArch [19] is a clean-slate architecture with a natural match with SDN [20] con-
cept. ETArch’s goal is to support the new applications requirements such as mul-
ticast, mobility, QoS, and security. ETArch’s design goals consider a new horizon-
tal addressing scheme that solves the ambiguity of identification and location, then
making easier mobility and multicast communication and mitigates the need of vari-
ous addresses (MAC/IP/TCP), wherein ETArch uses only a unified address for com-
munication between entities. A flexible Communication layer, semantic oriented,
capable of supporting different applications requirements and an advanced network
control plane to establish a communication context that provides guarantees to the
communication requirements over time for satisfactory user experience. In more
depth, ETArch has a communication context, namely workspace, which is a logical
bus, naturally multicast. In practical terms, the workspace supports the dialog of a
set of entities, which take part in a communication context. This communication
context provides security, QoS, QoE, multicast communication, and mobility for
these entities over time.

Another important concept of ETArch is the Domain Title Service (DTS), which
is a distributed environment that manages all of the control mechanisms at a global
scale and solves issues, such as management of entity lifecycle, calculation of the
best route for the extension of workspaces, and guarantee of communication quality.
These functions are materialized by a DTS Agent called Domain Title Service Agent
(DTSA), which is an ETArch controller based on the SDN concept. To sum up, the
key element design applied to ETArch is flexibility, which allows this architecture
to handle a broad array of requirements, while it can still be generic enough to sup-
port the technological evolution. Through these considerations, ETArch can uphold
different services from distinct paradigms such as Service-Centric, User-Centric,
Information-Centric, and the current Host-Centric.

4.2 Limitations of Entity Title Architecture

Despite ETArch’s design goals consider a horizontal addressing scheme that makes
mobility and multicast easier, and its capacity to uphold distinct network ser-
vice paradigms. It has only delivered a content-centric transport service known as
Workspace. Although, initial implementation was straightforward, further develop-
ment proved the architecture has serious service limitations. The first, regards to
service extensibility, the use of automata to define a communication between what
instantiates client and main components of SDN application leads to a simple lan-
guage, however every feature addition implies in code changes in both components.
The second, regards to service scalability, architecture application and control are
tightly coupled meaning that every DTSA is an application and also a controller.
Additionally, this condition makes the architecture interface abusive (i.e. prohibit-
ing new versions of the SDN controller), as it do not use the standard northbound



interface, without mention the effort maintain the distributed applications of DTS
synchronized.

4.3 Refactoring ETArch

By refactoring the architecture we eliminated these limitations, whose causes were
only identified as we created models to understand how the code base reflected upon
SDN architectural principles. We enforced the use of northbound interface between
the main component of SDN application and the controller modules by introduc-
ing transformation code. This measure have made application and control loosely
coupled and respected standard northbound interface. Further, we have centralized
the application that can now communicate with several controllers through this in-
terface, thus making the specific protocol for DTSA inter communication no more
necessary.

Application Plane

Enuty-SBB | | WorkSpace-SBB | | Mobility-SBB | | Qo5-SBB

NEConnector-SBB

TopologyhManager GenericTranslator } { StorageSoutce

Floodligh® rovider
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Fig. 3 ETArch components before Interfacer

Figure 3 shows the main components of ETArch before Interfacer. Entity-SBB,
Workspace-SBB, Mobility-SBB, NEConnector-SBB, and Openflow-RA are JAIN
SLEE components and represent the main component of SDN application. Topol-
ogyManager, FloodlightProvider, StorageSource, and GenericTranslator are Flood-
light SDN controller modules. The dashed lines delimit SDN planes showing how
ETArch components fit into SDN architecture. Figure 4 shows the main components
of ETArch after Interfacer was briefly applyed to architecture, resulting in an anal-
ysis and refactoring. Note that there are only controller modules in control plane
and only application modules in application plane. They must always communicate
through northbound interface.
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Fig. 4 ETArch components after few Interfacer iterations

5 Concluding Remarks and Future Work

In this paper we have explored the Interfacer, a method for developing complex SDN
applications in order to deliver high-quality network services. The method was ap-
plied to ETArch, an analysis, that identified ETArch’s limitations, and a refactoring,
that qualitatively improved ETArch’s scalability, were performed as a case study. Al-
hought, service extensibility issues were not improved by the refactoring, it opened
the possibility for future investigation on how the replacement of automata by gram-
mars can help to produce more extensible and expressive communication amid SDN
application components while minimizing client application changes.

Another future concern is apply this method to other well known open source
SDN architectures, evaluate how its applications perform in terms of SDN architec-
tural principles, and propose some guide lines to fixing eventual issues using models
and transformation code.
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