
A SRP Based Handler for Web Service Access Control

Flávio O. Silva, João A. A. Pacheco, Pedro F. Rosa, Ph.D.
Networking and Computing Architecture Group

Faculdade de Computação
Universidade Federal de Uberlândia

MG, Brasil.
{flavio, frosi}@facom.ufu.br , jaapacheco@ufu.br

Abstract

Security is a critical issue. The wide use of Internet
applications has tremendous benefits, but a security
fail can expose confidential data. Web Services is a
software application that can be remotely accessed
over Internet using interoperable standards based on
XML. At this time, there are no broadly adopted
specifications for Web Services security and in this
paper we present an extension to the SRP (Secure
Remote Password) protocol in order to apply access
control to a Web Service as an independent layer. This
additional independent layer can be built on any
available Web Service platform. In this work we have
used Apache AXIS for this end.

1. Introduction

Security is a critical issue. The wide use of Internet
applications has tremendous benefits, but a security fail
can expose confidential data.

Client authentication is a very used alternative to
protect services and information, and a common way to
perform this is using a password.

This approach, however, has its weakness and an
attack can break this protection and the services could
be accessed without authorization.

Web Services [1] provide a new use of the Internet
where remote applications can communicate using
interoperable standards. Using this approach, Internet
can provide not only information, but also, another way
of getting distributed computing.

However, Web Services security model is not yet
fully defined and a lot of proposals are emerging,
delaying the adoption of this technology in many
situations.

Security is a layer in Web Services architecture and
an environment for creating Web Services, such as
Apache AXIS [2], does not have a way to authenticate

its callers, so if the service is available, anyone can call
it.
In this paper we present an extension to the SRP [3]
(Secure Remote Password) protocol in order to apply
access control to a Web Service as an independent
layer. This additional independent layer can be built on
any available Web Service platform. In this work we
have used Apache AXIS for this end.
Section 2 introduces Web Services main concepts.
Section 3 presents Apache Axis engine; Section 4
presents the SRP protocol. Section 5 describes the
authentication control proposed and it’s tests and
results are shown in section 6. Section 7 presents some
concluding remarks and potential future works.

2. Web Services Overview

A Web Service is a software application that can be
remotely accessed using some protocols based on XML
[4] (eXtended Markup Language).

Web Services standards define the format of the
message, specify the interface to which a message is
sent, describe conventions for mapping the contents of
the message into and out of the programs implementing
the service, and define mechanisms to publish and to
discover Web Services interfaces.

SOAP [5] is a XML based protocol and it is the
backbone to this new generation of cross-platform
cross-language distributed computing applications
named Web Services.

A SOAP message basically has the following
format:
<soapenv:Envelope>

<soapenv:Header> </soapenv:Header>
<soapenv:Body> </soapenv:Body>

</soapenv:Envelope>
Figure 1. Basic format of a SOAP message

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04)
0-7695-2225-4/04 $ 20.00 IEEE Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:25:14 UTC from IEEE Xplore. Restrictions apply.

The <soapenv:Envelope> envelope identifies the
start and the end of the SOAP message. The
<soapenv:Body> contains the message itself. Finally
the optional <soapenv:Header> contains one or more
XML elements, named header blocks.

Headers offer the mechanism by which SOAP can
be extended to include additional features and
functionalities to Web Service based applications, such
as security, authentication, transactions, and other
service level agreement attributes associated with the
message.

Fault messages are generated if error occurs during
SOAP messages exchange. In such case, the
<soap:Body> element will contain only one element
named <soap:Faut>.

Web Services protocols are based on XML
standards; to get them secure XML is the natural
language to perform this task.

A range of XML-based security mechanisms are
needed to solve all security related requirements.

Authentication, which is one of the security
requirements, consists of an entity prove to another the
identity it asserts to have. Several methods can be used
to perform this operation and the username/password is
the most used. In the Web Services context entities are
objects that communicate each other through SOAP
messages.

Web Services based protocols, such as SOAP, are
well defined and adopted. However, security standards
are still being defined.

At this time, there are no broadly adopted
specifications for Web Services security. As a result
developers can either build up services that do not use
these capabilities or can develop ad-hoc solutions that
may lead to interoperability problems [8].

