
Empowering Software Defined Wireless Networks
Through Media Independent Handover Management

Carlos Guimarães1, Daniel Corujo2, Rui L. Aguiar3

Instituto de Telecomunicações
Universidade de Aveiro, Portugal

Email: {carlos.guimaraes1,dcorujo2,ruilaa3}@ua.pt

Flávio Silva4, Pedro Frosi5
Faculdade de Computação

Universidade Federal de Uberlândia, Brazil
Email: {flavio4,frosi5}@facom.ufu.br

Abstract—Internet access and service utilization has been
exploding in mobile devices, through the leverage of WLAN, 3G
and now LTE connections. It is this explosion as well that is
stressing the underlying fabric of the Internet, and motivating
new solutions, such as Software Defined Networking (SDN), to
build the controlling support and extension capabilities of the
Future Internet. However, SDN has yet to reach the necessary
traction to be deployed, and has been more relayed towards
experimentation supporting frameworks and away from wireless
environments. This paper explores SDN mechanisms and incre-
ments them with Media Independent Handover services from the
IEEE 802.21 standard, coupling them in a single framework for
the dynamic optimized support of OpenFlow path establishment
and wireless connectivity establishment. The framework was
implemented over open-source software in a physical testbed, with
results showing the benefits that this solution brings in terms of
performance and signaling overhead, when compared with more
basic approaches.

I. INTRODUCTION

The way we have been looking at the Internet has been
constantly evolving, motivated by new services, ideas and
ways to use it. This plethora of widely different scenarios
has been supported by a range of different technologies that
simultaneously increment the base functionality of the Internet
architecture, and pave the way to even newer enhancements
and utilizations. However, those same increments are stressing
the Internet’s base design, with many core components reach-
ing their limit, hindering further evolutions. As such, a new
way to look at the underlying operations of the Internet needs
to be done, empowering it towards a new progress and growth
cycle.

Software Defined Networking (SDN) appears as a key
enabler in this aspect, leveraging a separation from the data
plane and the control plane, allowing the later to be run in
software and enabling a more horizontal network model. Con-
cretely, different network operations (e.g., routing, forwarding,
access control, etc.) can be interfaced by applications via a
service-oriented API, allowing the control of the underlying
data plane, up to the level of how packets and flows are treated
by the network entities. This simplifies infrastructure evolution,
avoiding manual configuration, and better adapting to new en-
vironments provided by the rise of mechanisms such as cloud
computing, the Internet of Things, mobile connectivity and
different bandwidth-demanding media-oriented applications.

Since SDN defines a set of mechanisms that rely on
fundamental changes on how the Internet operates, it has

naturally been met with some resistance at different lev-
els. Deployment initiatives developed by key players, such
as manufacturers (e.g., provision of mechanisms embedded
in their devices allowing programmable network systems),
operators (e.g., virtualizing network services in the cloud
and exploration of carrier-enabled SDN) and even datacenters
(e.g., Google), have been surfacing. Nevertheless, the main
drive has been pushed by research initiatives (e.g., the Na-
tional Science Foundation Global Environment for Network
Innovation (GENI1), the OFELIA2 research project and the
New Generation Network Testbed JGN-X3 in Japan), who
have deployed SDN-based mechanisms for operating large-
scale experimental frameworks, allowing new protocols to be
evaluated in production environments without effecting them.
All these utilization initiatives target SDN operations over
network control procedures at the core, involving very fast
wired links between them.

In order to contribute to SDN integration as a network
control and configuration mechanism, we argue that it should
be exposed to a greater degree of scenarios, targeting a general
deployment as an underlying feature of the base Internet op-
eration. Concretely, considering the growth of wireless-based
communications supporting mobile access to Internet services,
it becomes important to assess the impact, and contributions,
that SDN can provide in these scenarios, when its control plane
is able to reach and configure flows right to the network side
endpoint of the wireless link (e.g., Access Point, Base Station,
etc.), hereinafter referred to as Point of Attachment (PoA).

