
Enhancing Student
Understanding of Formal

Method through Prototyping

Andreea Barbu and Fabrice Mourlin

dreea@gmx.net and Fabrice.Mourlin@wanadoo.fr

LACL, University Paris XII, France

Plan
Academic context
Introduction
Architecture of our teaching approach

Related work
Context and tool

Direct application of formal method
Case studies

Examples
SLP

Conclusion

Academic Context
Subject : formal methods
for mobility
Objectives:

To model mobile agent
systems
To express properties
about MA system
To generate and to enrich
executable prototype
To have unit tests about it

Executable
prototype

Test case
generation

Formal
specification

Interpreter of
prototype with

annotation

Test case
annotation

Code mobile
generation

Introduction

Message to students:
Formal methods are necessary in achieving
correct software

software that can be proven to fulfill its
requirements.

Formal specifications are unambiguous and analyzable.
Building a formal model improves understanding.
The modeling of no determinism, communication, mobility,
and other features in formal steps, allows design and
implementation decisions to be made when most suitable.

Introduction
Answer from students

Formal methods are not suitably supported with
development tools,
They did not use or observe formal methods in their own
industrial experience

Formal Methods are not widely used in software
development.

Formal methods are based on mathematical
manipulation and reasoning,

They are not confident and skilled in the use of
mathematical techniques
The previous results of these courses are not well
known,

Architecture of our teaching
approach

Mobility description:
Formal languages: mobile Unity, HO-Pi Calculus,
COOPN2, Ambient calculus or join calculus, M-
nets, etc
Tools (Related work):

mobility WorkBench (MWB for polyadic pi calculus),
COOPN plug-in (for Eclipse and NetBeans)
Bplug (Eclipse plug in for B specification)
Mython (Python tool for M-net specifier),

Structure
Tool = support of experience exchange

= ideal observer of student test

Architecture of our teaching
approach

2002 first version of our plate form: HOPiTool
Formal language : Higher Order Pi Calculus
Key concepts :

Agent definition,
Higher order expression,
Exchange of terms between agents,
Operational semantics is clearly defined
Observations and equivalences are already defined,
Sorts and checking are also defined

Main constraints :
Open plate form for student extensions
Network tool for the managing of the agent hosts

Architecture of our teaching
approach

Context of the course
Paris 12 university
(computer science
department), 35 hours
Formal specification to
master degree Computer
Science students,
30 students
10 Lessons, 1 project per
student, a weekly
evaluation, 1 exam,

Structure of the course
an explanation of formal
feature
(i.e. deployment of an agent
in a graph, etc.)

1,5 hour
direct application of previous
subjects
(i.e. the specification of a
system based agents which
control telnet protocol and
forward information)

1,5 hour – 2 hours
subject of the evaluation

Direct application of formal
method

From specific requirements to specification
Student writes its own specifications
A student agent checks the results of each students
through interactions with a teacher agent,

Report is generated for each contribution

HOPiTool is deployed on all the workstations of this teaching network

Direct application of formal
method

From specification to prototype (if previous step is OK)
Student generates code through HOPiTool and add some
behavioral features (watch point, I / O, etc),

Compilation, deployment and configuration
Execution of the agents of the student system
interaction with the agents of the teacher system.

Teacher plat form

student1 plat form student2 plat form student3 plat form

1 2 3

Agents of teacher module

Agents of
student3
module

All the interactions are isolated

HOPiTool is not deployed on
the workstations

Direct application of formal
method

Observations:
For students

Interpretation of a
scenario
Application of
observations (Parrow,
Sangiorgi)
Construction of inference
tree for any agents
Report about the firing
event

Observations
For teacher

Timing of the student work,
Bug tracking
Measure about all the result
of a student group
(statistics on difficulties, etc.
Definition of new metrics :
equivalence relations, etc.

Case studies
Student project examples

SLP protocol simulation
(Service Location Protocol)

Intrusion detection system
Login protocol is observed
by agent which filters users

Mobile computing
Pi number calculus with
BBP formula
Parallel bubble sort
Matrix computation

Teacher deliverable
Requirements
A part of specification

The teacher agent
A register for the
subscription of the students

All time events are saved
A teacher module of agents

Agents for the case study
Agents for student
evaluation

Case studies
Service Location Protocol

Subject: agent exportation
and local activity
Requirement: 5 agents are
defined

3 agents are specified by
teacher (DA, DAMem,
IdleDAMem)
2 agents have to be
specified by student (SA,
UA)

First evaluation of specifications

HOPiTool code generation
Java, Jini API

Deployment over the
network:

Lookup service are started,
Teacher agent module is
started
Student agent module is
started

Second evaluation of multi
agent module

SLP Case study
Scenario

Set of interactions between SA and DA
SA wants to publish a print service and a mail service (for the
session) : first request
Sa sends both services to DA and receives acknowledge

Set of interactions between UA and DA
UA looks for a print service : first request
UA receives a service from SA and uses it for printing a quiz

() () ()() ()() ()SrvRqstUAfnameSSrvRplySrvRplymsgprServiceSrvRplySrvRplySrvRqstUA .,.,int,ν=

() () ()
() () ()()()()

()() ()() ()SrvAckSrvRqstgSrvDASrvRplynameSrvRplyfnameSSrvRqst
SrvAckfnameSinputfnameSgSrvSrvAckSrvRqstgSrvDA
SrvAckgSrvSASrvAckmsgprServicegSrvSrvAckgSrvSA

,,Re..,,
.,.,.Re,,Re
,Re..int,(Re,Re

=
=

SLP Case study
From specification

Mobile code is generated
Unit test cases are
defined (JUnit and
JDepend)
Student documentation is
built

From student mobile code
Services are published into
global lookup service of
HOPiTool
Results of test cases are
saved

DA1

UA1

1 2 3

SA1

print1

print1

UA2

SA2

UA3

SA3

mail2

mail2

Conclusion
Our teaching approach

Direct feedback : direct measure about student understanding
Same tool is used for direct application and final evaluation
Student projects bring new contribution to specification
repository
Teacher contribution improves HOPiTool

new formal observations
New features like test cases or replay.

Tier-3 : 3 students work on Huntsman project
detection and denial of intruder attacks
www.tier-3.com

IDS – Architecture

BBP

∑
∞

=








+
−

+
−

+
−

+
=

0 68
1

58
1

48
2

18
4

16
1

i
i iiii

π

Pi number formula

4 agents: one per contribution

A collector agent picks up each result and computes the value of the iteration
A iterator agent computes le global approximation of all the collector

