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Abstract—Internet of Things (IoT) has increased its presence
in many environments. However, this means a greater exposure
of sensitive data, rising potential security threats. Thus, security
becomes a key requirement for the protection and prevention of
cyber attacks to IoT applications and devices. FIWARE Platform,
for example, has an architecture of components responsible for
interconnecting devices to IoT applications, decreasing complex-
ity and providing a standard set of services to developers. The
IDAS 5 version of the platform presents several security gaps,
so this work aims to solve some of them by incorporating end-
to-end security services using encryption and access control in
all NGSI requests (RESTFul API). The main contribution of
this paper is the implementation of the DTLS 1.2 protocol in
NodeJs to support the LWM2M/CoAP protocol and its addition
to the IoT Agent. This paper also allowed the IoT Agent of the
FIWARE Platform support TLS communication to the MQTT
protocol. Through an experimental evaluation, it was possible to
validate the implementation. Our preliminary results show that
the encrypted requests had a small increase regarding latency, but
this cost is compensated by the increase of security in FIWARE
based IoT Applications. The source code of this work is open on
the GitHub and it can be used to support security services in
other IoT communication protocols.

[. INTRODUCTION

IoT is an emerging paradigm which aims to contribute
to several kinds of application domains, so its impact is
significant in the industrial and academic scenario [1]. The va-
riety of applications developed upon this context ranges from
health, cities, agriculture, transportation, military, commercial,
domestic, among others[2], [3].

Given such impact, many companies and researchers con-
centrate their efforts on expanding the development of IoT
applications. They seek answers to the challenging questions
regarding the hardware and software technologies used in their
projects [4], [5]. It is possible to note that when deploying
real [oT systems, there are a significant number of challenges,
among them are related aspects of vulnerabilities of the use
of the open network in devices which show problems with
privacy, security, authentication, and authorization [1], [3].

Security in [oT plays an essential role due to two main
reasons: several things may interact together in a complex
manner, through many security techniques and according to
different policy requirements [6] and IoT devices can have
different operating environments and, usually, limited com-
putational power. Given an individual IoT application, it is
necessary to adjust the security requirements of transmitted
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data through encryption/decryption and authentication. Privacy
is another concern, especially in situations where devices are
collecting sensitive data, and people do not want to disclose
their information.

FIWARE [7] is a Future Internet platform which enables
working in the IoT context through a set of middleware and
services that aim to integrate devices, protocols and informa-
tion. Despite being a robust platform, some project compo-
nents have little or no security mechanisms developed so far.
Hence, the primary objective of this work is to increase the
security of IoT applications based on the FIWARE platform by
proposing security mechanisms to ensure confidentiality and
access control at the application layer.

With that in mind, mechanisms of confidentiality and access
control have been incorporated in IoT Agent Node Lib [8].
An IoT Agent in the context of FIWARE is a component,
also called Generic Enabler (GE), that lets groups of devices
to send their data for and be managed from a FIWARE
NGSI Context Broker by using their native protocols. We can
summarize our contributions as follows:
provide the integration of the IoT Agent to a new element
named IoT Broker-FI;
introduce the support for the Transport Layer Security
(TLS) in the IoT Agent for the Message Queuing Teleme-
try Transport (MQTT) protocol;
introduce the support for Datagram Transport Layer Se-
curity (DTLS) 1.2 in the IoT Agent for the Lightweight
Machine-to-Machine/Constrained Application Protocol
(LWM2M/CoAP);
propose a strategy for allowing Next Generation Service
Interface (NGSI) requests to be encrypted using Secure
Hypertext Transfer Protocol (HTTPS) and integrated with
IoT Broker-FI and IoT Agent;
evaluate the impact of each proposed solution using a
simple application.

Support for DLTS 1.2 has been tested to a compatible server,
LESHAN Lightweight M2M and the impact of incorporating
security mechanisms are experimentally validated through the
combined use of IoT Broker-FI, IoT Agent MQTT, IoT Agent
LWM2M/CoAP and the components of the FIWARE platform,
Orion Context Broker and PEP Proxy.

