Proceedings of the IEEE International Conference o
0-7695-2404" %5’%26%61%% limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

A Web Service Authentication Control System Based on SRP and SAML

Flavio O. Silva, M.Sc.
Unidao Educacional Minas
Gerais

Joao A. A. Pacheco, M.Sc.
Faculdade de Computagdo
Universidade Federal de

Pedro F. Rosa, Ph.D.
Faculdade de Computagdo
Universidade Federal de

Uberlandia, MG, Brasil. Uberlandia Uberlandia
Sflavio@uniminas.br Uberlandia, MG, Brasil. Uberlandia, MG, Brasil.
Jjaapacheco@ufu.br frosi@facom.ufu.br
Abstract used to connect distributed applications using the
Internet.

Actually Internet applications can provide not only On this environment, security is a critical issue. The
information, but also, another way of getting wide use of Internet applications has tremendous
distributed computing. Cooperative information benefits, but a security fail can expose confidential

systems are autonomous and heterogeneous systems,
distributed geographically, but interconnected. Web
Services provides a set of interoperable standards that
can be used to connect distributed applications. On
this environment, security is a critical issue, and an
attack can expose systems services without
authentication. An end-to-end connection, like the ones
involved in such systems, usually requires that an
authentication can be shared between different
information systems. Web Services security model is
not yet fully defined and a lot of proposals are
emerging, delaying the adoption of this technology in
many situations. In this paper we present
multiplatform authentication control system based on
an extension of SRP protocol, using SAML. Within this
solution, authentication control can be leveraged, even
with weak passwords and an authentication assertion
can be exchanged with different cooperative
information systems.

1. Introduction

Actually Internet applications can provide not only
information, but also, another way of getting
distributed computing. In this scenario, the browser is
not the main entry point for Internet, but virtually any
application can use Internet to provide additional
computing or specific services.

Cooperative information systems are autonomous
and heterogeneous systems, distributed geographically,
but interconnected. Internet is becoming the natural
way to connect these systems. Web Services [1]
provides a set of interoperable standards that can be

data.

On a point-to-point connection, client
authentication is an effective way to protect services
and information, and a common way to perform this is
using a password. On an end-to-end connection, like
the ones involved in cooperative information systems
the security requirements are different and usually an
authentication assertion has to be shared between
different information systems.

Another key issue with client authentication is
related with security. This approach has its weakness
and an attack can break this protection and the services
could be accessed without authorization.

Web Services security model is not yet fully
defined and a lot of proposals are emerging, delaying
the adoption of this technology in many situations.

Security is a layer in Web Services architecture and
an environment for creating Web Services, such as
Apache AXIS [2], does not have a way to authenticate
its callers, so if the service is available, anyone can call
it.

Security Assertions Markup Language (SAML) [3]
provides an interoperable XML schema for exchanging
authentication, authorization, and user attribute related
information between different security infrastructures.

In this paper we present an authentication control
system based on an extension of SRP [4] (Secure
Remote Password) protocol and SAML. Using this
solution, authentication control can be leveraged, even
with weak passwords and an authentication assertion
can be exchanged with different cooperative
information systems.

The proposed solution was implemented as an
independent layer. This additional independent layer

n Web Services SICWS’OS . (djp
August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictions gg/lc

YF]',F.

PUTER

IETY

Proceedings of the IEEE International Conference o
0-7695-2404" %5’%26%61%% limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

can be built on any available Web Service platform. In
this work we have used Apache AXIS for this end.

Section 2 introduces the Web Service main
concepts. Section 3 presents Apache Axis engine;
Section 4 presents the SRP protocol. Section 5
describes the authentication control proposed and its
tests and results are shown in section 6. Section 7
presents some concluding remarks and potential future
works.

2. Web Services Overview

A Web Service is a software application that can be
remotely accessed using some protocols based on
Extended Markup Language (XML) [5].

Web Services standards define the format of the
message, specify the interface to which a message is
sent, describe conventions for mapping the contents of
the message into and out of the programs
implementing the service, and define mechanisms to
publish and to discover Web Services interfaces.

