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Abstract—Internet of Things (IoT) has increased its presence
in many environments. However, this means a greater exposure
of sensitive data, rising potential security threats. Thus, security
becomes a key requirement for the protection and prevention of
cyber attacks to IoT applications and devices. FIWARE Platform,
for example, has an architecture of components responsible for
interconnecting devices to IoT applications, decreasing complex-
ity and providing a standard set of services to developers. The
IDAS 5 version of the platform presents several security gaps,
so this work aims to solve some of them by incorporating end-
to-end security services using encryption and access control in
all NGSI requests (RESTFul API). The main contribution of
this paper is the implementation of the DTLS 1.2 protocol in
NodeJs to support the LWM2M/CoAP protocol and its addition
to the IoT Agent. This paper also allowed the IoT Agent of the
FIWARE Platform support TLS communication to the MQTT
protocol. Through an experimental evaluation, it was possible to
validate the implementation. Our preliminary results show that
the encrypted requests had a small increase regarding latency, but
this cost is compensated by the increase of security in FIWARE
based IoT Applications. The source code of this work is open on
the GitHub and it can be used to support security services in
other IoT communication protocols.

I. INTRODUCTION

IoT is an emerging paradigm which aims to contribute

to several kinds of application domains, so its impact is

significant in the industrial and academic scenario [1]. The va-

riety of applications developed upon this context ranges from

health, cities, agriculture, transportation, military, commercial,

domestic, among others[2], [3].

Given such impact, many companies and researchers con-

centrate their efforts on expanding the development of IoT

applications. They seek answers to the challenging questions

regarding the hardware and software technologies used in their

projects [4], [5]. It is possible to note that when deploying

real IoT systems, there are a significant number of challenges,

among them are related aspects of vulnerabilities of the use

of the open network in devices which show problems with

privacy, security, authentication, and authorization [1], [3].

Security in IoT plays an essential role due to two main

reasons: several things may interact together in a complex

manner, through many security techniques and according to

different policy requirements [6] and IoT devices can have

different operating environments and, usually, limited com-

putational power. Given an individual IoT application, it is

necessary to adjust the security requirements of transmitted

data through encryption/decryption and authentication. Privacy

is another concern, especially in situations where devices are

collecting sensitive data, and people do not want to disclose

their information.
FIWARE [7] is a Future Internet platform which enables

working in the IoT context through a set of middleware and

services that aim to integrate devices, protocols and informa-

tion. Despite being a robust platform, some project compo-

nents have little or no security mechanisms developed so far.

Hence, the primary objective of this work is to increase the

security of IoT applications based on the FIWARE platform by

proposing security mechanisms to ensure confidentiality and

access control at the application layer.
With that in mind, mechanisms of confidentiality and access

control have been incorporated in IoT Agent Node Lib [8].

An IoT Agent in the context of FIWARE is a component,

also called Generic Enabler (GE), that lets groups of devices

to send their data for and be managed from a FIWARE

NGSI Context Broker by using their native protocols. We can

summarize our contributions as follows:

• provide the integration of the IoT Agent to a new element

named IoT Broker-FI;

• introduce the support for the Transport Layer Security

(TLS) in the IoT Agent for the Message Queuing Teleme-

try Transport (MQTT) protocol;

• introduce the support for Datagram Transport Layer Se-

curity (DTLS) 1.2 in the IoT Agent for the Lightweight

Machine-to-Machine/Constrained Application Protocol

(LWM2M/CoAP);

• propose a strategy for allowing Next Generation Service

Interface (NGSI) requests to be encrypted using Secure

Hypertext Transfer Protocol (HTTPS) and integrated with

IoT Broker-FI and IoT Agent;

• evaluate the impact of each proposed solution using a

simple application.

Support for DLTS 1.2 has been tested to a compatible server,

LESHAN Lightweight M2M and the impact of incorporating

security mechanisms are experimentally validated through the

combined use of IoT Broker-FI, IoT Agent MQTT, IoT Agent

LWM2M/CoAP and the components of the FIWARE platform,

Orion Context Broker and PEP Proxy.
The new GE, called IoT Broker-FI is also a contribution of

this work. The IoT Broker-FI, fully compatible with the latest
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version FIWARE Backend Management (IDAS R5) [8], allows

the aggregation of data from different devices in a single entity

in the context and communicates with the IoT Agent in a

secure manner

This paper is organized as follows: Section II presents

some concepts of the FIWARE framework, its current state

in relation to security; Section III presents a view of how

security is implemented in different platforms used in IoT;

Section IV presents the proposal for enhancing security; and,

Section V presents our experiments and results analysis in

the Section VI. Finally, Section VII presents the concluding

remarks and future work.

II. FIWARE PLATFORM: A BRIEF SECURITY ANALYSIS

The FIWARE is a public and open source platform available

on the Internet. It is based on the open infrastructure platform

named OpenStack which proposes an enhancement for IoT

functionalities. In the FIWARE platform, the applications and

services are composed by the Generic Enablers (GEs) which

can be instantiated to be executed.

These GEs use the Next Generation Service Interface

(NGSI-09/NGSI-10) as the standard for communication be-

tween applications. The NGSI standard was developed by

the Open Mobile Alliance (OMA) which provides a powerful

interface for use in various web services through Representa-

tional State Transfer (REST) [9].

FIWARE has several GEs which can be used for several

applications in different domains. To implement a standard

application you can use the main components: IoT Agent,

NEC IoT Broker, PEP Proxy and Orion Context Broker. In

summary, the IoT Agent consists of a gateway that manages

the devices. The PEP Proxy redirects only authorized NGSI

requests. The NEC IoT Broker is used to perform the associa-

tion and composition of the IoT Agents, that is, it is possible to

compose data from different sensors which can communicate

through different protocols associated with a particular entity.

The Orion Context Broker stores the data collected by the

devices.

The IoT Agent is software modules responsible to convert

specific IoT device protocols such as LWM2M/COAP, MQTT,

and SIGFOX to the NSGI calls that enable the communication

with other FIWARE GEs. The IoT agent represents an abstrac-

tion layer between the devices and the FIWARE platform. The

IoT Agent supports different ways to communicate with the

device in order to produce a context based on the sensing

information. In the active attributes mode, the device will con-

tinuously notify that IoT Agent about the new measurements

of a specific attribute. In the lazy attributes mode, updates

of the device will only be transferred to the IoT Agent when

requested. Finally, the command attribute mode allows the IoT

Agent executes commands in the device [10].

Figure 1 depicts the FIWARE architecture view and the GEs

necessary to be used in a standard scenario.

In Figure 1 we can see that the IoT Agent is in the IDAS

5 version, while the NEC IoT Broker is in the IDAS 4

version. As there have been changes in the NGSI interface,

Fig. 1. FIWARE architecture for a standard scenario.

the communication between them was not feasible due to

compatibility issues. Among the changes, we can mention

the mandatory inclusion of headers in the request for service

and subservice. Thus, IoT Agents require the use of service

information, but the NEC IoT Broker does not have such

functionality making association and composition of various

devices impracticable.

FIWARE provides the PEP Proxy to authorize NGSI re-

quests sent from the IoT Agent to the Orion Context Broker.

However, as we can see in the IoT Agent, the token recovery

implementation to perform authentication and authorization

was inadequate for the NGSI requests. The requests that do

not implement the token retrieval capability are UpdateCon-
text, RegisterContext, SubscribeContext and unsubscribeCon-
text. UpdateContext and RegisterContext requests are essential

because they are executed whenever a device is connected

to the IoT Agent. This makes it impossible for the PEP

Proxy to work correctly. This eliminates the ability to provide

authentication and authorization of NSGI requests.

The security mechanisms adopted in the IoT Agent-UL for

the MQTT protocol present some issues. First, in the IoT

Agents, only the messages sent from the devices had client

authentication in the MQTT Broker. Besides, this IoT-Agent

version does not support encryption. This could lead to an

active attack by intercepting packets and reading plain data

such as topics, username and password.

Another significant problem is that the IoT Agent considers

the control of packets accepted by MQTT Broker through

defined topics. Thus, MQTT Broker filters the topics which

are incorrect, however, when the packets are not encrypted

another user can use the same topic to send altered data. This

would make it possible to exchange confidential information

or execute a command on the device without significant

challenges. Hence, we build on an encryption mechanism that

ensures the external elements do not view the pattern of threads

accepted by the MQTT protocol.

Similarly, LWM2M/CoAP has no encryption on its con-

nections implemented in NodeJs for the IoT Agent. This

gap allows an attacker to view the information in the CoAP
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package and execute commands on these devices. To overcome

this, we implemented DTLS 1.2 in LWM2M/CoAP that had

an adequate and expected behavior.

III. RELATED WORK

IoT platforms have become a trend and offer a set of

middleware which are used to develop an IoT application run-

ning in cloud computing. Middleware has gained prominence

due to the important role in simplifying the development of

new services and the incorporation of technologies [11]. This

makes it essential for external IoT applications to use their

API without having to be aware of protocols and semantic

definitions [1]. Several proposals are implemented by the

industry, in this section a comparison of their resources is

presented.

AWS IoT [12] is an API which allows devices to authen-

ticate and connect to AWS IoT by using MQTT, HTTP or

WebSockets protocols. The AWS IoT device gateway autho-

rizes devices to communicate with AWS IoT securely by

using a publishing template. AWS IoT provides access control

and confidentiality using the Transport Layer at all points of

connection of the distributed system. The security protocol is

TLS using X.509 certificates, and the authentication method

is the Amazon SigV4 [13].

Kaa [14] is a middleware platform which allows the con-

struction of complete IoT solutions. The platform supports

encryption for devices through TLS.

The IBM Watson IoT [15] platform consists of a set of tools

and components through cloud computing. It supports only the

MQTT and HTTP protocols to communicate the gateway and

devices. For applications, secure APIs are offered to use data

analysis tools.

The Azure IoT [16] supports the MQTT, HTTP, and Ad-

vanced Message Queuing Protocol (AMQP) protocols. Also,

it allows you to authenticate the devices to send the data.

Table I provides a view of the features which are imple-

mented by the presented platforms. We can see that they all run

in cloud computing and allow you to manage the data through

your APIs. Besides, they provide documentation to implement

the communication of available messaging protocols. The

commonly used protocols are MQTT and HTTP. FIWARE

offers more protocols such as LWM2M/CoAP which can be

used on devices with low network resources and the SigFox

that makes it possible to use its own communication network.

However, the access control is not properly implemented on

your gateway and does not present end-to-end confidentiality

among its components.

In this work the FIWARE platform is used and the sec-

tion IV describes the main components which are used to

develop a real IoT application.

IV. ENHANCING FIWARE PLATFORM SECURITY

This section addresses the security mechanisms of confi-

dentiality for protocols MQTT, LWM2M/CoAP and NGSI in

the IoT Agent. Also, it introduces the new IoT Broker-FI

component which aims to update the NEC IoT Broker (version

IDAS 5) of the FIWARE platform.

Figure 2 illustrates an overview of the proposed FIWARE

architecture required to support security aspects involving

authentication, authorization, and confidentiality.

Fig. 2. Overview of the proposed architecture.

According to the proposed architecture, the IoT Agents

must perform the authentication and authorization to retrieve

the identification information which will be attached to the

validated request header. PEP Proxy will be used to implement

the authorization and authentication of the tokens sent by the

IoT Agent and also check the request token to redirect to the

Orion Context Broker. Since NEC IoT Broker is incompatible

with the IDAS 5 version of the IoT Agents and it does not have

secure NGSI communication [17], there is a need to develop a

new component which has a purpose of realizing associations

and compositions of IoT Agents with different protocols using

a secure communication.

The secure communication capabilities are addressed in

Section IV-A, access control in Section IV-B and the features

implemented in IoT Broker in Section IV-C.

A. Confidentiality

Confidentiality ensures that only authorized users will have

access to classified information [18]. In our context, develop-

ing confidentiality requires that a third party could not read

the packets exchanged by sender and recipient.

The current version of the IoT Agent is IDAS 5 and it

has been developed in Node Js. IoT Agent consists of several

libraries, and they are used to provide a standard of agents

for different protocols. IoT Agent-NodeLib is a library which

performs the registration of devices, services and it delivers

NGSI functionality regardless of the used protocol. Thus, IoT

Agents for each protocol might import this library to support

different protocol versions.
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TABLE I
COMPARISON OF IOT PLATFORM FUNCTIONALITIES.

Requirements AWS IoT [12] Kaa [14] IBM Watson IoT [15] Azure IoT Hub [16] FIWARE [7]

Virtualization (Cloud Computing) Yes Yes Yes Yes Yes

Device Protocols MQTT, HTTP, Web-
Sockets

MQTT, HTTP MQTT, HTTP AMQP, MQTT,
HTTP

MQTT, HTTP, LWM2M/ CoAP, SigFox

Gateway Yes Yes Yes Yes Yes

Access control Yes Yes Yes Yes Not all NGSI calls implemented on the gate-
way (IoT Agent).

Confidentiality TLS TLS TLS TLS No

API Data Management Yes Yes Yes Yes Yes

Documentation Yes Yes Yes Yes Yes

Figure 3 shows the stack of protocols needed to implement

packet encryption (confidentiality) on the IoT Agent. Note that

the device sends information using MQTT or LWM2M/CoAP,

and such data is converted to NGSI by using the HTTP or

HTTPS protocols. Thus, one of the goals of this paper is to

develop the security mechanism using such existing protocols

and adapting it to our needs. With that in mind, we use

the following cryptographic protocols for encrypting network

packets: TLS [19] for the Transmission Control Protocol

(TCP) and DTLS [20] for the User Datagram Protocol (UDP).

The implementation of the security features in the FIWARE

platform will be detailed according to the proposed architec-

ture of Figure 2 and the protocol stack of Figure 3.

First, there is a need to encrypt NGSI messages between the

IoT Agent, IoT Broker-FI and the PEP Proxy. Therefore, it is

necessary for both applications to talk to each other through

HTTPS servers, which is the implementation of TLS over the

HTTP protocol. In doing so, the NGSI calls can be transmitted

over an encrypted connection.

Fig. 3. Stack of protocols required to implement secure communication in
the IoT Agent.

MQTT protocol consists of a messaging-oriented appli-

cation protocol which provides communications flow con-

trol control with delivery guarantee [21], [22]. MQTT uses

the publish/subscribe paradigm for message exchange. This

paradigm uses a MQTT Broker which is responsible for receiv-

ing, queuing, and relaying messages received from publishers

to subscribers [23]. Since security should be presented in all of

the components (device, MQTT Broker server and IoT Agent),

a study in the MQTT library was required to implement

security at the IoT Agent. The MQTT library used in the IoT

Agent already implements TLS resources with certificates. The

idea here is to provide an IoT Agent version with the Pre-

shared Key (PSK) implementation.

To implement the IoT Agent, some changes were made

in order to connect and establish the certificate settings in

the component configuration files. For example, establishing

the handshake in every message exchanged between sender

and recipient might generate an overhead in the network. To

prevent this, the MQTT device is able to set up the connection

time with the MQTT Broker.

Lightweight M2M/CoAP is a protocol specified by the Open

Mobile Alliance for constrained devices in IoT [24]. The stack

LWM2M use the CoAP protocol to transfer the data between

the client and server. This makes use of a light and compact

protocol which allows the device management based in simple

object of resource model through CoAP call abstraction. CoAP

protocol uses UDP as the transport layer which uses the DTLS

protocol to perform the encryption of its messages. DTLS can

be used to have the same guarantees as of the TLS over TCP

used by MQTT. The DTLS is similar to TLS and uses a PSK

key on the device. According to the OMA specification [9],

the DTLS 1.2 protocol was not implemented in the NodeJS

FIWARE Lightweight M2M protocol [25].

Regarding M2M communication, the LWM2M/CoAP proto-

cols require different CoAP requests, depending on credential

types. According to the specification, the LWM2M supports

three different types of credentials, namely: Certificates, Raw

public keys and PSK [26]. Thus, when a client initiates

communication, the first step is to register for the LWM2M

server. In case of confidentiality, client and server should

establish secure channel before exchanging of information.

Upon establishing secure communication, as defined in the

specification [26], the DTLS client and server must remain for

a long term, by avoiding compromising the security context.

We used the Neustar library [27] to implement the DTLS

functionality over the Lightweight M2M. This library im-

plements the CoAP protocol by using security layer DTLS

encapsulation [28]. The CoAP/DTLS protocols, developed by

Neustar, use ARM mBed which is an open source library for

TLS development. The PSK key is stored on the client and
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server, being that only the server has a certificate which will

be used to be sent to the client to establish secure channel.

Some modifications were made in the Neustar library to

fully support the Lightweight M2M protocol. Originally, the

Neustar library closes a socket after a connection. However,

according to the LWM2M/CoAP specification, the connection

must remain open for sending requests to manipulate the

objects [26]. Therefore, in our implementation, the socket

remain open and keep the security state, such as session keys

and security parameters established in first COAP request.

With Neustar library, we made some CoAP protocol updates

to reuse the open socket when establishing secure communica-

tion session. This is a specification driven approach, which is

useful for the exchange of data, by reducing new handshakes

made for constrained devices. To determine socket incoming

messages, the NodeJs Event Library has been used to trigger

reactive functions. This way, the socket is listening for the

incoming messages and it sends them for the specified function

to handle the request.

To validate the DTLS 1.2 implementation was also carried

out through protocol communication tests with LESHAN.

LESHAN is a Java implementation of the OMA Lightweight

M2M server and client, which already implements the security

layer [29], [30]. The goal of this evaluation is to enabled a Java

client (LESHAN) to securely communicate with the developed

IoT Agent.

B. Access Control

To prevent unauthorized agents change data on the Orion

Context Broker resources is mandatory to implement access

control. Authorization and authentication functionalities were

not fully supported for the following IoT Agent calls: Up-
dateContext, RegisterContext, SubscribeContext and Unsub-
scribeContext methods. For this reason, access control to the

Orion Context Broker does not work as expected.

The access control requires that the user register their

information in a security application such as the OpenStack

Keystone. When the IoT Agent is triggered by some device, a

token requesting is made for the security application along

with the user data, password and entity key. This system

checks it out if the information match, if so, this token is

sent to be attached to the NGSI request header.

The token allows devices to access private resources of the

entities for a specified period of time. The security application

is in charge to provide the token which defines the access time.

Figure 4 shows the sequence diagram depicting the required

steps to perform the token retrieval on the IoT Agent.

A careful IoT Agent code refactoring has been done by re-

garding the necessary access control features implementation.

Modifications has been introduced to support NGSI requests

for the authentication and authorization functionalities, by

regarding access control of the IoT Agents to the PEP Proxy, to

retrieve tokens. Thus, the PEP Proxy verifies whether a token
is valid to permit, or not, that a request could be sent to the

Orion Context Broker.

Fig. 4. IoT Agent sequence diagram for retrieving a token.

Also, modifications has been introduced for the IoT Agent

to check it out the token of the incoming NGSI requests from

the Orion Context Broker, in the scenarios which execute

commands and request data in a lazy way on the device.

Otherwise, such requests can perform functions on devices

even if they are not validated. In this case, all requests NGSI

must have a valid X-Auth-Token header.

C. IoT Broker-FI

NEC IoT Broker for the FIWARE is not compatible with the

IoT Agent and Orion Context Broker due to the older NGSI

communication interfaces. The NEC IoT Broker requires that

every entity should be manually stored in the IoT Discovery,

which made it impractical for a real application. For this rea-

son, a new broker capabilities component has been developed.

The new component is named IoT Broker-FI and encom-

passes the same features of the other one (NEC IoT Broker),

but with other functionalities. One of them is related to the way

that NGSI reads the requests. This new method aims to read

the NGSI request and store the information collected without

human intervention, different from the model proposed by

NEC IoT Broker where it was necessary to register each entity.

Therefore, IoT Broker-FI development aims to aggregate

functions provided by the NEC IoT Broker, to provide com-

patibility with IoT Agents and also to interact with a large

number of providers and consumers automatically. Besides,

our IoT Broker yield secure communication on NGSI requests

using TLS and was developed in NodeJs following the same

architectural standards adopted by FIWARE developers.

V. EXPERIMENTAL EVALUATION

To validate the proposed secure communication architecture

among the IoT Agent, the IoT Broker-FI, and the Orion

Context Broker, we set up two test scenarios. The first one

involves creating a scenario with no security requirements and

the second one considers the use of encryption for message

exchanged between the devices, complemented with authen-

tication and authorization, as proposed in the architecture

presented in Figure 2.
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A. Evaluation Method

For both MQTT and LWM2M/CoAP protocols, we perform

the inspection of the packets to validate the sequence of mes-

sages necessary for the communication between the involved

components. Also, the packet inspection allowed us to observe

the use of encryption in each scenario.

Subsequently, the latency measurement was performed in

each scenario. In our context, latency is the communication

time between a device and the Orion Context Broker. Along

with this path, the message could be sent or received by the

device, always going through the IoT Agent and IoT Broker.

For the MQTT protocol the latency benchmark was per-

formed for active and command attributes. In the case of com-
mand, the evaluation examined the influence of the handshake

time. For this, the first approach considered the realization

of the handshake at the moment of the connection of the

device with the MQTT Broker. In the second approach,

for each message sending through the device, a handshake

is performed. For the LWM2M/CoAP protocol the latency

measure was conducted considering active, lazy and command
attributes.

We run experiments on a local network using a computer

with Intel Core I7 with four cores of 2.00GHz with 8 GB of

RAM and Ubuntu operating system. The tool for analyzing

the packets traces and collecting the time data is Wireshark. It

is important to note that for each protocol, its respective IoT

Agent has been used.

B. IoT Agent-UL MQTT

It is possible to store the information device groups which

have a type, trust and apikey in the IoT Agent. When the

device does not have its registration and such apikey exists

in IoT Agent-UL MQTT, the referred device begins to share

the characteristics of this device group. As a result, the device

information is stored in the IoT Agent and the Register Context
is sent through a NGSI request to store the entity in the Orion

Context Broker.

After the RegisterContext is completed, the device can

execute the updates context on the Orion Context Broker. This

mode of operation is part of the active scenario where the

device actively makes periodic updates of its properties.

C. IoT Agent LWM2M/CoAP

The OMA Lightweight M2M protocol has a set of interfaces

which are used by the client and the server (IoT Agent).

When a device connects to the server, the client first sends

the registration request.

It is important to note that the IoT Agent first makes a Reg-
isterContext and then, a CoAP request to receive notifications

when the data is changed through the observe method. Thus,

if an update of the object on the device occurs, the data is

sent to the context. In fact, this represents the active attribute

scenario proposed by FIWARE.

VI. RESULT ANALYSIS

This section presents a comparative analysis of the latency

time for the data exchanged between the device and the Orion

Context Broker in one scenario without security and another

with the security approach proposed in this work.

Wireshark tool has been used for the measurements. In

Figures 5 and 9, the Y-axis presents the latency in seconds

(s) and the X-axis indicates the experiment identification. To

improve the analysis of each scenario, the experiments were

replicated twenty-four times (E1 to E24), and the averaged

results are presented using a 95% normal confidence interval.

A. IoT Agent MQTT

The IoT Agent MQTT only supports two different operation

modes: active attributes or command. On both operation

modes, the handshake happens before the MQTT data ex-

change. As a default behavior of FIWARE architecture, before

each NGSI request a new handshake is executed.

Figure 5 presents the latency time considering MQTT active
attributes in the scenario where the TLS based security is used

versus the one with no confidentiality applied to the messages.

The average duration with security is 0, 07354 ± 0, 00851
seconds and 0, 048199 ± 0, 003693 seconds without security.

In this case, latency time has an average increase of 52.58%,

considering that the handshake is performed between two

different NGSI requests.

Fig. 5. Comparative Latency to MQTT active attributes.

Figure 6 presents the latency time when MQTT Command
attributes are executed in the device. In this case, the latency

time with the use of TLS is in average 44% higher when

compared to the MQTT command attribute without using TLS.

The average time using TLS is 0, 08815±0, 01311 seconds and

with no TLS the average time is 0, 06119± 0, 00621 seconds.

The latency here is bigger when compared to the MQTT active
attributes. This happens because to send a command to the

device it is necessary to use a higher number of NGSI requests

to send the Command to the device and retrieve the new status

in the context. In this case, the MQTT Command attribute is

27% higher than the MQTT active attribute.

B. IoT Agent LWM2M/CoAP

The IoT Agent LWM2M/CoAP evaluation considered three

different modes of operation supported by the LWM2M/CoAP
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Fig. 6. Comparative latency using MQTT Command attributes.

protocol: Active, Lazy and Command. It is important to notice

that all requests of the COAP protocol have an acknowledge

associated. So, it is possible to generate in each scenario a

retransmission of the message if it is not confirmed. In the

scenario where no security service is used, it is necessary

to open the socket before sending any COAP message and

it affects the latency time. When a security service based

on DLTS is used, the same socket defined to send the data

between the device and the IoT Agent is also used to transmit

the handshake messages.

Figure 7 presents the latency comparison in the scenario

where the COAP active attributes are used. In this case, when

an attribute is modified, updated information is sent to the IoT

Agent. The result shows that the latency time is in average

31% higher when DLTS is used. The average time using

DLTS is 0.02804±0, 00364 seconds and is 0.02130±0.00447
seconds when no security service is used.

The COAP Active attribute scenario presents lower latency

time when compared to MQTT Active attribute. In both cases,

only one attribute was updated during the experiments. COAP

protocol allows the update of only one attribute per message

while MQTT protocol permits to update several attributes

using a single protocol message. So, it is important to consider

the number of attributes exchanged between the device and the

IoT Gateway. When using COAP, a higher number of attributes

can generate a higher UDP based traffic, while MQTT will

have a lower TCP based traffic.

Fig. 7. Comparative Latency to LWM2M/CoAP Active attributes.

Figure 8 presents the latency time when using COAP lazy

attributes. In this case, a NSGI QueryContext starts the process

to update the value of the attribute. In this case, to each

attribute, the IoT Agent will send a COAP GET message to

obtain the most recent value. The use of the DTLS based

security service presented a 17% higher latency time when

no security was used. The average time using DTLS was

0.06006 ± 0.00551 seconds, and with no security, it was

0.05107± 0.00263 seconds. As the MQTT protocol does not

offer a similar attribute monitoring mode, it is not possible to

correlate the COAP results with MQTT.

Fig. 8. Comparative Latency to LWM2M/CoAP Lazy attributes.

Using LWM2M/CoAP also possible to send a Command
to the device. Figure 9 presents the comparative latency time

when using the Command attributes. Using LWM2M/CoAP

with no security the average latency time is 0.02845±0.00315
seconds, while when using DLTS to secure the messages the

latency time is in average 0.03444± 0.00221. In average, the

latency time is 21% higher when using DLTS.

To this attribute mode, MQTT latency average time with

TLS is 0.08815 seconds and 0.06119 seconds with no secu-

rity services. When using DLTS LWM2M/CoAP presents an

average latency time of 0.02845 seconds and with DLTS based

security an average latency time of 0.03444 seconds. Although

LWM2M/CoAP results are lower when compared to MQTT, if

the number of attributes increases, the latency time will also

increase. When using LWM2M/CoAP, the IoT Agent must

wait for the response of the device and just after that send the

NSGI messages.

The support of security services has its onus and also

its bonus. When using TLS and DLTS to support security

services, it is possible to have confidentially, avoiding traffic

analysis. The deployment of security in a real environment has

some associated challenges. In a deployment with an enormous

amount of devices, it will be necessary to have a mechanism to

manage the certificate lifecycles. Another issue is the resources

available in the devices in other to support the extra processing

power required by the security services in a class of devices

that must use low power consumption. Another type of issue

is network failures that may bring a problem to execute the

protocol handshake to establish the secure channel. All these

problems are beyond the scope of this work.

692

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on November 02,2025 at 12:07:43 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9. Comparative Latency to LWM2M/CoAP Command attributes.

VII. CONCLUDING REMARKS AND FUTURE WORK

The main contribution of this work is to provide packet

encryption in the FIWARE Platform by implementing the

DTLS 1.2 NodeJs in the LWM2M/CoAP protocol. We also

validated our proposal by using LESHAN which is an OMA

Lightweight M2M server and client Java implementation.

MQTT security features have also been incorporated into

IoT Agent, by allowing the device to send encrypted messages.

The IoT Agent has been refactored so that the authentication

and authorization of IoT Agents could be performed on all

NGSI requests. The access token of the requests from the

Orion Context Broker is also checked. Another contribution is

to verify the security cost of the MQTT and LWM2M/CoAP

end-to-end protocols in the FIWARE platform.

IoT Broker-FI was developed to be a point of commu-

nication between the IoT Agents and the Orion Context

Broker. This application performs the mapping of entities with

information. There was also a security gap between the IoT

Agents and the NEC IoT Broker since the NGSI requests were

not encrypted. For this, encryption was implemented in NGSI

messages and access control to resources.

Finally, the mechanisms developed were made available to

the researchers involved with FIWARE and the entire scien-

tific community and developers [31]. Thus, this work allows

other developers to extend and enhance security throughout

FIWARE architecture.
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