This is where this paper contributes, by presenting a
framework where SDN-based mechanisms, in the form of the
OpenFlow protocol, are used to configure the wireless net-
working nodes and establish communication paths. We explore
Media Independent Handover (MIH) procedures, from the
IEEE 802.21 standard, to optimize handovers in heterogeneous
wireless environments. This approach goes beyond current
efforts of integrating OpenFlow with wireless capabilities, that
only target the extension of experimental testbed into wireless
experimentation. Here, we present how SDN can actually be
used to support wireless communication paths, with dynamic
mobility management capabilities provided by standards com-
pliant nodes. Results show that this combination allows the
provision of enhanced connectivity scenarios, allowing Always
Best Connectivity when different handover candidates are

1NSF GENI, http://www.geni.net
2FP7 OFELIA, http://www.fp7-ofelia.eu
3JGN-X, http://www.jgn.nict.go.jp

presented, and triggering OpenFlow procedures preemptively
in order to avoid traffic disruption.

The paper is organized as follows. Section II presents the
background on SDN and MIH, followed by Section III where
our proposed system framework is described. These concepts
are evaluated in Section IV, where results of its deployment
over a physical wireless testbed are presented, in a mobility
scenario. Finally, the paper concludes in Section V.

II. BACKGROUND

SDN empowers network nodes with the capability of
recognizing and applying intelligent behavior to traversing
packets, decoupling the control and data planes. This allows
the support of scenarios such as large-scale experimentation
of new Internet-based protocols over production networks,
but also inherently supports more dynamic network topology
behavior and (re)configuration. These enhancements are usu-
ally demonstrated using OpenFlow [1], a SDN open-source
implementation, already available in a number of commercial
products and used in several research projects. In OpenFlow
Switches, the forwarding operation still resides in the switch,
but the control plane runs in software and is able to be managed
from a separate network entity, the OpenFlow Controller. This
entity configures the switch behavior by modifying the for-
warding tables therein, enabling flexible and dynamic network
management [2].

Despite these capabilities, some concerns about their soft-
ware nature were risen, but recent assessments [3] showed that
aspects such as scalability are not an issue caused by SDN
itself, and can be addressed while maintaining its benefits.
Incrementally, with the main scope of SDN action targeting
wired connected scenarios, [4] and [5] paved the way to
support innovation into wireless mobile networks, exposing
OpenFlow software to wireless environments. OpenFlow was
implemented as an application on top of OpenWrt4 [6], allow-
ing commercial wireless routers to act as an OpenFlow-enabled
switch. This sparked the study of SDN (and consequently,
OpenFlow) under wireless environments, providing a new set
of experiment possibilities to be done over supporting testbeds.
[7], [8] and [9] study the adoption of OpenFlow in wireless
scenarios, focusing on management, monitoring and access
control. However, the proposed solutions just consider SDN as
an enabler mechanism for wireless protocols experimentation.
Moreover, they have some limitations, such as disregarding
network resources management, optimization or supporting
handover procedures.

The IEEE 802.21 [10] (or Media Independent Handover,
MIH) standard defines extensible access media independent
mechanisms that facilitate and optimize handovers between
heterogeneous networks. It defines a set of Media Independent
Commands, Events and Information Elements, made available
by a Media Independent Handover Function (MIHF) residing
in supporting nodes, which, through the usage of Service Ac-
cess Points (SAPs) interfacing, abstracts access to information
and control procedures of the link layers, independently of
their technology (e.g., WLAN, WiMAX, 3GPP, etc.). These
mechanisms are used by controlling entities (e.g., high-level

4OpenWrt - https://openwrt.org/

mobility management entities) to optimize handover proce-
dures, optimizing connectivity in wireless mobility-supporting
scenarios [11]. Although in [7], IEEE 802.21 is referred as
a potential enabler to query link information and to trigger
handovers in OpenFlow-based Wireless Mesh Networks. Still,
no detailed integration of IEEE 802.21 and OpenFlow is
addressed, and the potential trade-offs are not even discussed.
In particular, IEEE 802.21 is only used for specifying an
association request as the handover trigger, providing no
considerations on the challenges presented by handovers or
mobility management procedures.

