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Abstract—In this work, we present NERV, a constraint free net-
work resource manager for virtualized environments capable
of supporting multiple network architectures simultaneously.
Using a protocol agnostic forwarding element, programmed
with the P4 language, and the design principles of MicroSer-
vices architectures, we built a framework composed of small
applications, each one responsible for manipulating a group
of resources of the network, allowing the implementation of
different policies to manage systems with different protocol
stacks and control strategies. Also, we promote the reuse of
these applications creating a Standard API that expose generic
functions to manipulate network resources, permitting the
combination of low-level applications to compose high-level
network manipulation services.

1. Introduction

Cloud computing platforms have received much atten-
tion during recent years. Platforms like OpenStack are be-
ing used in production environments helping companies to
reduce both OPEX and CAPEX. Besides the broad indus-
try adoption of these platforms, there is still a challenge
to properly use innovative network technologies in cloud
environments. Most of the current solutions considered are
heavily tied to the IP protocol, and even the ones that are
more flexible, force the network developer to re-implement
functionality due to incompatibility with current interfaces,
what makes this process cumbersome and time-consuming.

In this work, we propose an architecture of a network
resource manager that allows the creation and manipula-
tion of networks with different protocols stacks and dif-
ferent control policies over a cloud computing environ-
ment, through the use of a standard extensible API. That
way, it is possible to have on the same machine multiple
tenants using different network protocol architectures to
communicate with tenants into another physical machine.
Also, by using a common API for the components of the
platform, we promote the reuse of network functions and
the adaptation of the platform to be deployed in multiple
environments. Given this scenario, the aim of the platform
is to be flexible enough to allow the simultaneous use of
disruptive network technologies in a cloud environment and

promote the reuse of common services needed by different
network architectures (such as the multiple Future Internet
proposed under research) [1].

This work is organized as follows: Section 2 presents
some related work and shows the contribution of NERV
proposal. Section 3 presents the NERV architecture and de-
scribes is main components and services. Section 4 presents
how NERV was realized. Section 5 details the experimental
evaluation and discusses the results and, finally, Section 6
presents some concluding remarks and future work.

2. Related Work

OpenStack [2] is an open-source cloud computing plat-
form capable of operating compute, storage and network
resources from a pool of servers, creating an abstraction
over the hardware infrastructure for the creation of virtual
resources on a self-service and on-demand manner. Open-
Stack has a modular architecture, where each module is
responsible for a distinct function in the cloud environment.

Since release Folsom of OpenStack, the default module
responsible for offering network connectivity is called Neu-
tron. It provides an API that allows OpenStack users to man-
age the network resources from the virtualized environment.
Neutron also offer a variety of embedded network services,
like Firewall as a Service (FaaS) and Load Balancer as a
Service (LaaS). Like OpenStack itself, it also has a mod-
ular infrastructure and is composed of plugins and agents.
Each plugin has its way of materializing the requests made
through the Neutron API, being through the manipulation
of virtual or physical resources.

Since release Havana, OpenStack adopted the Modular
Layer 2 (ML2) as the default Neutron plugin. It is a plugin
that allows the use of multiple Layer 2 technologies on
the same virtualized infrastructure through the utilization
of drivers. There are two categories of drivers supported by
ML2, Type Drivers, and Mechanism Drivers. A Type Driver
dictates how to realize an OpenStack network. It can be
configured as Flat, Virtual LAN (VLAN), Virtual Extensible
LAN (VXLAN) and Generic Routing Encapsulation (GRE).
Mechanism Drivers specify what technology will be used
to access these network types. Examples of Mechanism
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Drivers are OpenvSwitch, Linux bridge, Single Root I/O
virtualization (SR-IOV), and OpenDaylight.

An alternative method of virtualization of infrastruc-
ture is the use of containers in the place of virtual ma-
chines. Containers offer virtualization at the Operating Sys-
tem level, where multiples containers share the kernel of
a hosting Operating System. This fact makes containers
a more lightweight approach when compared to virtual
machines, since there is not hardware virtualization [3]
[4]. Besides containers being implemented using software
already present for a long time in the Linux Operating
System, like network namespaces, chroot and cgroups, their
use has been popularized by Docker [5], a tool that offers
a user-friendly interface for the manipulation of containers.