There are some initiatives to define standards for
authentication in Web Service such as XML Key
Management Specification (XKMS) [9]; Security
Assertion Markup Language (SAML) [10] and WS-
Security [10].

SAML specification, which is based in XML
assertions, specifies the use of SRP for authentication,
but until this time there is no implemented solution that
uses SRP to authenticate SAML assertions.

Most of the WS-Security specification is based on
SOAP header processing. This technique is the basic
principle used throughout this work.

3. Apache Axis Engine

AXIS (Apache eXtensible Interaction System)
essentially is a SOAP engine. It provides the

infrastructure to construct applications and manipulate
messages that uses SOAP.

AXIS is built on the concept of handlers. A handler
is an object that performs a specific task. A handler
chain is a special type of handler that can contain other
handlers and chains.

AXIS framework consists of three chains -
transport, global, and service which will process the
message in that order, before reaching the service.
Figure 2 presents AXIS Engine and their handlers and
chains.

Figure 2. Axis handlers and chains

When the AXIS engine runs a set of Handlers are
invoked in a predefined sequence. The particular
sequence is determined by two factors: deployment
configuration and whether the engine is a client or a
server.

When a message is received, a Transport Listener
will create a MessageContext [6] and will invoke the
AXIS processing framework.

Theses handler chains can be configured and new
handlers can be added modifying AXIS behavior.

4. SRP Protocol

SRP (Secure Remote Password) is one of the most
used password-based authentication protocol. It
provides a way to strongly authenticate a user without
the usual risks of dictionary attacks faced by other
password-based authentication schemes.

In this protocol the password is neither stored as a
plain text nor in a ciphered way. Instead, a verifier,
obtained from the password through a one-way hash
function, is stored.

Another important characteristic of this
authentication scheme is that the password is never sent
across the network, thus avoiding that an intruder
spoofs the network and retrieve the password or some
information that could make possible a password
reconstruction.

During the authentication process, ephemeral public
keys are exchanged between the server and the client

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04)
0-7695-2225-4/04 $ 20.00 IEEE Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:25:14 UTC from IEEE Xplore. Restrictions apply.

and these keys are different for each authentication
session.

Another important SRP assumption is that a user
can choose a "weak" password without impacting the
strength of the authentication scheme.

To perform the authentication a set of handshakes,
between the server and the client must be
accomplished. The diagram below shows each step of
SRP protocol.

Client Server

U(username)

s(salt)

A (public Ephemeral Key)

B (public Ephemeral Key)

u

M1 = H(A,B,K)

x = H(s,p)

A = g^a

S = (B - g^x) ^ (a + ux)

calculate
random a

calculate
random b

K = H(S)K = H(S)

S = (Av̂ u) ^ b

calculate
random u

M2 = H(A,m1,K)

B = v + g^b

retrieve {U,s,v}

Figure 3. SRP protocol handshake

In first phase [3], the client sends to the server, its
username (U). Then the server looks up in its database
for the password verifier (v) and the client salt (s). The
retrieved salt (s) will be sent across the network to the
client. The client salt (s) is randomly generated and the
verifier (v) is calculated when the password is stored in
the database.

After receiving the client salt it computes a private
key (x). This private key is calculated using a one-way
hashing function (H) using as input the salt(s) and the
password (p). Then the client generates the ephemeral
private key (a) and the server calculates its ephemeral
private key (b); both keys are generated randomly and
not publicly revealed. Using the generator (g) and the
ephemeral private key (a), the client calculates its
public ephemeral key (A).

In order to exchange its private ephemeral key (B)
with the client the server calculates it using the verifier
(v) retrieved from the password database, the generator
(g) and its private key (b).

Then the client and the server exchange theirs public
ephemeral keys.

Using different methods and the public keys
exchanged, both, the client and the server, calculates a
session key (S), if the password is correct both keys
will match.

Both sides hash the session key (S) into a
cryptographically strong session key (K).

To show an evidence that the client has the correct
session key, it computes the first match value (M1) and
send it to the server. Then, the server computes this
match value (M1) himself and verify if it matches with
the client’s value.