The new GE, called IoT Broker-FI is also a contribution of
this work. The IoT Broker-FI, fully compatible with the latest
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version FIWARE Backend Management (IDAS R5) [8], allows
the aggregation of data from different devices in a single entity
in the context and communicates with the IoT Agent in a
secure manner

This paper is organized as follows: Section II presents
some concepts of the FIWARE framework, its current state
in relation to security; Section III presents a view of how
security is implemented in different platforms used in IoT;
Section IV presents the proposal for enhancing security; and,
Section V presents our experiments and results analysis in
the Section VI. Finally, Section VII presents the concluding
remarks and future work.

II. FIWARE PLATFORM: A BRIEF SECURITY ANALYSIS

The FIWARE is a public and open source platform available
on the Internet. It is based on the open infrastructure platform
named OpenStack which proposes an enhancement for IoT
functionalities. In the FIWARE platform, the applications and
services are composed by the Generic Enablers (GEs) which
can be instantiated to be executed.

These GEs use the Next Generation Service Interface
(NGSI-09/NGSI-10) as the standard for communication be-
tween applications. The NGSI standard was developed by
the Open Mobile Alliance (OMA) which provides a powerful
interface for use in various web services through Representa-
tional State Transfer (REST) [9].

FIWARE has several GEs which can be used for several
applications in different domains. To implement a standard
application you can use the main components: IoT Agent,
NEC IoT Broker, PEP Proxy and Orion Context Broker. In
summary, the IoT Agent consists of a gateway that manages
the devices. The PEP Proxy redirects only authorized NGSI
requests. The NEC IoT Broker is used to perform the associa-
tion and composition of the IoT Agents, that is, it is possible to
compose data from different sensors which can communicate
through different protocols associated with a particular entity.
The Orion Context Broker stores the data collected by the
devices.

The IoT Agent is software modules responsible to convert
specific IoT device protocols such as LWM2M/COAP, MQTT,
and SIGFOX to the NSGI calls that enable the communication
with other FIWARE GEs. The IoT agent represents an abstrac-
tion layer between the devices and the FIWARE platform. The
IoT Agent supports different ways to communicate with the
device in order to produce a context based on the sensing
information. In the active attributes mode, the device will con-
tinuously notify that [oT Agent about the new measurements
of a specific attribute. In the lazy attributes mode, updates
of the device will only be transferred to the IoT Agent when
requested. Finally, the command attribute mode allows the IoT
Agent executes commands in the device [10].

Figure 1 depicts the FIWARE architecture view and the GEs
necessary to be used in a standard scenario.

In Figure 1 we can see that the IoT Agent is in the IDAS
5 version, while the NEC IoT Broker is in the IDAS 4
version. As there have been changes in the NGSI interface,
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the communication between them was not feasible due to
compatibility issues. Among the changes, we can mention
the mandatory inclusion of headers in the request for service
and subservice. Thus, IoT Agents require the use of service
information, but the NEC IoT Broker does not have such
functionality making association and composition of various
devices impracticable.

FIWARE provides the PEP Proxy to authorize NGSI re-
quests sent from the IoT Agent to the Orion Context Broker.
However, as we can see in the IoT Agent, the token recovery
implementation to perform authentication and authorization
was inadequate for the NGSI requests. The requests that do
not implement the token retrieval capability are UpdateCon-
text, RegisterContext, SubscribeContext and unsubscribeCon-
text. UpdateContext and RegisterContext requests are essential
because they are executed whenever a device is connected
to the IoT Agent. This makes it impossible for the PEP
Proxy to work correctly. This eliminates the ability to provide
authentication and authorization of NSGI requests.

The security mechanisms adopted in the [oT Agent-UL for
the MQTT protocol present some issues. First, in the IoT
Agents, only the messages sent from the devices had client
authentication in the MQTT Broker. Besides, this loT-Agent
version does not support encryption. This could lead to an
active attack by intercepting packets and reading plain data
such as topics, username and password.

Another significant problem is that the IoT Agent considers
the control of packets accepted by MQTT Broker through
defined topics. Thus, MQTT Broker filters the topics which
are incorrect, however, when the packets are not encrypted
another user can use the same topic to send altered data. This
would make it possible to exchange confidential information
or execute a command on the device without significant
challenges. Hence, we build on an encryption mechanism that
ensures the external elements do not view the pattern of threads
accepted by the MQTT protocol.

Similarly, LWM2M/CoAP has no encryption on its con-
nections implemented in NodelJs for the IoT Agent. This
gap allows an attacker to view the information in the CoAP
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package and execute commands on these devices. To overcome
this, we implemented DTLS 1.2 in LWM2M/CoAP that had
an adequate and expected behavior.