SOAP [6] is a XML based protocol and it is the
backbone to this new generation of cross-platform,
cross-language, distributed computing applications
named Web Services. A SOAP message basically
contain the following elements: <soapenv:Envelope>,
<soapenv:Body>, and <soapenv:Header>.

The <soapenv:Envelope> element identifies the
start and the end of the SOAP message. The
<soapenv:Body> contains the message itself. Finally
the optional <soapenv:Header> contains one or more
XML elements, named header blocks.

Headers offer the mechanism by which SOAP can
be extended to include additional features and
functionalities to Web Service based applications, such
as security, authentication, transactions, and other
service level agreement attributes associated with the
message.

Fault messages are generated if error occurs during
SOAP messages exchange. In such case, the
<soap:Body> eclement will contain only one element
named <soap.Fault>.

Web Services protocols are based on XML
standards and to get them secure XML is the natural
language to perform this task.

A range of XML-based security mechanisms [7] are
needed to solve all security related requirements.

Security Assertions Markup Language (SAML) [8]
provides an interoperable XML schema for exchanging
authentication, authorization, and user attribute related
information within different security infrastructures
and applications.

An assertion is a package of information that
supplies one or more statements made by a SAML
authority.

SAML defines three kinds of statements [8] that can
be carried within an assertion. Authentication
statements describes how the subject was authenticated
and in what time; attribute statements provide specific
details about the subject and, authorization statements
identify what actions the subject is entitled to perform
in a specific system.

A SAML authority is a system entity that issues
assertions and a relying part is a system entity that
decides to take an action based on the received
assertions.

SAML defines a request/response protocol for
obtaining assertions. A SAML request can either ask
for a specific known assertion or make authentication,
attribute, and authorization decision queries, with the
SAML response providing back the requested
assertions.

The language defines a binding to describe of how
SAML request/responses are carried within SOAP
exchange messages over Hyper Text Transfer Protocol
(HTTP).

An important characteristic of SAML assertions is
they can be exchanged across different enterprises,
systems and platforms, thus an authentication
assertion, can be sent to different systems in other to
reach their available Web Services. This property is
the key issue to solve the single sign-on problem.

Authentication, which is one of the security
requirements, consists of an entity prove to another the
identity it asserts to have. Several methods can be used
to perform this operation and the username/password
is the most used. In the Web Services context entities
are objects that communicate with each other through
SOAP messages.

SAML specification, which is based in XML
assertions, predicts the use of SRP as a protocol for
authentication, but until this time there is no
implemented solution that uses SRP to authenticate
SAML assertions.

Web Services based protocols, such as SOAP, are
well defined and adopted. However, security standards
are still being defined.

Although there are a lot of proposals provided by
different standards organizations, at this time, there are
no broadly adopted specifications for Web Services
security. As a result developers can either build up
services that do not use these capabilities or can
develop ad-hoc solutions that may lead to
interoperability problems [9].

n Web Services SICWS’OS . (djp
August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictions gg/lc

YF]',F.

PUTER

IETY

3. Apache Axis Engine

AXIS (Apache Extensible Interaction System)
essentially is a SOAP engine. It provides the
infrastructure to construct applications and manipulate
messages that uses SOAP.

AXIS is built on the concept of handlers. A handler
is an object that performs a specific task. A handler
chain is a special type of handler that can contain other
handlers and chains.

AXIS framework consists of three chains -
transport, global, and service which will process the
message in that order, before reaching the service.
Figure 1 presents AXIS Engine and their handlers and
chains.

Transport Global
= |
@
(s
|

|
|
|
|
|
Toanspon
Regquest |
|
|
|
|
|

Service

Listenar

Request

Target
Service

S

o
listener
Response

Response

Axis Engine

Figure 1. Axis handlers and chains

When the AXIS engine runs a set of Handlers are
invoked in a predefined sequence. The particular
sequence is determined by two factors: deployment
configuration and whether the engine is a client or a
server.

When a message is received, a Transport Listener
will create a MessageContext [10] and will invoke the
AXIS processing framework.

Theses handler chains can be configured and new
handlers can be added modifying AXIS behavior.

4. SRP Protocol

SRP (Secure Remote Password) is one of the most
used password-based authentication protocol. It
provides a way to strongly authenticate a user without
the usual risks of dictionary attacks faced by other
password-based authentication schemes.