III. SYSTEM FRAMEWORK

The proposed framework integrates OpenFlow network
architectures with IEEE 802.21, providing a set of mecha-
nisms that facilitate and optimizes handover procedures. Our
framework envisages OpenFlow controlling network flows
up to the network side endpoint, affecting, as such, wire-
less network PoAs (e.g., WLAN Access Point). The media-
independent behavior of IEEE 802.21 enables our framework
to be technology agnostic, allowing the mechanisms defined
here to be deployed over any link technology. Moreover,
they also trigger commands for resource availability check,
preparation, commit and release, as well as to receive events
regarding current link status perceived by the MN. In this way,
OpenFlow procedures can use link information to select the
best handover candidate (according to both the network and the
MN) and to optimize the usage of network resources. As such,
our framework enables network management scenarios where,
through IEEE 802.21, OpenFlow paths can be dynamically and
preemptively configured according to the wireless connectivity
opportunities detected by the MN while it moves. With this
capability, the OpenFlow path is already established when the
MN handovers to the new PoA, reducing the impact to the
data sessions involving the MN. Finally, the flexibility of IEEE
802.21 allows it to be integrated with several different mobility
protocols, such as PMIPv6 [12], allowing it to accommodate
IP mobility procedures when needed.

The proposed framework is depicted in Fig. 1, featuring
enhanced versions of the OpenFlow Controller, the OpenFlow
Switch and the Mobile Node:

• OpenFlow Controller / PoS: This is the heart of
the proposed framework, being responsible not only
for performing routing related tasks, such as updating
forward tables of OpenFlow Switches, but also for
handling and controlling mobility procedures. Thus, it
couples the functions of the OpenFlow Controller and
of the IEEE 802.21’s Point of Service (PoS) inside its
Mobility Manager module, while featuring a MIHF
for exchanging IEEE 802.21 with other nodes.

• OpenFlow Switch / PoA: Like the standard Open-
Flow switch, this entity is responsible for executing
data packet forwarding operations, via a flow table
which stores information on how to process each
data flow, configured by an external entity (i.e., the
OpenFlow controller), via the OpenFlow protocol. It
doubles as a PoA, since it provides link connectivity
to a MN, as well as features a Mobility Manager
module that couples the operations of OpenFlow and

Fig. 1: Proposed framework

IEEE 802.21. Regarding the later, besides the MIHF,
it also features a SAP, which allows the Mobility
Manager to control aspects of the link interface re-
garding handover management (i.e., events about link
resources establishment), used to optimize OpenFlow
procedures.

• Mobile Node: The MN represents the end-user equip-
ment that allows the user to connect to the network.
The MN may have one of more access technologies,
which can be wired (e.g., Ethernet) or wireless (e.g.,
WLAN or 3G). The MN is coupled with a MIHF,
along with interfaces towards the access links (i.e.,
Link SAPs) and interfaces towards higher-layer enti-
ties, allowing them to control and to retrieve informa-
tion from the links in an abstract way. This interfacing
can be done by existing Mobility Managers in the
MN or by external network entities that interfaces
in a remote way via the MIHF (i.e., the PoS). As
such, the MN is able to provide events about detected
PoAs or indicating that the current PoA’s signal level
is decreasing past a predefined threshold, as well as to
receive commands to execute handovers to other PoAs
(e.g., where OpenFlow has already pre-established
flow configuration).

Fig. 2 depicts the proposed signaling for a MN-initiated
handover scenario, where the MN changes its PoA due to
movement. Although we present a MN-initiated handover
scenario motivated by the shifting signal level of the different
PoAs while the MN is moving, the flexibility of IEEE 802.21
enables our framework to also support Network-initiated han-
dover scenarios, where, for e.g., the network could detect the
overload of a given PoA, triggering the handover of a set of
MNs to another PoA. In addition, the link layer abstraction
supported by IEEE 802.21 decouples our framework from link
related aspects, allowing this scenario to be deployed over
different technologies (e.g. Wifi, WiMAX, 3G, etc.) without
modifying the signaling presented here.

The handover procedure is initiated when the MN detects
a new PoA on its surroundings (1) and, based on several
information (i.e., link technology or signal strength), its Mo-

Fig. 2: OpenFlow-enabled IEEE 802.21 handover signaling

bility Manager decides to handover to the detected PoA.
Thus, it triggers a MIH MN HO Candidate Query.request (2)
towards its PoS, indicating the detected PoAs that the MN
is interested in moving to. Before the PoS replies to the
MN, it queries the resources availability on each detected
PoA by exchanging MIH N2N HO Query Resources mes-
sages (3 and 4) with each PoA. The PoS is then able to
provide to the MN an ordered list about the best candidate
networks (5) based on other network-based information (e.g.,
policies). The MN selects the handover candidate and issues
a MIH MN HO Commit.request message (6), informing the
network about an imminent handover to the selected network.
Upon the reception of this message, the PoS informs the
PoA that a MN is about to move to its network and that
any necessary link resources should be prepared by sending
a MIH N2N HO Commit.request message (7). When the se-
lected PoA acknowledges the PoS request with a successful
status (8), the PoS issues an OFPT FLOW MOD (9) message
towards, not only to the PoA, but also to other OpenFlow
switches under the domain of the PoS in order to update their
forwarding tables. The selection of the OpenFlow switches
that require an update of forwarding tables is based on the
ongoing sessions of the MN. Thus, the path to the new
PoA is established before the handover procedure occurs and,
therefore, ongoing sessions can be immediately restored after
the handover. Nevertheless, the path to the old PoA is tem-
porarily maintained in order to maintain the ongoing sessions
before the handover occurs. In order to receive a notification
about the routing update, the OFPT FLOW MOD message
is sent together with a OFPT BARRIER REQUEST message
(10). Thus, upon the reception of the OFPT BARRIER REPLY
message (11), the PoS knows that the routes were already
configured and issues a MIH MN HO Commit.response mes-
sage (12) towards the MN, confirming that the resources were

successfully prepared by the network. The MN executes the
L2 handover procedure informing the PoS about its completion
by sending a MIH MN HO Complete.request message (15).

In parallel, the new PoA also detects the attachment
of the MN, and forwards the event towards its PoS (14).
When the PoS receives the MIH MN HO Complete.request
message, it triggers the OpenFlow procedures to clear routing
information related with the MN and the old PoA. For that,
it sends a OFPT FLOW MOD message (16) together with a
OFPT BARRIER REQUEST message (17) to all switches that
maintain a route related with the MN and the old PoA. When
the confirmation OFPT BARRIER REPLY message (18) is
received, the PoS requests the old PoA to release all resources
associated with the MN (MIH N2N HO Complete messages
(19 and 20)). Finally, the PoS acknowledges the MN that the
handover procedure on the network side was completed by
sending a MIH MN HO Complete.response message (21).

IV. EVALUATION

In order to evaluate the feasibility of our framework,
we coupled ODTONE5 [12], an open-source IEEE 802.21
implementation, with OpenFlow 1.3 Software Switch6 and
NOX OpenFlow 1.3 Controller7 implementations according to
the proposals in Section III.

A. Testbed Description

Our evaluation scenario was build over the AMazING [13]
wireless network testbed, located on the rooftop of Instituto
de Telecomunicações building. As presented in Fig. 3, three
different PoAs were selected, each one serving a different
IPv6 network, connected to a common switch. The PoAs and
switch are OpenFlow and 802.21-enabled. A Content Server,
which stores and streams multimedia content, and a MN, which
consumes the multimedia content, are the remaining entities
that complete the evaluation scenario. This scenario consists
on the MN moving through PoA1, PoA2 and PoA3 while
receiving a video stream from the Content Server, using the
signaling depicted in section III to optimize handover-assisted
OpenFlow path establishment. The same network interface
card is used between the handovers. Finally, it assumes that
the MN is initially attached to PoA1 and already receiving the
multimedia content, doing the handover to PoA2 at time 10s
and to PoA3 at 20s.

Each physical node is configured with a VIA Eden 1GHz
processor with 1GB RAM, a 802.11a/b/g/n Atheros 9K wire-
less interface, and a Gigabit wired interface. Each node runs
the Linux OS (Debian distribution) with kernel version 3.2.0-
2-686-pae, with ODTONE and OpenFlow 1.3 Software Switch
installed.

Each experiment was run 10 times, showing here averaged
results with a 95% T-Student confidence interval. In order to
correlate the results, the handovers start exactly at the same
time between experiments.

5Open Dot Twenty ONE - http://atnog.av.it.pt/odtone
6OpenFlow 1.3 Software Switch - https://github.com/CPqD/ofsoftswitch13
7NOX OpenFlow 1.3 Controller - https://github.com/CPqD/nox13oflib

Fig. 3: Scenario description

B. Performance Evaluation

In this section, we evaluate the performance of the pro-
posed framework, comparing it with a deployment without any
mobility-aware mechanism, and with a deployment featuring
some enhanced logic on the OpenFlow controller, where a
dummy mobility trigger after the handover initiates OpenFlow
procedures. Obtained results are presented in Table I and
Fig. 4. Table I shows the impact on the video flow reception,
including number of packets sent by the Content Server and
received by the MN, percentage of packet lost during the
experiment, the delay to restore the video stream after the
handover procedure and, lastly, the time during which the video
flow was being sent towards a non-required PoA. Fig. 4 depicts
the link utilization during the whole experiment, highlighting
the time at which the handover occurs (at time 10s and 20s).
In order to clearly observe the behavior during the handovers
the results of Fig. 4 correspond to a single randomly chosen
run.

No mobility
awareness Dummy mobility

IEEE 802.21
supported
mobility

Total packets
sent

3346,8 ± 2.1 3218 ± 10.3 3289,7 ± 24.9

Total packets
received

950 ± 15.2 3078,4 ± 21,1 3218 ± 30.5

Total packet
lost (%)

28,39 ± 0,44 4,34 ± 0,35 2.18 ± 0,33

Packet lost
during HO

∞ 70,9 ± 11.6 36,95 ± 12.2

Restore stream
delay (ms)

∞ 433,9 ± 68.2 197,2 ± 62.2

Redundancy
(ms)

0 ± 0 0 ± 0 359,0 ± 62.7

TABLE I: Packet statistics

Analyzing the results of Table I, we can observe that the
deployment scenario without any mobility-aware mechanism
was not able to recover the video stream after the handover.
This happened because neither the MN nor the network were
able to detect or report the occurrence of handover and,
therefore, the path to the new location of the MN was not
configured. In addition, the path via PoA1 (i.e., the initial

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

PoA 1
PoA 2
PoA 3

0
10
20
30
40
50

 9 9.5 10 10.5 11

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

0
10
20
30
40
50

 19 19.5 20 20.5 21

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

(a) No mobility awareness

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

PoA 1
PoA 2
PoA 3

0
10
20
30
40
50

 9 9.5 10 10.5 11

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

0
10
20
30
40
50

 19 19.5 20 20.5 21

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

(b) Dummy mobility

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

PoA 1
PoA 2
PoA 3

0
10
20
30
40
50

 9 9.5 10 10.5 11

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

0
10
20
30
40
50

 19 19.5 20 20.5 21

L
in

k
 U

ti
liz

a
ti
o
n

(K
B

 p
e
r

1
0
0
m

s
)

Experiment Time (s)

(c) IEEE 802.21 supported mobility

Fig. 4: Link utilization

point of attachment of the MN) was never removed, resulting
in wasted usage of the link resources, as seen in Fig. 4a.

With the dummy mobility triggers, the MN was able to
restore the video session after approximately 433,9 ± 68.2 ms
after disconnecting from the old PoA. This delay is related,
not only with the L2 handover procedure, but also with the
OpenFlow route update procedures which only happens after
the handover and its notification to the PoS. From the total of
sent packets, the MN lost about 4,34% packets, mostly during
the handover procedure. Packet loss is intrinsically related
with the delay in restoring the video stream which, as said
previously, corresponds to the time required to establish the
connectivity with the new PoA and to setup the route towards
the new position of the MN. In terms of packets, it represented
an average of 70.9 ± 11.6 packet lost per handover. Looking
at the link utilization graphs (Fig. 4b), we can observe that
there is no overlap of link utilization by two different PoAs.
This behavior occurs because the PoS only establishes the path
towards the MN via the new PoA, after releasing the path via
the old PoA.

Lastly, from the results of Table I showing the performance
of our presented framework, we can observe that the handover
performance was significantly improved, where packet loss
and stream restoration delay were halved when compared to
the previous scenario. The MN was able to restore the video
session after approximately 197,2 ± 62.2 ms after disconnect-
ing from the old PoA. Since the route to the new PoA was
already setup up before the handover, after the L2 handover
the MN started to received the video stream immediately.
Therefore, the time required to restore the video stream is only
related with the L2 handover procedure delay. Consequently,
it decreased the values of packet loss to about 2.18%, which
corresponds to approximately 37 packets lost per handover.
However, in contrast to the previous deployment scenarios,
the old link is still maintained for about 359,0 ± 62.7 ms per
handover. This time is related with the pre-configuration of the
path towards the MN via the new PoA before the handover
and the removal of the path towards the MN via the old PoA
only after the handover. Fig. 4c shows the link utilization
overlap before and after the handover procedure. Of course,
this reflects the conservative nature of the chosen handover
management algorithm. Our framework is flexible enough to
allow the definition of different Mobility Manager strategies,
optimizing different aspects, where link utilization overlap can

be one of them.

C. Control Signaling Overhead Analysis

In this section we study the footprint of the proposed sig-
naling. For brevity, we focus on the amount of data exchanged
and its total time required. The obtained results are presented
in Table II, showing the results related with the amount of
data exchanged and total time required for different phases of
the handover process (i.e., preparation, commit and complete).
The values for the amount of data exchanged consider not only
the size of the MIH or OpenFlow protocols, but also the size
of the L4 headers (UDP or TCP).

HO Preparation HO Commit HO Complete

Size
IEEE 802.21
(UDP + Ack)

301 294 329

(bytes) OpenFlow
(TCP)

0 736 688

Time
IEEE 802.21
(UDP + Ack)

11,73 ± 1.63 128,73 ± 12.41 122,90 ± 0.91

(ms) OpenFlow
(TCP)

0 ± 0 56,71 ± 0,85 56,17 ± 0.49

TABLE II: Total signaling overhead per handover

Results from Table II show that almost 60% of the
exchanged signaling corresponds to the OpenFlow protocol,
being the remaining 40% related with IEEE 802.21. The
signaling involving the MN accounts for about 20% of the total
signaling overhead, due to its participation in the handover
process to assist in the candidate query and handover commit
and complete steps.

The overhead of the OpenFlow protocol signaling en-
compasses not only the OFPT FLOW MOD messages,
which update the forwarding tables in the OpenFlow
switches, but also the OFPT BARRIER REQUEST and
OFPT BARRIER REPLY messages, which are used to assure
that the routing rules were configured in the OpenFlow switch.
A non-verification of the status of the update operation, would
reduce in about 144 bytes the signaling related to OpenFlow. In
addition, OpenFlow is sent over TCP, introducing the overhead
of the TCP header and the corresponding TCP acknowledg-
ment messages. Also, the OpenFlow protocol overhead is

highly dependent on the number of switches on which the
PoS should update the forwarding tables. In a very simple
way, we verified that the configuration of each OpenFlow
switch would increase the OpenFlow signaling between 344
and 392 bytes for the proposed scenario, depending on the
flow filter and actions to perform. Lastly, the signaling related
with the OpenFlow protocol does not involve the MN, being
mainly exchanged between the PoS and the new and old PoAs
and the intermediary switch. Regarding time, the OpenFlow
procedures took about 112 ms per handover to perform routing
update on the OpenFlow switches, divided into 56,71 ± 0,85
ms to preemptively configure the path through the new PoA
and 56,17 ± 0.49 to release the path through the old PoA.

Regarding the IEEE 802.21 signaling, all signaling involves
the PoS, on which about 51% of the exchanged data is related
with the communication with the MN, being the remaining
49% exchanged with the PoAs. The old PoA and the new
PoA are involved in about 30% and 19%, respectively, of the
total IEEE 802.21 signaling. The higher amount of information
exchanged with the new PoA highlights its involvement in the
resources querying and committing processes, in opposite to
the old PoA which is only involved in the resources releasing.
The signaling involving the MN is related with its assistance
in the candidate query and handover commit and complete
procedures. In terms of time, the HO preparation procedures
took about 11,73 ± 1.63 ms, which is minimal compared with
the remaining procedures. The HO Commit and HO Complete
procedures took about 128,73 ± 12.41 and 122,90 ± 0.91 ms
respectively. However, besides the time required to prepare and
to release the link resources, these values are highly affected
by the OpenFlow procedures, since they are encompassed
between the IEEE 802.21 procedures.

V. CONCLUSION AND FUTURE WORK

The work presented in this article has been framed by
the inherent challenges presented to novel mechanisms aiming
to optimize the underlying operation of the Internet, such
as Software Defined Networking. This work broke from the
common utilitarian view typically associated with the deploy-
ment of SDN as an experimentation enabler, and to actually
contribute to its concrete dissemination as a network control
mechanism. In this way, a framework empowering OpenFlow
with the Media Independent Handover capabilities of the
IEEE 802.21 standard was proposed, allowing an optimized
flow establishment and link connectivity, in mobile wireless
environments. This allows handover-enhancement processes,
provided by configurable indications from wireless link con-
ditions and handover opportunities associated to Mobile Node
movement, to dynamically and preemptively trigger software-
defined flow configuration, minimizing the impact to on-going
data sessions and increasing connectivity opportunities. This
framework was implemented over existing open-source soft-
ware, and deployed in a physical testbed featuring a wireless
mobile node receiving a video flow. Results show the benefits
that this solution brings in terms of performance and signaling
overhead, when compared with more basic approaches. As
future work, we are currently evaluating the impact that our
framework has in different kinds of information exchanged and
flow establishment, considering aspects such as content-centric
networking and the Internet of Things, in mobile environments.
These place further stringent operation requirements, exposing

SDN-based mechanisms to novel scenarios, contributing to its
evolution and dissemination.

ACKNOWLEDGMENT

This work has been partially funded by the European
Community’s Seventh Framework Programme, under grant
agreement n. 258365 (OFELIA project) and by the Portuguese
Science Foundation (FCT) grant SFRH / BD / 61629 / 2009.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[2] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” Communications Magazine, IEEE, vol. 51,
no. 2, pp. 114–119, 2013.

[3] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” Communications Magazine, IEEE,
vol. 51, no. 2, pp. 136–141, 2013.

[4] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan,
N. Handigol, N. McKeown, and G. Parulkar, “Blueprint for introducing
innovation into wireless mobile networks,” in Proceedings of the
second ACM SIGCOMM workshop on Virtualized infrastructure
systems and architectures, ser. VISA ’10. New York, NY, USA:
ACM, 2010, pp. 25–32. [Online]. Available: http://doi.acm.org/10.
1145/1851399.1851404

[5] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “Openroads: empowering research
in mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 1, pp. 125–126, Jan. 2010. [Online]. Available: http://doi.acm.org/
10.1145/1672308.1672331

[6] Y. Yiakoumis, J. Schulz-Zander, and J. Zhu. (2012,
Oct.) Pantou : Openflow 1.0 for openwrt @ONLINE.
[Online]. Available: http://www.openflow.org/wk/index.php/Pantou\ :
\ OpenFlow\ 1.0\ for\ OpenWRT

[7] P. Dely, A. Kassler, and N. Bayer, “Openflow for wireless mesh
networks,” in Computer Communications and Networks (ICCCN), 2011
Proceedings of 20th International Conference on, 2011, pp. 1–6.

[8] C. Argyropoulos, D. Kalogeras, G. Androulidakis, and V. Maglaris,
“Paflomon – a slice aware passive flow monitoring framework for open-
flow enabled experimental facilities,” in Software Defined Networking
(EWSDN), 2012 European Workshop on, 2012, pp. 97–102.

[9] K.-K. Yap, Y. Yiakoumis, M. Kobayashi, S. Katti, G. Parulkar, and
N. McKeown, “Separating authentication, access and accounting: A
case study with openwifi,” OpenFlow Technical Report 2011-1, 8 2011,
made available from July 2011.

[10] LAN/MAN Committee of the IEEE Computer Society, “IEEE Std
802.21-2008, Standards for Local and Metropolitan Area - Part 21:
Media Independent Handover Services,” 2008.

[11] A. De La Oliva, A. Banchs, I. Soto, T. Melia, and A. Vidal, “An
overview of IEEE 802.21: media-independent handover services,” IEEE
Wireless Communications, vol. 15, no. 4, pp. 96–103, 2008.

[12] D. Corujo, C. Guimaraes, B. Santos, and R. Aguiar, “Using an open-
source ieee 802.21 implementation for network-based localized mobility
management,” Communications Magazine, IEEE, vol. 49, no. 9, pp. 114
–123, september 2011.

[13] J. P. Barraca, D. Gomes, and R. L. Aguiar, “AMazING - Advanced
Mobile wIreless Network playGround,” International Conference on
Testbeds and Research Infrastructures for the Development of Networks
& Communities and Workshops, 2010.