III. RELATED WORK

IoT platforms have become a trend and offer a set of
middleware which are used to develop an IoT application run-
ning in cloud computing. Middleware has gained prominence
due to the important role in simplifying the development of
new services and the incorporation of technologies [11]. This
makes it essential for external IoT applications to use their
API without having to be aware of protocols and semantic
definitions [1]. Several proposals are implemented by the
industry, in this section a comparison of their resources is
presented.

AWS IoT [12] is an API which allows devices to authen-
ticate and connect to AWS IoT by using MQTT, HTTP or
WebSockets protocols. The AWS IoT device gateway autho-
rizes devices to communicate with AWS IoT securely by
using a publishing template. AWS IoT provides access control
and confidentiality using the Transport Layer at all points of
connection of the distributed system. The security protocol is
TLS using X.509 certificates, and the authentication method
is the Amazon SigV4 [13].

Kaa [14] is a middleware platform which allows the con-
struction of complete IoT solutions. The platform supports
encryption for devices through TLS.

The IBM Watson IoT [15] platform consists of a set of tools
and components through cloud computing. It supports only the
MQTT and HTTP protocols to communicate the gateway and
devices. For applications, secure APIs are offered to use data
analysis tools.

The Azure IoT [16] supports the MQTT, HTTP, and Ad-
vanced Message Queuing Protocol (AMQP) protocols. Also,
it allows you to authenticate the devices to send the data.

Table I provides a view of the features which are imple-
mented by the presented platforms. We can see that they all run
in cloud computing and allow you to manage the data through
your APIs. Besides, they provide documentation to implement
the communication of available messaging protocols. The
commonly used protocols are MQTT and HTTP. FIWARE
offers more protocols such as LWM2M/CoAP which can be
used on devices with low network resources and the SigFox
that makes it possible to use its own communication network.
However, the access control is not properly implemented on
your gateway and does not present end-to-end confidentiality
among its components.

In this work the FIWARE platform is used and the sec-
tion IV describes the main components which are used to
develop a real IoT application.

IV. ENHANCING FIWARE PLATFORM SECURITY

This section addresses the security mechanisms of confi-
dentiality for protocols MQTT, LWM2M/CoAP and NGSI in
the IoT Agent. Also, it introduces the new IoT Broker-FI

component which aims to update the NEC IoT Broker (version
IDAS 5) of the FIWARE platform.

Figure 2 illustrates an overview of the proposed FIWARE
architecture required to support security aspects involving
authentication, authorization, and confidentiality.
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Fig. 2. Overview of the proposed architecture.

According to the proposed architecture, the IoT Agents
must perform the authentication and authorization to retrieve
the identification information which will be attached to the
validated request header. PEP Proxy will be used to implement
the authorization and authentication of the tokens sent by the
IoT Agent and also check the request token to redirect to the
Orion Context Broker. Since NEC IoT Broker is incompatible
with the IDAS 5 version of the [oT Agents and it does not have
secure NGSI communication [17], there is a need to develop a
new component which has a purpose of realizing associations
and compositions of IoT Agents with different protocols using
a secure communication.

The secure communication capabilities are addressed in
Section IV-A, access control in Section IV-B and the features
implemented in IoT Broker in Section IV-C.

A. Confidentiality

Confidentiality ensures that only authorized users will have
access to classified information [18]. In our context, develop-
ing confidentiality requires that a third party could not read
the packets exchanged by sender and recipient.

The current version of the IoT Agent is IDAS 5 and it
has been developed in Node Js. IoT Agent consists of several
libraries, and they are used to provide a standard of agents
for different protocols. IoT Agent-NodeLib is a library which
performs the registration of devices, services and it delivers
NGSI functionality regardless of the used protocol. Thus, IoT
Agents for each protocol might import this library to support
different protocol versions.
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TABLE I
COMPARISON OF IOT PLATFORM FUNCTIONALITIES.

Requirements AWS IoT [12] Kaa [14] IBM Watson IoT [15] Azure I0oT Hub [16] FIWARE [7]

Virtualization (Cloud Computing) Yes Yes Yes Yes Yes

Device Protocols MQTT, HTTP, Web- MQTT, HTTP MQTT, HTTP AMQP, MQTT, MQTT, HTTP, LWM2M/ CoAP, SigFox
Sockets HTTP

Gateway Yes Yes Yes Yes Yes

Access control Yes Yes Yes Yes Not all NGST calls implemented on the gate-

way (IoT Agent).

Confidentiality TLS TLS TLS TLS No

API Data Management Yes Yes Yes Yes Yes

Documentation Yes Yes Yes Yes Yes

Figure 3 shows the stack of protocols needed to implement
packet encryption (confidentiality) on the IoT Agent. Note that
the device sends information using MQTT or LWM2M/CoAP,
and such data is converted to NGSI by using the HTTP or
HTTPS protocols. Thus, one of the goals of this paper is to
develop the security mechanism using such existing protocols
and adapting it to our needs. With that in mind, we use
the following cryptographic protocols for encrypting network
packets: TLS [19] for the Transmission Control Protocol
(TCP) and DTLS [20] for the User Datagram Protocol (UDP).

The implementation of the security features in the FIWARE
platform will be detailed according to the proposed architec-
ture of Figure 2 and the protocol stack of Figure 3.

First, there is a need to encrypt NGSI messages between the
IoT Agent, IoT Broker-FI and the PEP Proxy. Therefore, it is
necessary for both applications to talk to each other through
HTTPS servers, which is the implementation of TLS over the
HTTP protocol. In doing so, the NGSI calls can be transmitted
over an encrypted connection.

NGSI

HTTPS

SSLTLS

TCP

IPva/6

Ethernet

Gateway ‘

Lightweight
M2M/CoAP

DTLS

MQTT

SSUTLS

TCP ubpP

1Pv4/6 IPv4/6

Ethernet
*

Ethernet
*

v
Lightweight
M2M/CoAP

Device

v
MQTT
Device

Fig. 3. Stack of protocols required to implement secure communication in
the IoT Agent.

MQTT protocol consists of a messaging-oriented appli-
cation protocol which provides communications flow con-
trol control with delivery guarantee [21], [22]. MQTT uses
the publish/subscribe paradigm for message exchange. This
paradigm uses a MQTT Broker which is responsible for receiv-
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ing, queuing, and relaying messages received from publishers
to subscribers [23]. Since security should be presented in all of
the components (device, MQTT Broker server and IoT Agent),
a study in the MQTT library was required to implement
security at the IoT Agent. The MQTT library used in the IoT
Agent already implements TLS resources with certificates. The
idea here is to provide an IoT Agent version with the Pre-
shared Key (PSK) implementation.

To implement the IoT Agent, some changes were made
in order to connect and establish the certificate settings in
the component configuration files. For example, establishing
the handshake in every message exchanged between sender
and recipient might generate an overhead in the network. To
prevent this, the MQTT device is able to set up the connection
time with the MQTT Broker.

Lightweight M2M/CoAP is a protocol specified by the Open
Mobile Alliance for constrained devices in 10T [24]. The stack
LWM2M use the CoAP protocol to transfer the data between
the client and server. This makes use of a light and compact
protocol which allows the device management based in simple
object of resource model through CoAP call abstraction. CoAP
protocol uses UDP as the transport layer which uses the DTLS
protocol to perform the encryption of its messages. DTLS can
be used to have the same guarantees as of the TLS over TCP
used by MQTT. The DTLS is similar to TLS and uses a PSK
key on the device. According to the OMA specification [9],
the DTLS 1.2 protocol was not implemented in the NodelS
FIWARE Lightweight M2M protocol [25].

Regarding M2M communication, the LWM?2M/CoAP proto-
cols require different CoAP requests, depending on credential
types. According to the specification, the LWM2M supports
three different types of credentials, namely: Certificates, Raw
public keys and PSK [26]. Thus, when a client initiates
communication, the first step is to register for the LWM2M
server. In case of confidentiality, client and server should
establish secure channel before exchanging of information.
Upon establishing secure communication, as defined in the
specification [26], the DTLS client and server must remain for
a long term, by avoiding compromising the security context.

We used the Neustar library [27] to implement the DTLS
functionality over the Lightweight M2M. This library im-
plements the CoAP protocol by using security layer DTLS
encapsulation [28]. The CoAP/DTLS protocols, developed by
Neustar, use ARM mBed which is an open source library for
TLS development. The PSK key is stored on the client and
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server, being that only the server has a certificate which will
be used to be sent to the client to establish secure channel.

Some modifications were made in the Neustar library to
fully support the Lightweight M2M protocol. Originally, the
Neustar library closes a socket after a connection. However,
according to the LWM2M/CoAP specification, the connection
must remain open for sending requests to manipulate the
objects [26]. Therefore, in our implementation, the socket
remain open and keep the security state, such as session keys
and security parameters established in first COAP request.

With Neustar library, we made some CoAP protocol updates
to reuse the open socket when establishing secure communica-
tion session. This is a specification driven approach, which is
useful for the exchange of data, by reducing new handshakes
made for constrained devices. To determine socket incoming
messages, the NodeJs Event Library has been used to trigger
reactive functions. This way, the socket is listening for the
incoming messages and it sends them for the specified function
to handle the request.

To validate the DTLS 1.2 implementation was also carried
out through protocol communication tests with LESHAN.
LESHAN is a Java implementation of the OMA Lightweight
M2M server and client, which already implements the security
layer [29], [30]. The goal of this evaluation is to enabled a Java
client (LESHAN) to securely communicate with the developed
IoT Agent.

B. Access Control

To prevent unauthorized agents change data on the Orion
Context Broker resources is mandatory to implement access
control. Authorization and authentication functionalities were
not fully supported for the following IoT Agent calls: Up-
dateContext, RegisterContext, SubscribeContext and Unsub-
scribeContext methods. For this reason, access control to the
Orion Context Broker does not work as expected.

The access control requires that the user register their
information in a security application such as the OpenStack
Keystone. When the IoT Agent is triggered by some device, a
token requesting is made for the security application along
with the user data, password and entity key. This system
checks it out if the information match, if so, this roken is
sent to be attached to the NGSI request header.

The token allows devices to access private resources of the
entities for a specified period of time. The security application
is in charge to provide the foken which defines the access time.
Figure 4 shows the sequence diagram depicting the required
steps to perform the token retrieval on the IoT Agent.

A careful IoT Agent code refactoring has been done by re-
garding the necessary access control features implementation.
Modifications has been introduced to support NGSI requests
for the authentication and authorization functionalities, by
regarding access control of the IoT Agents to the PEP Proxy, to
retrieve tokens. Thus, the PEP Proxy verifies whether a foken
is valid to permit, or not, that a request could be sent to the
Orion Context Broker.
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Fig. 4. ToT Agent sequence diagram for retrieving a token.

Also, modifications has been introduced for the IoT Agent
to check it out the token of the incoming NGSI requests from
the Orion Context Broker, in the scenarios which execute
commands and request data in a lazy way on the device.
Otherwise, such requests can perform functions on devices
even if they are not validated. In this case, all requests NGSI
must have a valid X-Auth-Token header.

C. IoT Broker-FI

NEC IoT Broker for the FIWARE is not compatible with the
IoT Agent and Orion Context Broker due to the older NGSI
communication interfaces. The NEC IoT Broker requires that
every entity should be manually stored in the IoT Discovery,
which made it impractical for a real application. For this rea-
son, a new broker capabilities component has been developed.

The new component is named IoT Broker-FI and encom-
passes the same features of the other one (NEC IoT Broker),
but with other functionalities. One of them is related to the way
that NGSI reads the requests. This new method aims to read
the NGSI request and store the information collected without
human intervention, different from the model proposed by
NEC IoT Broker where it was necessary to register each entity.

Therefore, IoT Broker-FI development aims to aggregate
functions provided by the NEC IoT Broker, to provide com-
patibility with IoT Agents and also to interact with a large
number of providers and consumers automatically. Besides,
our IoT Broker yield secure communication on NGSI requests
using TLS and was developed in NodeJs following the same
architectural standards adopted by FIWARE developers.

V. EXPERIMENTAL EVALUATION

To validate the proposed secure communication architecture
among the IoT Agent, the IoT Broker-FI, and the Orion
Context Broker, we set up two test scenarios. The first one
involves creating a scenario with no security requirements and
the second one considers the use of encryption for message
exchanged between the devices, complemented with authen-
tication and authorization, as proposed in the architecture
presented in Figure 2.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on November 02,2025 at 12:07:43 UTC from |IEEE Xplore. Restrictions apply.



A. Evaluation Method

For both MQTT and LWM2M/CoAP protocols, we perform
the inspection of the packets to validate the sequence of mes-
sages necessary for the communication between the involved
components. Also, the packet inspection allowed us to observe
the use of encryption in each scenario.

Subsequently, the latency measurement was performed in
each scenario. In our context, latency is the communication
time between a device and the Orion Context Broker. Along
with this path, the message could be sent or received by the
device, always going through the IoT Agent and IoT Broker.

For the MQTT protocol the latency benchmark was per-
formed for active and command attributes. In the case of com-
mand, the evaluation examined the influence of the handshake
time. For this, the first approach considered the realization
of the handshake at the moment of the connection of the
device with the MQTT Broker. In the second approach,
for each message sending through the device, a handshake
is performed. For the LWM2M/CoAP protocol the latency
measure was conducted considering active, lazy and command
attributes.

We run experiments on a local network using a computer
with Intel Core 17 with four cores of 2.00GHz with 8 GB of
RAM and Ubuntu operating system. The tool for analyzing
the packets traces and collecting the time data is Wireshark. It
is important to note that for each protocol, its respective IoT
Agent has been used.

B. IoT Agent-UL MQTT

It is possible to store the information device groups which
have a type, trust and apikey in the [oT Agent. When the
device does not have its registration and such apikey exists
in IoT Agent-UL MQTT, the referred device begins to share
the characteristics of this device group. As a result, the device
information is stored in the [oT Agent and the Register Context
is sent through a NGSI request to store the entity in the Orion
Context Broker.

After the RegisterContext is completed, the device can
execute the updates context on the Orion Context Broker. This
mode of operation is part of the active scenario where the
device actively makes periodic updates of its properties.

C. IoT Agent LWM2M/CoAP

The OMA Lightweight M2M protocol has a set of interfaces
which are used by the client and the server (IoT Agent).
When a device connects to the server, the client first sends
the registration request.

It is important to note that the IoT Agent first makes a Reg-
isterContext and then, a CoAP request to receive notifications
when the data is changed through the observe method. Thus,
if an update of the object on the device occurs, the data is
sent to the context. In fact, this represents the active attribute
scenario proposed by FIWARE.

VI. RESULT ANALYSIS

This section presents a comparative analysis of the latency
time for the data exchanged between the device and the Orion
Context Broker in one scenario without security and another
with the security approach proposed in this work.

Wireshark tool has been used for the measurements. In
Figures 5 and 9, the Y-axis presents the latency in seconds
(s) and the X-axis indicates the experiment identification. To
improve the analysis of each scenario, the experiments were
replicated twenty-four times (E1 to E24), and the averaged
results are presented using a 95% normal confidence interval.

A. IoT Agent MQTT

The IoT Agent MQTT only supports two different operation
modes: active attributes or command. On both operation
modes, the handshake happens before the MQTT data ex-
change. As a default behavior of FIWARE architecture, before
each NGSI request a new handshake is executed.

Figure 5 presents the latency time considering MQTT active
attributes in the scenario where the TLS based security is used
versus the one with no confidentiality applied to the messages.
The average duration with security is 0,07354 £+ 0,00851
seconds and 0,048199 + 0,003693 seconds without security.
In this case, latency time has an average increase of 52.58%,
considering that the handshake is performed between two
different NGSI requests.

MQTT Active

015

Time (s)
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Experiment Number

B Security No Security

Fig. 5. Comparative Latency to MQTT active attributes.

Figure 6 presents the latency time when MQTT Command
attributes are executed in the device. In this case, the latency
time with the use of TLS is in average 44% higher when
compared to the MQTT command attribute without using TLS.
The average time using TLS is 0, 08815£0, 01311 seconds and
with no TLS the average time is 0,06119 4+ 0,00621 seconds.
The latency here is bigger when compared to the MQTT active
attributes. This happens because to send a command to the
device it is necessary to use a higher number of NGSI requests
to send the Command to the device and retrieve the new status
in the context. In this case, the MQTT Command attribute is
27% higher than the MQTT active attribute.

B. IoT Agent LWM2M/CoAP

The IoT Agent LWM2M/CoAP evaluation considered three
different modes of operation supported by the LWM2M/CoAP
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Fig. 6. Comparative latency using MQTT Command attributes.

protocol: Active, Lazy and Command. 1t is important to notice
that all requests of the COAP protocol have an acknowledge
associated. So, it is possible to generate in each scenario a
retransmission of the message if it is not confirmed. In the
scenario where no security service is used, it is necessary
to open the socket before sending any COAP message and
it affects the latency time. When a security service based
on DLTS is used, the same socket defined to send the data
between the device and the IoT Agent is also used to transmit
the handshake messages.

Figure 7 presents the latency comparison in the scenario
where the COAP active attributes are used. In this case, when
an attribute is modified, updated information is sent to the IoT
Agent. The result shows that the latency time is in average
31% higher when DLTS is used. The average time using
DLTS is 0.02804 40, 00364 seconds and is 0.02130+£0.00447
seconds when no security service is used.

The COAP Active attribute scenario presents lower latency
time when compared to MQTT Active attribute. In both cases,
only one attribute was updated during the experiments. COAP
protocol allows the update of only one attribute per message
while MQTT protocol permits to update several attributes
using a single protocol message. So, it is important to consider
the number of attributes exchanged between the device and the
IoT Gateway. When using COAP, a higher number of attributes
can generate a higher UDP based traffic, while MQTT will
have a lower TCP based traffic.
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Fig. 7. Comparative Latency to LWM2M/CoAP Active attributes.

Figure 8 presents the latency time when using COAP lazy

attributes. In this case, a NSGI QueryContext starts the process
to update the value of the attribute. In this case, to each
attribute, the IoT Agent will send a COAP GET message to
obtain the most recent value. The use of the DTLS based
security service presented a 17% higher latency time when
no security was used. The average time using DTLS was
0.06006 £ 0.00551 seconds, and with no security, it was
0.05107 £ 0.00263 seconds. As the MQTT protocol does not
offer a similar attribute monitoring mode, it is not possible to
correlate the COAP results with MQTT.
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Fig. 8. Comparative Latency to LWM2M/CoAP Lazy attributes.

Using LWM2M/CoAP also possible to send a Command
to the device. Figure 9 presents the comparative latency time
when using the Command attributes. Using LWM2M/CoAP
with no security the average latency time is 0.02845+0.00315
seconds, while when using DLTS to secure the messages the
latency time is in average 0.03444 + 0.00221. In average, the
latency time is 21% higher when using DLTS.

To this attribute mode, MQTT latency average time with
TLS is 0.08815 seconds and 0.06119 seconds with no secu-
rity services. When using DLTS LWM2M/CoAP presents an
average latency time of 0.02845 seconds and with DLTS based
security an average latency time of 0.03444 seconds. Although
LWM2M/CoAP results are lower when compared to MQTT, if
the number of attributes increases, the latency time will also
increase. When using LWM2M/CoAP, the IoT Agent must
wait for the response of the device and just after that send the
NSGI messages.

The support of security services has its onus and also
its bonus. When using TLS and DLTS to support security
services, it is possible to have confidentially, avoiding traffic
analysis. The deployment of security in a real environment has
some associated challenges. In a deployment with an enormous
amount of devices, it will be necessary to have a mechanism to
manage the certificate lifecycles. Another issue is the resources
available in the devices in other to support the extra processing
power required by the security services in a class of devices
that must use low power consumption. Another type of issue
is network failures that may bring a problem to execute the
protocol handshake to establish the secure channel. All these
problems are beyond the scope of this work.
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VII. CONCLUDING REMARKS AND FUTURE WORK

The main contribution of this work is to provide packet
encryption in the FIWARE Platform by implementing the
DTLS 1.2 Nodels in the LWM2M/CoAP protocol. We also
validated our proposal by using LESHAN which is an OMA
Lightweight M2M server and client Java implementation.

MQTT security features have also been incorporated into
IoT Agent, by allowing the device to send encrypted messages.
The IoT Agent has been refactored so that the authentication
and authorization of IoT Agents could be performed on all
NGSI requests. The access token of the requests from the
Orion Context Broker is also checked. Another contribution is
to verify the security cost of the MQTT and LWM2M/CoAP
end-to-end protocols in the FIWARE platform.

IoT Broker-FI was developed to be a point of commu-
nication between the IoT Agents and the Orion Context
Broker. This application performs the mapping of entities with
information. There was also a security gap between the IoT
Agents and the NEC IoT Broker since the NGSI requests were
not encrypted. For this, encryption was implemented in NGSI
messages and access control to resources.

Finally, the mechanisms developed were made available to
the researchers involved with FIWARE and the entire scien-
tific community and developers [31]. Thus, this work allows
other developers to extend and enhance security throughout
FIWARE architecture.
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