In this protocol the password is neither stored as a
plain text nor in a ciphered way. Instead, a verifier,
obtained from the password through a one-way hash
function, is stored.

Another important characteristic ~ of this
authentication scheme is that the password is never
sent across the network, thus avoiding that an intruder
spoofs the network and retrieve the password or some

information that could make possible a password
reconstruction.

During the authentication process, ephemeral public
keys are exchanged between the server and the client
and these keys are different for each authentication
session.

Another important SRP assumption is that a user
can choose a "weak" password without impacting the
strength of the authentication scheme.

To perform the authentication a set of handshakes,

between the server and the client must be
accomplished. Figure 2 shows each step of SRP
protocol.
Client Server
Uusemame)
tri }
s(elt) ;Ire rieve {UsV}
x=Hsp)
calculate calculate
random a randomb
A=gha B=v+gh

A (public Ephemeral KeW.
B (public Ephemeral Key)

calculate

u randomu

rAIA T AT AL

;I S=B-g™X)"(@a+ux) S=(Av™)"b
;I K=HS) K=H{S)

M1 =HABK)

M2 = HAmM1,K)

Figure 2. SRP protocol handshake

In first phase [4], the client sends to the server, its
username (U). Then the server looks up in its database
for the password verifier (v) and the client salt (s). The
retrieved salt (s) will be sent across the network to the
client. The client salt (s) is randomly generated and the
verifier (v) is calculated when the password is stored in
the database.

After receiving the client salt it computes a private
key (x). This private key is calculated using a one-way
hashing function (H) using as input the salt(s) and the
password (p). Then the client generates the ephemeral
private key (a) and the server calculates its ephemeral
private key (b); both keys are generated randomly and
not publicly revealed. Using the generator (g) and the
ephemeral private key (a), the client calculates its
public ephemeral key (A).

In order to exchange its private ephemeral key (B)
with the client the server calculates it using the verifier

Proceedings of the IEEE International Conference on Web Services SICWS’OS
0-7695-2404" %S%QG%E‘%E% limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

YF]',F.

August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictionsgb%/g)UTER

IETY

(v) retrieved from the password database, the generator
(g) and its private key (b).

Then the client and the server exchange theirs
public ephemeral keys. Using different methods and
the public keys exchanged, both, the client and the
server, calculates a session key (S). If the password is
correct both keys will match.

Both sides hash the session key (S) into a
cryptographically strong session key (K).

To show an evidence that the client has the correct
session key, it computes the first match value (M1) and
send it to the server. Then, the server computes this
match value (M1) himself and verifies if it matches
with the client’s value.

If values match, the server calculates the second
match value (M2) as evidence that he also has the
correct strong session key.

This second match value (M2) is sent to the client.
The client calculates the second match value himself
and if both values are equal the client will be
successfully authenticated.

Once the user is authenticated, an open secure
session could be established for the communications

5. Web Service Authentication Control

Before proposing the solution three basic goals
were stated: first, the Secure Remote password
protocol should be extended and converted to the Web
Service way of work, in order to provide an end-to-end
authentication; the authentication issued by the SRP
server would be sent as SAML assertions to all Web
Service providers required in the service chain and
finally the solution should be simple, and easy to be
deployed, even with working Web Services that does
not provides yet an authentication mechanism.

Considering the goals and the technical
characteristics of SOAP, AXIS, SRP and SAML, the
solution showed in figure 3 was proposed.

This solution extends the web single sign-on high-
level use case provided by the Organization for the
Advancement of Structured Information Standards
(OASIS) [3] and besides that uses a Web Service
perspective to solve the authentication control problem
and the use of SAML within Web Services.

In the solution proposed an AXIS handler
(SrpClientHandler) will be added in the Web Service
consumer message flow.

This handler will be part of the global request chain
of this consumer, indicating that every time that this
consumer requests a service, this handler will be
executed before sending its request.