If values match, the server calculates the second
match value (M2) as an evidence that he also has the
correct strong session key.

Finally the second match value (M2) is received by
the client. The client calculates the second match value
himself and if both values are equal the client will be
sucessfully authenticated.

Once the user is authenticated, an open secure
session could be established for the communications.

5. Web Service Access Control

Before proposing the solution two basic goals were
stated: first, the Secure Remote password protocol
should be extended and converted to the Web Service
way of work and second, the solution should be simple,
and easy to be deployed, even with working Web
Services that does not provides yet an authentication
mechanism.

Considering the goals and the technical
characteristics of SOAP, AXIS and SRP, the following
solution was proposed:

Web Service
Consumer

SrpClientHandler

SrpHandler

Authentication WS
Server

SrpServerService

Targeted
Service

SrpPasswordDbSrpPasswordDb

{user,salt,verifier}

Figure 4. Authentication Handlers

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04)
0-7695-2225-4/04 $ 20.00 IEEE Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:25:14 UTC from IEEE Xplore. Restrictions apply.

In the solution proposed an AXIS handler
(SrpClientHandler) will be added in the Web Service
consumer message flow.

This handler will be part of the global request chain
of this consumer, indicating that every time that this
consumer requests a service, this handler will be
executed before sending its request.

After being called, this handler will add in the
original SOAP message a specific header block.

This header block will contain the username and the
password that will be used in the authentication
process, as shown bellow:
<soapenv:Header>

<srpAuth:SrpAuthentication>
<SprAuthenticationRequest>

<user>flavio</user>
<password>123</password>

</SprAuthenticationRequest>
</srpAuth:SrpAuthentication>

</soapenv:Header>
Figure 5. SOAP header used in authentication

An important assumption is that that this SOAP
message will be transported on a secure channel. This
can be easily achieved by using Secure Hypertext
Transfer Protocol (HTTPS) in point-to-point
communication between the SrpClientHandler and
SrpHandler.

In the same way a handler will be added in the
global handler chain of the targeted Web Service.

By doing this, every time this server receives a
request, this handler, named SrpHandler, will be
invoked before the SOAP request processing.

This handler will do the inverse process as it is the
SrpClientHandler peer, in other words, it will catch the
message and then it will retrieve the header block
added by the peer, initially, in the message.

To perform this task SrpHandler will receive a
MessageContext object. This object contains the
modified SOAP message.

SrpHandler will verify whether the header block is
valid and if it contains the necessary information to
authenticate the client.

In the presence of error during this processing or
invalid authentication information the handler will
throw a <soap:Fault> message and the processing will
be aborted.

Getting that the header is valid, SrpHandler will
then starts the SRP protocol handshaking to verify
whether the access will or not be granted.

In the proposed solution, the other peer, which will
perform the server side of the SRP protocol, will be
another Web Service, so this peer-to-peer
communication will be done using SOAP messages, as

well.
Figure 6 shows the messages that are exchanged
between SrpHandler and SrpServerService.

The exchanged messages are the basis of SRP
protocol and each time the handshake takes place
different parameter values are used. This handshake
cannot be reproduced elsewhere.

If the information initially received by the
SrpHandler is correct the last handshake operation –
verify(m2,m2_cli) – will succeed and the authentication
handler will authenticate the user.

By doing this, the SOAP message that was
intercepted by this handler will continue its message
path and will reach the targeted service.

In the presence of problem during the authentication
process SrpHandler will throw a <soap:Fault> and the
original request will be blocked.

verifiy(m2_cli,m2)

:SrpHandler :SrpServerService

getPublicKeyB()

getSecretKeyB()

:SrpPasswordDb

getSrpPassword(user)

getVerifier()

getSessionKey()

getRandomU()

getPrivateKeyX()

getSecretKeyA()

getMatch1()

setPublicKeyA()

setMatch1()

getMatch2()

getSalt(user)

getSessionKey()

verifiy(m1,m1_cli)

getMatch2()

Figure 6. Authentication Web Service calls

The communication between SrpHandler object and
SrpServerService shown in Figure 6 represents, indeed,
Web Service calls. SrpHandler is located at the targeted
Web Service and SrpServeService is located at another
Web Service host.