When working with containers in a virtualized envi-
ronments, there are multiple solutions to provide network
connectivity between containers.

Calico [6] is a network virtualization solution that can
work both with OpenStack and Docker. Calico considers
itself a pure Layer 3 virtualization solution. It uses one
agent called Felix into each physical node in conjunction
with BIRD [7] as a Border Gateway Protocol (BGP) client.
Through the use of Ip tables, Calico creates virtual networks
manipulating the routing tables of each node. The traffic is
sent direct to the destination tenant, being independent of
the interconnect network. In [8] is discussed how Service-
Oriented architecture (SOA) could support the convergence
between Networking and Cloud Computing and how it is
already used to enable network virtualization in telecom-
munications. In [9] and [10] is presented a SDN-enabled
Network as a Service (NaaS) Architecture. It also utilizes
many concepts of the SOA architecture, like as service
broker and an API, called network exposition layer. In [11]
is presented a Framework of a NaaS Platform, where the
focus is to provide to the cloud tenants a more detailed
view of the network. According to the paper, this could
provide better resource usage from applications that have
traffic patterns and requirements not well attended by current
technology.

For this work, we focus on a particular use case, that is
running over a virtualized infrastructure multiple heteroge-
neous virtual networks, including ones that not use the IP
protocol. We want to be able to run virtual networks with
different protocol stacks and control policies, independent of
their localization in the virtualized infrastructure. In current
platforms, this scenario is achieved through the creation of
plugins or drivers, like in the case of OpenStack, or with the
rewrite of the whole application responsible for the network
in the cloud platform. We are aware of the advantages inher-
ent of the employment of the IP protocol in these platforms.
Being a mature protocol, IP provides a production-ready
network environment, allowing cloud platforms to attend a
broad range of use-cases and be compatible with the today
current standards of the Internet. But this approach also
restrains the experimentation of different network architec-
tures, that could better suit cloud environments networks in
certain situations.

We provide a platform that has native support to multiple

network architectures, and that do not assume the use of an
IP network.

Besides all the flexibility offered by current technolo-
gies, our new model of network virtualization capable of
accelerating the deployment of innovative network archi-
tectures over the cloud.This framework receives the name
of NERV, an acronym of NEtwork Resource manager for
Virtualized environments. We adopt the use of a standard
API for the manipulation of network resources and a set of
services that supports the coexistence of multiple network
architectures over the same virtualized infrastructure, even
in the same physical node. OpenStack can run with mul-
tiple Mechanism drivers that can provide different ways to
access the network, yet is not possible do so on only one
physical server. Neutron does not offer any guarantee that
two different mechanism drivers can be used in the same
node because it does not have any knowledge of the access
technology. Also, despite it is pluggable architecture, the
exchange between plugins is somewhat cumbersome. For
example, to use OpenDaylight [12] as an agent of OpenStack
instead of the default OpenvSwitch agent into a production
environment, it is necessary to clean Neutron database of
all the information about the current network.

With this, we can that consider the main difference
between NERV and current proposals are:

• The use of a common API by a series of services re-
sponsible for the manipulation of network resources

• The support to multiple networks of different archi-
tectures, including those not based on IP, on the same
physical machine

• Liability to change between network architectures in
real time

3. Architecture

This Section describes the NERV architecture and
presents its main components.

3.1. Architecture Overview

NERV design is based on the interaction between small
applications called Networking Services, each one respon-
sible for managing a well-defined aspect of the network
through the use of a standard API. With this, we expect to
abstract the internal features of each service and promote the
reuse of the network functions offered by each service. To
enable the access of these services to the external network,
we use a Network Virtualization Edge, one application that
acts as an intermediary between the networks created by
the Networking Service and the external network. The in-
teraction between the Network Operator and the platform is
done through the use of an API-Gateway, an application that
has knowledge of the Networking Services that compose the
platform. Finally, we also have a set of Auxiliary Services
that offers functions necessary to the operation of the plat-
form but that are not directly related to the manipulation of
network resources. Figure 1 shows a conceptual view of the
components of the architecture.
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Figure 1. Conceptual view of the architecture

3.2. Networking Services

Networking Services are applications responsible for
managing a type of resource in the network. A Network-
ing Service can be responsible for manipulating virtual-
bridges, while other can be responsible for handling one type
of Software-defined networking (SDN) Controller. Each of
these services offers a common base API that specifies the
basic operations supported. This API enables the manipula-
tion of the following resources:

• Networks
• Endpoints

In the platform context, a network is a Virtual Network
created on a physical machine isolated from other virtual
networks. Endpoints are points of access to the network that
will be used by applications and operators to exchange data
in the network. The API of each Networking Service should
be capable of creating, reading, updating and deleting each
one of the previously cited objects. This API enables that
Networking Services be composed of a combination of other
Networking Services. For example, a simple Networking
Service responsible for creating IP networks can use the
API of a Networking Service for the creation of virtual
bridges and then later apply the necessary configurations
to the virtual network. A Networking Service responsible
for creating virtual SDN networks can use the services of
the IP Networking Service to create both, data and control
networks, and then configure the network to be attached
to an SDN controller. Figure 2 shows a class diagram
representing the NERV Standard API.

Each Networking service has an identifier that differen-
tiates the different kinds of networks that are created on the
same machine. This identifier can express what kind of tech-
nology is employed by the network, the paradigms adopted
in the network construction or even the network architecture.
In NERV, these identifiers are called Archetypes. IP, SDN,
eXpressive Internet Architecture (XIA) [13], and Entity Title
Architecture (ETArch) [14] are examples of names that can
be used as Archetypes.

Figure 2. NERV Standard API Class Diagram

3.3. Network Virtualization Edge

This application is responsible for offering a connection
between the virtual networks managed by the Networking
Services to the external network. It abstracts the topology
of the physical infrastructure, delivering to the internal
networks just endpoints that they see as physical machine
interfaces, but in reality are the ingress ports offered by
the Network Virtualization Edge. Figure 3 shows how the
Network Virtualization Edge interacts with the virtual net-
works and the physical machine Network Interface. There
are two kinds of ports that are enabled in each Network
Virtualization Edge:

• ingress ports: These are the ports exposed to the
internal networks managed by a Networking Ser-
vice of a certain Archetype, being that every traffic
in and out of every network from that archetype
passes by that port. The number of ports needed by
each Archetype depends on the network architecture.
Conventional networks may only need one ingress
port, while SDN networks will need two ports, one
for the data plane and another for the control plane.

• egress ports: These are responsible for forwarding
the traffic of every ingress port to outside the phys-
ical machine. The outgoing data already leaves this
interface with the appropriate headers in a way that
it will be delivered by the physical infrastructure into
the physical node where resides the virtual network
with the destination endpoint.

3.4. API Gateway

This module is responsible for translating different forms
of request to the REST API of the core module. For exam-
ple, it could be used to provide an interface between a cloud
virtualization platform, like OpenStack, a container engine,
like Kubernetes, or even a terminal client. The API Gateway
is an optional component. In the case it is absent, clients can
make requests direct to the Core module API, but this way
require adaptation of the invoking application. Also, a node
can have multiple API Gateways modules, resulting in a
node that can have different clients managing the network
resources.
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Figure 3. Network Virtualization Edge

3.5. Auxiliary Services

These applications are services not directly related to
the manipulation of network resources but are needed for
maintaining the system operation. Every module offers an
interface or API that could be accessed by any other module
on the system. The API permits that the implementation
of each module be private to that module, allowing that
the substitution of a module with the same interface be
transparent to the overall system. Next, are described the
modules that realized the architecture and given examples
of how this was deployed in our tests.

4. Testbed Realization

To implement the proposed architecture, we used
Node.js [15], a Javascript runtime that uses an asynchronous,
event-driven model to build lightweight Javascript applica-
tions that run on servers. Below are the details of how each
component of the platform was implemented.

4.1. Networking Services

Networking services are applications responsible for
managing a type of network resource. Each application
exposed a REST service with the methods specified in
the base API of a networking service. Some services also
extended the API to allow more detailed manipulation of
network resources.

4.1.1. Linux-Utils. This service was responsible for ma-
nipulating Linux programs like ip [16] and netns [17] to
manipulate network namespaces. This service also managed
the life cycle of virtual-bridges and OpenvSwitch instances.

4.1.2. IP. The IP network made use of the Linux-Utils
service to create a virtual bridge in the OS for every create-
network request received, and add IP specific properties to
the network, like the range of IPs of each network and the
use of a DHCP server.

4.1.3. SDN. This application used the services of the IP
Networking Service to create two IP networks, one for the
control plane using a Linux Bridge and other for the data
plane using an OpenvSwitch instance. (Later, the Open-
vSwitch instance was attached to an OpenDayLight con-
troller running on the namespace of the SDN network).

4.1.4. ETArch. ETArch [14] is a clean-slate network archi-
tecture that uses an Entity Title model to address entities
that communicate over a logical bus. This logical bus is
called a workspace. A workspace is independent of the
underlying topology and specifies the requirements of the
entities it encompasses. Entities are any element present in
the network, being those applications, network devices, or
Operating Systems. Entities can create and participate in
workspaces and are identified by unique identifiers called
Titles. Like SDN, ETArch also separates the network into a
control and a data plane. In the control plane, ETArch uses
a Domain Title Service (DTS) to manage the life cycle of
Entities and Workspaces. It guarantees that the requirements
and security policies specified by the entity that created the
Workspace are met. A DTS is composed of applications
that control one portion of the network and interact among
themselves to manage entities and namespaces called Do-
main Title Agents. Figure 4 shows the simplified topology
of an ETArch network.

Figure 4. ETArch network Topology

The ETArch Networking Service also made use of the
IP Networking Service to create both data and control
networks. To establish the control of the network, one DTSA
is started inside the namespace of the network and attached
to an instance of OpenvSwitch.

4.2. Network Virtualization Edge

The Network Virtualization Edge was implement using
a P4 enabled software switch controlled by a Node.js pro-
gram. P4 is a programming language for network elements
independent of protocol. With if, is possible to program
the behavior of the switch, from the fields present in each
directive to the actions executed based on math-action tables.
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The software switch used was the Behavioral Model Version
2 (BMV2). For each network created on the platform, a
VLAN ID would be associated with the network, in a way
that every traffic originated from the network would be
directed to the external network with the related VLAN ID.
Also, every frame ingressing to the machine would have the
VLAN ID and would be directed to the appropriate network.

4.3. Auxiliary Services

Two such services were developed:

4.3.1. State manager. To manage the state of the appli-
cations we used a MongoDB [18] node shared by both
instances of the application. MongoDB is a distributed,
open-source document-oriented database that store JSON-
like documents.

4.3.2. Bootstraper. The Bootstrapper was implemented to
manage the state of the application, being responsible for
the following functions:

• Manage the initialization and shutdown of Network-
ing Services, the Network Virtualization Edge, and
other auxiliary services

• Set all configuration variables
• Manage all the platform logs

4.4. Testbed Description

To realize the experiments, we utilized two physical
Machines, both with Ubuntu 14.04. A switch configured
with two trunk interfaces connected both physical machines.
To access NERV capabilities three networks were created,
one using the IP Archetype, one with the SDN Archetype
and another with the ETArch Archetype, all of then spanning
endpoints in both servers. The traffic in the networks created
using the IP, and SDN Archetypes was generated using a
virtual machine with a VLC server installed. Other virtual
machines connected on the same network then requested the
stream of the video file via HTTP, being that clients were
created in both physicals compute nodes. Figure 5 shows the
logical view of the network created using the IP Archetype,
while Figure 6 shows an SDN network created by NERV.

To generate traffic for the ETArch network, it was
used a chat application where entities were able to create
workspaces and exchange message among the members o
the workspace. Figure 7 shows the design of the ETArch
network used in the experiments.

5. Results and Discussion

To access the performance of the platform, tests were
made using iperf [19] to measure the impact that the layers
of virtualization had on the traffic of the networks created
with NERV. Figure 8 shows the throughput graph of the test.
While testing the link with TCP traffic without virtualiza-
tion, the test indicates a bandwidth of 93.9 Mbits/sec. With

Figure 5. Logical view of an IP network

Figure 6. Logical view of an SDN network

iperf running on a network created with the IP Archetype,
the bandwidth obtained was reduced to 40.1 Mbits/sec. With
UDP traffic, without virtualization, the network presented a
Jitter of 0.008 ms, and a total of 476190 Datagrams were
transmitted in 60 seconds without any loss of packets, giving
a total of 668 Mbytes transmitted. In the virtual network, the
Jitter increased to 0.242 ms and a total of 204082 Datagrams
where transmitted, being that 2125 Datagrams were lost, a
0.96% loss. Also, only 283 Mbytes were transmitted during
the 60 seconds test.

While NERV uses a standard and simple API to easy
the process of creating new network services and promote
the reuse of functions, it can turn the management of the
network more complex than current solutions to manage
network resources in virtualized environments. This is ac-
ceptable by the fact that the objective of the platform is
to be a testbed for experimental technology, not a com-
plete solution for production environments. Regarding the
performance results, the poor results of NERV are mainly

Figure 7. Logical view of an ETArch network
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Figure 8. Throughput Graph

attributed to the use of the BMV2 as the software switch
of the NVE. BMV2 is a software switch implemented in
user space, developed primarily to test the functionalities
and new features of P4. The overhead caused by BMV2
could be reduced by the use of the compiler presented at
[20], a P4 compiler that uses Intel DPDK [21] to produce a
high-performance software switch, but that was not available
during the development phase of NERV. It is important to
notice that NERV by itself does not intervene in the data-
plane of the networks, only manages how networks are
created. Any impacts on performance are dependent on the
components used to integrate the network.

6. Concluding Remarks and Future Work

Management of network resources in virtualized envi-
ronments is usually heavily dependent of the IP protocol,
which becomes a barrier to our objective: to run disrup-
tive network architectures over the same physical machine.
Furthermore, while complete cloud systems are modular,
the System responsible for managing network resources
is monolithic. Both aspects turns the evolution of these
systems complicated and difficult the integration of disrup-
tive technologies. Following this rationality, we designed an
architecture capable of running multiple network architec-
tures through the use of a Protocol Independent Forwarding
element as the Network Virtualization Edge of each physical
machine. With this element serving as a bridge between the
external network and the virtual networks created on our
platform, our proposal is entirely agnostic to the protocol
used by the virtual networks and the resources manipulated.
If one specific network has requirements not yet supported
by our platform, these can be implemented directly in the
forwarding element inside the Network Virtualization Edge
using the P4 language. We also separated our platform in a
group of independent applications, each one responsible for
one aspect of the network, following the design principles
of the MicroServices architecture. This approach has as
objective to promote the reuse of these applications for the

construction of high-level Networking Services and ease the
integration of new technologies in the platform. The results
proved the realizability of this design.

For future experiments, the use of a P4 forwarding
element instead of a common L2 switch will enable imple-
mentation of a different algorithm to enable the forwarding
of traffic between physical machines with NERV deployed,
completely freeing the platform of the use of the IP protocol.
Also the integration of NERV with a complete cloud virtu-
alization platform, like OpenStack, to completely provide
a complete protocol independent cloud solution. During
the tests, commands to manipulate the network resources
were sent to both machines. In next experiments, should be
developed an auxiliary service capable of receiving com-
mands and deciding which application should execute the
command, fully exploring NERV capabilities.
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