Client
(Web Service Consumer)
1. Call Web Service
SpQlientHandier
2 send STp Rocuest SrpServerService
v

3. Authenticate Using SRP
SpHandier [« »
SAML Authenticati

Authority

4] Send SOAP message with SAML|assertion

(User,verifer sait)
SAMLHandler . ’
SrpPasswordDb
N N
NS 5 Gall another Web Servioe using |\
° " the[same authenticaion assertion ™ |
N N
\\eb Service Provider Web Service Provider
(Relaying Part) (another retaying part)

Figure 3. Authentication Handlers

After being called, this handler will add in the
original SOAP message a specific header block.

This header block will contain the username and the
password that will be used in the authentication
process, as shown bellow:

<soapenv:Header>

<srpAuth:SrpAuthentication>
<SprAuthenticationRequest>
<user>flavio</user>
<password>123</password>
</SprAuthenticationRequest>
</srpAuth:SrpAuthentication>
</soapenv:Header>

Figure 4. SOAP header used in authentication

An important assumption is that that this SOAP
message will be transported on a secure channel. This
can be easily achieved by using Secure Hypertext

Transfer Protocol (HTTPS) in point-to-point
communication between the SrpClientHandler and
SrpHandler.

In the same way two other handlers will be added in
the global handler chain of the targeted Web Service,
SrpHandler and SamiHandler

Proceedings of the IEEE International Conference on Web Services SICWS’OS
0-7695-2404" %E%éﬁ%q%ﬁ limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

YF]',F.

August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictionsgjb%ngTER

IETY

0-7695-246Y

By doing this, every time this server receives a
request, these two handlers will be invoked, in this
order, before the SOAP request processing.

SrpHandler will perform the inverse process as it is
the SrpClientHandler peer, in other words, it will catch
the message and then it will retrieve the header block
added by the peer, initially, in the message.

Then, SamlHandler, which will be called after
SrpHandler, will verify if the SOAP request contains
the correct SAML authentication statement.

Both in the presence of error during this processing
or invalid authentication each handler will throw a
<soap:Fault> message and the processing will be
aborted.

To perform its task SrpHandler will receive a
MessageContext object. This object contains the
modified SOAP message.

SrpHandler will verify whether the header block is
valid and if it contains the necessary information to
authenticate the client.

Getting that the header is valid, SrpHandler will
then starts the SRP protocol handshaking to verify
whether the access will or not be granted.

In the proposed solution, the other peer, which will
perform the server side of the SRP protocol, will be
another Web Service, so this peer-to-peer
communication will be done using SOAP messages, as
well.

Figure 5 shows the messages that are exchanged
between SrpHandler and SrpServerService.

The exchanged messages are the basis of SRP
protocol and each time the handshake takes place
different parameter values are used. This handshake
cannot be reproduced elsewhere.

If the information initially received by the
SrpHandler is correct the last handshake operation —
verify(m2,m2_cli) — will succeed and the authentication
handler will authenticate the user.

In the presence of problem during the authentication
process SrpHandler will throw a <soap:Fault> and
the original request will be blocked.

If the authentication is correct the SrpHandler will
perform a final operation and this operation is not
related with the SRP protocol itself.

This operation - getSamlAuthenticationAssertion() -
is the central point in order to use SAML to exchange
with other Web Service providers the fact that this
service has been authenticated successful right before.

This method will modify the original SOAP request
by adding an authentication assertion to its message
body element.

The next handler in the global chain — SamlHandler
— will now be called; this handler will verify if the

SOAP message request contains in its body the SAML
authentication assertion. If the assertion is present the
handler will not interfere and the SOAP message will
continue its original path. In case of absence of the
authentication statement this handler will throw a
<soap:Fault> and the original SOAP request will fail.

:SrpHandler

|:SrpServerSeNice| | :SP: vordDb |

L getSalt(user) ;l getSpP 1ser)
getPrivateKeyX()
:I getSecretKeyA()
setPublicKeyA()

getPublicKeyB()

:I getSecretKeyB()

getVerifier()

T fam
55

getRandomU()

getSessionKey()
:I getMatch1()
setMatch1()

getMatch2() 11"

getMatch2()

ﬂ t/enfly (m2_cli,m2)

getSamlAuthenticationAssertion(). |

I

:I getSessionKey()
]:}/enﬁy(mw m_cli)

N
Figure 5. Authentication Web Service calls

After being processed by both handlers successfully
the SOAP message will continue its path and will
reach the targeted service.

This targeted Web Service can call it its processing
other Web Services, which may require an
authentication; in this case, if these other Web Services
rely on the authentication assertion provided by the
SrpServerService server, the initial authentication will
be exchanged transparently.

The communication between SrpHandler object and
SrpServerService shown in Figure 5 represents,
indeed, Web Service calls. SrpHandler is located at the
targeted Web Service and SrpServerService is located
at another Web Service host.

To perform these operations the SRP protocol had
to be extended and its handshake is now performed
between these two Web Services using SOAP
messages.

Proceedmggs of the IEEE International Conference on Web Services &ICWS 05

%Segé(j%q%ﬁg limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictions

H"FF.

PUTER
CIETY

Proceedings of the IEEE International Conference o
0-7695-2404" %5’%26%61%% limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

These services and the protocol primitives were
defined using the WSDL (Web Service Description
Language)[11].

These service definitions describe completely the
Web Service and protocol primitives that are Web
Service calls.

Although, the proposed idea was based on Apache
AXIS architecture, the target Web Service can be any
Web Service platform. I.e., this authentication scheme
can be added to any Web Service, using an Apache
AXIS Web Service as the authentication authority.

6. Handler Tests and Results

The proposed solution was deployed in order to
verify if it was based on a correct approach and to test
how these handlers could be added to a running Web
Service. It was deployed using the latest stable AXIS
engine available. To manipulate SAML elements it
was used OpenSAML [12]. OpenSAML is a set of
open source Java libraries that implements SAML 1.1
specifications.

To work with SRP protocol an object database had
to be created. This database (SrpPasswordDb) contains
objects that specify the authentication information used
by SRP (see Figure 2). These objects contain the user
name (U), the user salt (s) and a password verifier (v).
This information will be added to the database when a
new user is added to the system or when its password
is modified. A simple application was created just for
the database maintenance.

Table 1 shows how a “weak” password as “123”
was stored in this database:

Table 1. Password stored information

Username

) flavio

1495651668

7944758332613387076637170236109593236253
7850079379689849089590274344891658732515
2144362360149735177660234988614249774914
3946198246246734727885712071515153453734
6952225746166317262858259530997403459108
3070888771145141425854549397348237012950
4969709192851967560468732464837059614498
2858458313579650792550023389

The first handler, named SrpClientHandler, was
deployed in the client handler chain. So every time that
the client makes a request this handler will be
executed. On AXIS it can be accomplished by adding
the following lines on a file named “client-

config.wsdd”, as shown bellow:
<globalConfiguration>
<requestFlow>
<handler name="srpclient"
type="java:client.SrpClientHandler">

Salt (s)

Verifier (v)

</handler>
</requestFlow>
</globalConfiguration>

Figure 6. Client handler configuration

Using Apache AXIS this handler can be easily
added using a deployment tool, AdminClient [2], to
any application.

After leaving the client, the SOAP message will be
sent to the target Web Service, but before reaching this
service, a global handler, named SrpHandler, will be
executed and then another handler, named
SamlHandler will be executed as well.

These handlers were added to the server handler
chain in the same way used in the client and in this
case the handler information was added to a file named

“server-config.wsdd”, as shown below:
<globalConfiguration>
<requestFlow>
<handler name="srp"
type="java:serviceserver.SrpHandler">
<parameter name="scope" value="Application"/>
</handler>
<handler name="saml"
type="java:serviceserver.SamlHandler">
<parameter name="scope" value="Application"/>
</handler>
</globalConfiguration>

Figure 7. Server handler configuration

Considering that the handshake between this
handler and the authentication Web Service will be
done using multiple Web Service calls, the scope of
the handler and the authentication server had to be
defined as “Application” indicating that the life time of
the objects created during the handshake process will
be as long as the Web Service is active.

When a message arrives to the Web Services, this
handler (SrpHandler) starts the SRP protocol
handshake, as shown in figure 5.

In case of a correctly completed authentication,
SrpHandler will now obtain from the authority
assertion (SrpServerService server) an authentication
assertion.

Initially a SAML request has to be created and sent
to SrpServerService. This SOAP request will contain a
SAML authentication query. Figure bellow shows a
simplified view of the message that was sent to

SrpServerService.
<soapenv:Body>
<samlp:Request MajorVersion="1"
MinorVersion="1"
RequestlD="200131189660001">
<saml:AuthenticationQuery>
<saml:Subject>
<saml:Nameldentifier
NameQualifier="facom.ufu.br*
Format="#emailAddress”>
flavio@facom.ufu.br

n Web Services SICWS’OS . (djp
August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictions gg/lc

YF]',F.

PUTER

IETY

Proceedings of the IEEE International Conference o
0-7695-2404" %5’%26%61%% limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

</saml:Nameldentifier>
</saml:Subject>
<saml:AuthenticationMethod
type=“urn:ietf:rfc:2945"/>
</saml:AuthenticationQuery>
<samlp:Request>
<soapenv:Body>

Figure 8. SAML authentication query request

Considering that service was correctly authenticated
the authentication authority responds successfully with
the following with the SAML shown in figure 9.

The authentication assertion contains information
about authentication that was performed using SRP

protocol.
The assertion returned by the
getSamlAuthenticationAssertion() method will be

added to the original SOAP request, other relaying
Web Services that will process this authenticated

request will use this information.
<soapenv:Body>
<samlp:Response MajorVersion="1" MinorVersion="1

ResponselD="200131189660002"

InResponseTo="200131189660001”

StatusCode="success”>

<saml:Asssertion MajorVersion="1"
MinorVersion="1"
AssertionID=200131189660005"
Issuer=“20013118966"
Issuelnstant="2004-06-15T14:06:312">
<saml:AuthenticationStatement
AuthenticationMethod="urn:ietf:rfc:2945”

AuthenticationInstant=" 2004-06-15T14:06:312">
<saml:Subject>
<saml:Nameldentifier
NameQualifier="facom.ufu.br®
Format="#emailAddress”>
flavio@facom.ufu.br
</saml:Nameldentifier>
</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

</samlp:Response>
</soapenv:Body>

Figure 9. Authentication assertion response

At this time the handler (SrpHandler) will them
finish its work and the original request sent by the
client will continue its path way to the target service.

Finally, before reaching the service, SamlHandler
will verify if the request contains the SAML assertion,
and in case of success, as in this case we are showing
the original the Web Service provider will accept
request.

6.1 Latency time
In order to verify the overhead produced by the

proposed solution its latency time was compared to a
system without authentication

Figure 13 shows the measured times. As expected
SRP protocol and SAML manipulation introduces an
extra processing time. This time was about 4,74 times
higher.

In order to measure time required only for the
authentication system proposed the network round-trip
was not considered, so the same machine hosted the all
the components showed in figure 3 — the client, the
authentication server and the desired service as well.

Latency

2000
1800
1600
1400
1200
1

000

Time (ms)

800
600

400
200 ——" ——s

0

1 2 4 5 6 7 8 9 10
Measure number

[—e—W ithout Authenfication Srp and SAML Authentication |

Figure 10. Latency time in milliseconds

7. Concluding Remarks

This paper presents a solution to get an effective
authentication control to the Web Services.

SOAP messages were used to extend SRP protocol,
and, as far as we know, this is the first implementation
of SRP over SOAP protocol.

The extension of SRP protocol presented is easy to
be deployed and all the information was treated as a
string element ("xsd:string"), thus, getting this solution
a high level of interoperability between the most
distinct Web Services servers.

In this paper we have used SRP-3 [4] protocol to
implement the handshakes. The latency time achieved
in the round-trip of the service was almost five times
greater than the use of the system without the proposed
solution. This result was expected concerning the extra
processing added to the system. A right improvement
to be done is use SRP-6 [13], which contains
refinements in SRP protocol. In this version of SRP,
the protocol handshake uses less web service call, thus,
the latency time tends to be shorter.

An important contribution is the fact that the
authentication server is a Web Service as well; in this
manner the solution can be easily added and reached in
order to provide authentication control to a Web
Service and even to legacy applications.

n Web Services SICWS’OS . (djp
August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictions gg/[

YF]',F.

C

PUTER

IETY

Proceedings of the IEEE International Conference o
0-7695-2404" %5’%26%61%% limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded o

The strong session Key (K) created by the SRP
protocol can be used as well, to provide a session
identifier in order to create a session control of an
authenticated user. As a future work, this solution can
be extended to provide session management between
different information systems using SAML.

The proposed solution, which uses SAML in a Web
Service context extends the single sign-on use case [3]
proposed by OASIS, this new profile is a valuable
contribution because SAML is suitable for the use with
Web Services, but OASIS presents a general use case
based on HTTP transport only.

Although the tests were made using Apache AXIS
the client handler (SrpClientHandler) can be
constructed to any available Web Service engine,
leveraging security and making Web Service
authentication control, an essential feature, suitable to
any existent deployed Web Service.

Web Services is the interface to interconnect
autonomous and heterogeneous systems, distributed
geographically, which is the concept of cooperative
information systems. In this context security is a
critical issue and the need of a strong authentication
control is mandatory.

Internet applications focus, initially, was the
communication between individuals while Web
Services is focusing on providing a communication
between applications over Internet in a very
straightforward way. To unleash this power to an
effective use by cooperative information systems,
security plays an import role.

This paper shows how to improve authentication
control based on open source technologies, the strong
secure remote password (SRP) and SAML that will
become shortly a “de facto” standard to exchange Web
Services access control information.

8. REFERENCES

[1] Booth, D. et al. Web Services Architecture. World
Wide Web Consortium Working Draft, 2003.
[cited in December 22, 2004]. Available from:
<http://www.w3.0org/TR/2003/WD-ws-arch-
20030808>.

[2] AXIS. Axis User’s Guide. [cited in December 22,
2004]. Available from:
<http://ws.apache.org/axis/java/user-guide.html>.

[3] Hughes, J. et al. Technical Overview of the
OASIS Security Assertion Markup Language
(SAML) V1.1 [cited in December 22, 2004].
Available from < http://www.oasis-
open.org/committees/download.php/6837/sstc-
saml-tech-overview-1.1-cd.pdf>.

[4] Wu. T. The Secure Remote Password Protocol. In
Proceedings of the Internet Society Network and
Distributed System Symposium, pages 97-111,
March 1998.

[5] Skonnard, Aaron. Essential XML Quick
Reference: A Programmer’s Reference to XML,
XPath, XSLT, XML Schema, SOAP, and More,
Indianapolis: Pearson Education Inc., 2002.

[6] Englander, R. Java and SOAP, California:
O'Reilly & Associates Inc, 2002.

[7] Hartman, B. et al. Mastering Web Services
Security, Indianapolis: Wiley Publishing Inc.,
2003.

[8] Maler, E. et al. Assertions and Protocol for the
OASIS Security Assertion Markup Language
(SAML) V1.1 [cited in December 22, 2004].
Available from <http://www.oasis-
open.org/committees/download.php/3406/o0asis-
sste-saml-core-1.1.pdf>.

[9] Booth, D. et al. Web Services Architecture. World
Wide Web Consortium Note. [cited in December
22,2004]. Available from
<http://www.w3.0org/TR/2004/NOTE-ws-arch-
20040211>.

[10] AXIS. Axis Architecture Guide. [cited in
December 22, 2004]. Available from:
<http://ws.apache.org/axis/java/architecture-
guide.html>.

[11] Christensen, E. et al. Web Services Description
Language (WSDL) 1.1. World Wide Web
Consortium Note. [cited in December 22, 2004].
Available from <http://www.w3.org/TR/wsdl>.

[12] OpenSAML. OpenSAML 1.0 - an Open Source
Security Assertion Markup Language
implementation. [cited in December 22, 2004].
Available from: <http://www.opensaml.org>.

[13] Wu, T. SRP-6: Improvements and Refinements to
the Secure Remote Password Protocol,
Submission to the IEEE P1363 Working Group,
Oct 2002. [cited in December 22, 2004]. Available
from: <http://srp.stanford.edu/srp6.ps>.

n Web Services SICWS’OS

YF]',F.

PUTER

August 22,2025 at 19:25:48 UTC from IEEE Xplore. Restrictionsgpgg/[CIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