To perform this operations the SRP protocol had to
be extended, and its handshake is now performed

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04)
0-7695-2225-4/04 $ 20.00 IEEE Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:25:14 UTC from IEEE Xplore. Restrictions apply.

between these two Web Services using SOAP
messages.

These services and the protocol primitives were
defined using the WSDL (Web Service Description
Language)[7].

These service definitions describe completely the
Web Service and protocol primitives that are Web
Service calls.
Although, the proposed idea was based on Apache
AXIS architecture, the target Web Service can be any
Web Service platform. I.e., this authentication scheme
can be added to any Web Service, using an Apache
AXIS Web Service as the authentication authority.

6. Handler Tests and Results

The proposed solution was deployed in order to
verify if it was based on a correct approach and to test
how this handler could be added to a running Web
Service. It was deployed using the latest stable AXIS
engine available.

To work with SRP protocol an object database had
to be created. This database (SrpPasswordDb) contains
objects that specify the authentication information used
by SRP (see Figure 3). These objects contain the user
name (U), the user salt (s) and a password verifier (v).
This information will be added to the database when a
new user is added to the system or when its password is
modified. A simple application was created just for the
database maintenance.

Table 1 shows how a “weak” password as “123”
was stored in this database:

Table 1. Password stored information
Username (U) flavio

Salt (s) 1495651668

Verifier (v)

794475833261338707663717023
610959323625378500793796898
490895902743448916587325152
144362360149735177660234988
614249774914394619824624673
472788571207151515345373469
522257461663172628582595309
974034591083070888771145141
425854549397348237012950496
970919285196756046873246483
705961449828584583135796507
92550023389

When a message arrives to the Web Services its
handler (SrpHandler) starts the SRP protocol
handshake. In the following lines the messages used to
accomplish a successful authentication will be shown.

Initially the user salt is required, below is a
simplified view of the request and response of this Web
Service call:

<soapenv:Body>
<ns1:getSalt>

<user xsi:type="xsd:string">flavio</user>
</ns1:getSalt>

</soapenv:Body>
Figure 7. GetSalt SOAP call request

<soapenv:Body>
<ns1:getSaltResponse>

<salt xsi:type="xsd:string">1495651668</salt>
</ns1:getSaltResponse>

</soapenv:Body>
Figure 8. GetSalt SOAP call response

Then SrpHandler sends to the authentication Web
Service (SrpServeService) the calculated public
ephemeral key A:
<soapenv:Body>

<ns1:setPublicKeyA>
<A xsi:type="xsd:string">70527425795…

</ns1:setPublicKeyA>
</soapenv:Body>

Figure 9. setPublicKeyA SOAP request

Then this handler sends a request to retrieve the
server calculated ephemeral public key B. The XML
code below shows the server response SOAP message:
<soapenv:Body>

<ns1:getPublicKeyBResponse>
<B xsi:type="xsd:string">11518396...

</ns1:getPublicKeyBResponse>
</soapenv:Body>

Figure 10. getPublicKeyB response

The handler (SrpHandler) retrieves the random
scrambling parameter (u). This value is used for both
peers to compute the session key (S) and the strong
session key (K), below is the server response:
<soapenv:Body>

<ns1:getRandomUResponse>
<u xsi:type="xsd:string">413525534</u>

</ns1:getRandomUResponse>
</soapenv:Body>

Figure 11. getRandomU response

After the computing of the session keys, SrpHandler
calculates the match value (M1) and sends this value to
the authentication server:
<soapenv:Body>

<ns1:setMatch1>
<m1 xsi:type="xsd:string">132065658659...</m1>

</ns1:setMatch1>
</soapenv:Body>

Figure 12. setMatch1 request

In this example the value (M1) of both the handler
(Srphandler) and the server (SrpServeService) will
match.

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04)
0-7695-2225-4/04 $ 20.00 IEEE Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:25:14 UTC from IEEE Xplore. Restrictions apply.

Then as a final step the handler request the second
math value (M2) from the server.

The received second match value (M2) will then be
compared with a second match value calculated by the
SrpHandler and both values match, indicating that the
authentication process occurred in a successful way.
At this time the handler (SrpHandler) will them finish
its work and the original request sent by the client will
continue its path way to the target service.

6.1. Latency time
The latency time of the proposed solution was

compared to a system without authentication
Figure 13 shows the measured times. As expected

SRP protocol introduces an extra processing time. This
time was about 3.41 times higher.

Figure 13. Latency time in milliseconds

In order to measure time required only for the
authentication system proposed the network round-trip
was not considered, so the same machine hosted the all
the components showed in figure 4 – the client, the
authentication server and the desired service as well.

7. Concluding Remarks

This paper presents a solution to get an effective
access control to Web Services.

SOAP messages were used to extend SRP protocol,
and, as far as we know, this is the first implementation
of SRP over SOAP protocol.

The extension of SRP protocol presented is easy to
be deployed and all the information was treated as a
string element ("xsd:string"), thus, getting this solution
with a high level of interoperability between the most
distinct Web Services servers.

In this paper we have used SRP-3 [3] protocol to
implement the handshakes. The latency time achieved
in the round-trip of the service was almost 3.5 (three
point five) times greater then the use of the system
without the proposed solution. This result was expected
concerning the extra processing added to the system. A
right improvement to be done is use SRP-6 [11], which
contains refinements in SRP protocol. In this version of
SRP, the protocol handshake uses less web service
calls, thus, the latency time tends to be shorter.

An important contribution is the fact that the
authentication server is a Web Service as well, in this
manner the solution can be easily added and reached in
order to provides the access control to a Web Service
and even to legacy applications.

The strong session Key (K) created by the SRP
protocol can be used as well, to provide a session
identifier in order to create a session control of an
authenticated user.

Although the tests were made using Apache AXIS
the client handler (SrpClientHandler) can be
constructed to any available Web Service engine,
leveraging security and making Web Service access
control, an essential and critical feature, suitable to any
existent deployed Web Service.

8. References

[1] Booth, D. et al. Web Services Architecture. World Wide
Web Consortium Working Draft, 2003. [cited in April
22, 2004]. Available from:
<http://www.w3.org/TR/2003/WD-ws-arch-20030808>.

[2] AXIS. Axis User’s Guide. [cited in April 22, 2004].
Available from: <http://ws.apache.org/axis/java/user-
guide.html>.

[3] Wu. T. The Secure Remote Password Protocol. In
Proceedings of the Internet Society Network and
Distributed System Symposium, pages 97-111, March
1998.

[4] Skonnard, Aaron. Essential XML Quick Reference: A
Programmer’s Reference to XML, XPath, XSLT, XML
Schema, SOAP, and More, Indianapolis: Pearson
Education Inc., 2002.

[5] Englander, R. Java and SOAP, California: O'Reilly &
Associates Inc, 2002.

[6] AXIS. Axis Architecture Guide. [cited in February 22,
2004]. Available from:
<http://ws.apache.org/axis/java/architecture-
guide.html>.

[7] Christensen, E. et al. Web Services Description Language
(WSDL) 1.1. World Wide Web Consortium Note. [cited
in April 22, 2004]. Available from
<http://www.w3.org/TR/wsdl>

[8] Booth, D. et al. Web Services Architecture. World Wide
Web Consortium Note. [cited in April 22, 2004].
Available from <http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211>

[9] Hirsch, F. et al XML Key Management (XKMS 2.0)
Requirements. World Wide Web Consortium Note.
[cited in April 22, 2004]. Available from
<http://www.w3.org/TR/xkms2-req>

[10] Hartman, B. et al. Mastering Web Services Security,
Indianapolis: Wiley Publishing Inc., 2003.

[11] Wu, T., "SRP-6: Improvements and Refinements to the
Secure Remote Password Protocol", October 2002.

Proceedings of the 2004 IEEE International Conference on Services Computing (SCC’04)
0-7695-2225-4/04 $ 20.00 IEEE Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on August 22,2025 at 19:25:14 UTC from IEEE Xplore. Restrictions apply.

	footer1:

