
Calculating from Alloy relational models

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

IFIP WG2.1 meeting #64
March-April 2009

Weltenburg, Germany

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Model driven engineering

• MEDEA project — High Assurance MDE using Alloy

• MDE is a clumsy area of work, full of approaches, acronyms,
notations.

• UML has taken the lead in unifying such notations, but it is
too informal to be accepted as a reference approach.

• Model-oriented formal methods (VDM, Z) solve this
informality problem at a high-cost: people find it hard to
understand models written in maths (cf. maths illiteracy if not
mathphobic behaviour).

• Alloy [2] offers a good compromise — it is formal in a
light-weight manner.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Inspiration

• BBI project [3]: Alloy
re-engineering of a
well-tested, very well written
non-trivial prototype in
Haskell of a real-estate
trading system similar to the
stocks market (65 pages in
lhs format) unveiled 4 bugs
(2 invariant violations + 2
weak pre-conditions)

• Alloy and Haskell
complementary to each
other

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Alloy

What Alloy offers

• A unified approach to modeling based on the notion of a
relation — “everything is a relation” in Alloy.

• A minimal syntax (centered upon relational composition) with
an object-oriented flavour which captures much of what
otherwise would demand for UML+OCL.

• A pointfree subset.

• A model-checker for model assertions (counter-examples
within scope).

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Alloy

What Alloy does not offer

• Complete calculus for deduction (proof theory)

• Strong type checking

• Dynamic semantics modeling features

Opportunities

• Enrich the standard Alloy modus operandi with relational
algebra calculational proofs

• Design an Alloy-centric tool-chain for high assurance
model-oriented design

Thus the MEDEA project (submitted).

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Alloy

What Alloy does not offer

• Complete calculus for deduction (proof theory)

• Strong type checking

• Dynamic semantics modeling features

Opportunities

• Enrich the standard Alloy modus operandi with relational
algebra calculational proofs

• Design an Alloy-centric tool-chain for high assurance
model-oriented design

Thus the MEDEA project (submitted).

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Relational composition

• The swiss army knife of Alloy

• It subsumes function application and “field selection”

• Encourages a navigational (point-free) style based on pattern
x .(R.S).

• Example:

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
me.parent.parent = {(P4)}
Person.parent = {(P2),(P3),(P4)}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

When “everything is a relation”

• Sets are relations of arity 1, eg.
Person = {(P1), (P2), (P3), (P4)}

• Scalars are relations with size 1, eg. me = {(P1)}
• Relations are first order, but we have multi-ary relations.

• However, Alloy relations are not n-ary in the usual sense:
instead of thinking of R ∈ 2A×B×C as a set of triples (there is
no such thing as tupling in Alloy), think of R in terms of
currying:

R ∈ (B → C)A

(More about this later.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Kleene algebra flavour

Basic operators:

. composition
+ union
^ transitive closure
* transitive-reflexive closure

(There is no recursion is Alloy.) Other relational operators:

~ converse
++ override
& intersection
- difference
-> cartesian product
<: domain restriction
:> range restriction

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Relational thinking

• As a rule, thinking in terms of poinfree relations (this includes
functions, of course) pays the effort: the concepts and the
reasoning become simpler.

• This includes relational data structuring, which is far more
interesting than what can be found in SQL and relational
databases.

Example — list processing

• Lists are traditionally viewed as recursive (linear) data
structures.

• There are no lists in Alloy — they have to be modeled by
simple relations (vulg. partial functions) between indices and
elements.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Lists as relations in Alloy

sig List {
map : Nat -> lone Data

}

sig Nat {
succ: one Nat

}

one sig One in Nat {}

Multiplicities: lone (one or less), one (exaclty one)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Relational data structuring

Some correspondences:

list l relation L

sorted monotonic
noDuplicates injective
map f l f · L
zip l1 l2 〈L1, L2〉
[1, . . .] id

where

• id is the identity (equivalence) relation

• the “fork” (also known as “split”) combinator is such that
(x , y)〈L1, L2〉z means the same as xL1z ∧ yL2z

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Haskell versus Alloy

Pointwise Haskell:

findIndices :: (a -> Bool) -> [a] -> [Int]
findIndices p xs = [i | (x,i) <- zip xs [0..], p x]

Pointfree (PF):

findIndices p L 4 π2 · (Φp × id) · 〈L, id〉 (1)

where

• π2 is the right projection of a pair

• L× R = 〈L · π1,R · π2〉
• Φp ⊆ id is the coreflexive relation (partial identity) which

models predicate p (or a set)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Haskell versus Alloy

• What about Alloy? It has no pairs, therefore no forks
〈L,R〉. . .

• Fortunately there is the relational calculus:

π2 · (Φp × id) · 〈L, id〉

⇔ { ×-absorption }

π2 · 〈Φp · L, id〉

⇔ { ×-cancelation }

δ (Φp · L)

where δ R = R◦ · R ∩ id , for R◦ the converse of R.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Haskell versus Alloy

Two ways of writing δ (Φp · L) in Alloy, one pointwise

fun findIndices[s:set Data,l:List]: set Nat {
{i: Nat | some x:s | x in i.(l.map)}

}

and the other pointfree,

fun findIndices[s:set Data,l:List]: set Nat {
dom[l.map :> s]

}

the latter very close to what we’ve calculated.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Beyond model-checking: proofs by calculation

Suppose the following property

(findIndices p) · r? = findIndices (p · r) (2)

is asserted in Alloy:

assert FT {
all l,l’:List, p: set Data, r: Data -> one Data |

l’.map = l.map.r =>
findIndices[p,l’] = findIndices[r.p,l]

}

and that the model checker does not yield any counter-examples.
How can we be sure of its validity?

• Free theorems — the given assertion is a corollary of the free
theorem of findIndices, thus there is nothing to prove (model
checking could be avoided!)

• Wishing to prove the assertion anyway, one calculates:

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Trivial proof

(findIndices p) · r? = findIndices (p · r)

⇔ { list to relation transform }

δ (Φp · (r · L)) = δ (Φp·r · L)

⇔ { property Φf ·g = δ (Φf · g) }

δ (Φp · (r · L)) = δ (δ (Φp · r) · L)

⇔ { domain of composition }

δ (Φp · (r · L)) = δ ((Φp · r) · L)

⇔ { associativity }

True

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Realistic example — Verified FSystem (VFS)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

VFS in Alloy (simplified)

The system:

sig System {
fileStore: Path -> lone File,
table: FileHandle -> lone OpenFileInfo

}

Paths:

sig Path {
dirName: one Path

}

The root is a path:

one sig Root extends Path {
}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Alloy diagrams for FSystem

Simplified: Complete:

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Binary relation semantics

Meaning of signatures:

sig Path {
dirName: one Path

}

declares function Path
dirName// Path .

sig System {
fileStore: Path -> lone File,

}

declares simple relation System × Path
fileStore/ File .

(NB: a relation S is simple, or functional, wherever its image
S · S◦ is coreflexive. Using harpoon arrows ⇀ for these.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Binary relation semantics

• Since

(A× B) ⇀ C ∼= (B ⇀ C)A

fileStore can be alternatively regarded as a function in
(Path ⇀ File)System, that is, for s : System,

Path
(fileStore s) / File

• Thus the “navigation-styled” notation of Alloy: p.(s.fileStore)
means the file accessible from path p in file system s.

• Similarly, line table: FileHandle -> lone OpenFileInfo
in the model declares

FileHandle
(table s) / OpenFileInfo

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Multiplicities in Alloy + taxonomy

(courtesy of Alcino Cunha, the Alloy expert at Minho)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Terminology reminder

Topmost criteria:

binary relation

VVVVVVVVVVVVVVVVVV

KKKKKKKKKK

ssssssssss

iiiiiiiiiiiiiiiiii

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R
img R surjective R simple R

kerR = R◦ · R
img R = R · R◦

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

From Alloy to relational diagrams

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File

Path

dirName

OO

where

• table s, fileStore s are simple relations

• the other arrows depict functions

(diagram in the Rel allegory to be completed)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Model constraints

Referential integrity:

Non-existing files cannot be opened:

pred ri[s: System]{
all h: FileHandle, o: h.(s.table) |

some (o.path).(s.fileStore)
}

Paths closure:

Mother directories exist and are indeed directories:

pred pc[s: System]{
all p: Path |

some p.(s.fileStore) =>
(some d: (p.dirName).(s.fileStore) |

d.fileType=Directory)
}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

2nd part of Alloy FSystem model

sig File {
attributes: one Attributes

}

sig Attributes{
fileType: one FileType

}

abstract sig FileType {}
one sig RegularFile extends FileType {}
one sig Directory extends FileType {}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Updated binary relational diagram

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File
attributes// Attributes

fileType
��

Path

dirName

OO

FileType

where

• table s, fileStore s are simple relations

• all the other arrows depict functions

Constraints: still missing

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Updating diagram with constraints

Complete diagram, where M abbreviates table s, N abbreviates
fileStore s and k is the “everywhere-k” function:

OpenFileDescriptor

path

��

FileHandle
Mo

>
��

⊆

Path
N

/ File
N◦oo attributes// Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileType

Constraints:

• Top rectangle is the PF-transform of ri (referential integrity)

• Bottom rectangle is the PF-transform of pc (path closure)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

PF-constraints in symbols

Referential integrity:

ri(M,N) 4 path ·M ⊆ N◦ · > (3)

which is equivalent to

ri(M,N) 4 ρ (path ·M) ⊆ δ N

where ρ R = δ R◦. PF version (3) also easy to encode in Alloy

pred riPF[s: System]{
s.table.path in (FileHandle->File).~(s.fileStore)

}

thanks to its emphasis on composition.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

PF-constraints in symbols

Referential integrity:

ri(M,N) 4 path ·M ⊆ N◦ · > (3)

which is equivalent to

ri(M,N) 4 ρ (path ·M) ⊆ δ N

where ρ R = δ R◦. PF version (3) also easy to encode in Alloy

pred riPF[s: System]{
s.table.path in (FileHandle->File).~(s.fileStore)

}

thanks to its emphasis on composition.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

PF-constraints in symbols

Paths closure:

pc N 4 Directory · N ⊆ fileType · attributes · N · dirName (4)

recall diagram:

Path
N

/ File
attributes// Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileType

Again thanks to emphasis on composition, this is easily encoded
in PF-Alloy:

pred pcPF[s: System]{
s.fileStore.(File->Directory) in

dirName.(s.fileStore).attributes.fileType
}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

PF-constraints in symbols

Paths closure:

pc N 4 Directory · N ⊆ fileType · attributes · N · dirName (4)

recall diagram:

Path
N

/ File
attributes// Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileType

Again thanks to emphasis on composition, this is easily encoded
in PF-Alloy:

pred pcPF[s: System]{
s.fileStore.(File->Directory) in

dirName.(s.fileStore).attributes.fileType
}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

PF-ESC by calculation

• Models with constraints put the burden on the designer to
ensure that operations type-check (read this in
extended-mode), that is, constraints are preserved across the
models operations.

• Typical approach in MDE: model-checking

• Automatic theorem proving also considered in safety-critical
systems

• However: convoluted pointwise formulæ often lead to failure.

How about doing these as “pen & paper” exercises?

• PF-formulæ are manageable, this is the difference.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Example of PF-ESC by calculation

Consider the operation which removes file system objects, as
modeled in Alloy:

pred delete[s’,s: System, sp: set Path]{
s’.table = s.table
s’.fileStore = (univ-sp) <: s.fileStore

}

that is,

delete S (M,N) 4 (M,N · Φ(6∈S)) (5)

where Φ(6∈S) is the coreflexive associated to the complement of S .

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Intuitive steps

Intuitively, delete will
put the

• ri constraint at
risk once we
decide to delete
file system
objects which
are open

• pc constraint at
risk once we
decide to delete
directories with
children.

(Model-checking in Alloy will easily spot these flaws, as checked
above by a counter-example for the latter situation.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Intuitive steps

We have to guess a pre-conditions for delete. However,

• How can we be sure that such (guessed) pre-condition is good
enough?

• The best way is to calculate the weakest pre-condition for
each constraint to be maintained.

• In doing this, mind the following properties of relational
algebra:

h · R ⊆ S ⇔ R ⊆ h◦ · S (6)

R · Φ = R ∩ > · Φ (7)

f · R ⊆ > · S ⇔ R ⊆ > · S (8)

For improved readability, we introduce abbreviations
ft := fileType · attributes and d := Directory , and calculate:

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Calculational steps

pc(delete S (M,N))

⇔ { (5) and (4) }

d · (N · Φ(6∈S)) ⊆ ft · (N · Φ(6∈S)) · dirName

⇔ { shunting (6) }

d · N · Φ(6∈S) · dirName◦ ⊆ ft · N · Φ(6∈S)

⇔ { (7) }

d · N · Φ(6∈S) · dirName◦ ⊆ ft · N ∩ > · Φ(6∈S)

⇔ { ∩-universal ; shunting }

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Ensuring paths closure

{
d · N · Φ(6∈S) ⊆ ft · N · dirName
d · N · Φ(6∈S) ⊆ > · Φ(6∈S) · dirName

⇔ { > absorbs d (8) }
d · N · Φ(6∈S) ⊆ ft · N · dirName︸ ︷︷ ︸

weaker than pc(N)
N · Φ(6∈S) ⊆ > · Φ(6∈S) · dirName︸ ︷︷ ︸

wp

Back to points, wp is:

〈∀ q : q ∈ dom N ∧ q 6∈ S : dirName q 6∈ S〉

⇔ { predicate logic }

〈∀ q : q ∈ dom N ∧ (dirName q) ∈ S : q ∈ S〉

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Ensuring paths closure

In words:

if parent directory of existing path q is marked for
deletion than so must be q.

Translating calculated weakest precondition back to Alloy:

pred pre_delete[s: System, sp: set Path]{
all q: Path |

some q.(s.fileStore) &&
q.dirName in sp => q in sp

}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Back to the diagram

PF-encoding of model constraints in terms of relational
composition has at least the following advantages:

• it makes calculations easier (rich algebra of R · S)

• it makes it possible to draw constraints as rectangles in
diagrams, recall

OpenFileDescriptor

path

��

FileHandle
Mo

>
��

⊆

Path
N

/ File
N◦oo attributes// Attributes

fileType

��

⊆
Path

N
/

dirName

OO

File
Directory

// FileType

• it enables the “navigation-styled” notation of Alloy

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Constraint bestiary

• Experience in formal modeling tells that designs are
repetitive in the sense that they instantiate (generic)
constraints whose ubiquitous nature calls for classification

• Such “constraint patterns” are rectangles, thus easy to draw
and recall

• In the next slides we browse a little “constraint bestiary”
capturing some typical samples.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Constraints are Rectangles

• All of shape

R · I ⊆ O · R

• Example: referential integrity in general, where N is the
offer and M is the demand :

ρ (∈F ·M) ⊆ δ N ⇔ F B

∈F

��

A
Mo

>
��

⊆

B
N

/ C
N◦oo

⇔ ∈F ·M ⊆ N◦ · >

M, N simple. ∈F is a membership relation.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Constraints are Rectangles

• Example: M, N domain-disjoint

M · N◦ ⊆ ⊥

• Example: simple M, N domain-coherent

M · N◦ ⊆ id

• Example: M domain-closed by R:

M · R◦ ⊆ > ·M

(path-closure constraint instance of this)

• Example: range of R in Φ

R ⊆ Φ · R

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Experience and Current work

• Defining a simple pointfree binary relational semantics for
Alloy [1]

• Studying the translation to/from Haskell and, in particular,
how to port counterexamples to QuickCheck.

• Designing an Alloy-centric tool-chain including a (pointfree)
extended static checker, translators to Haskell, UML and SQL.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Closing

Why the UML+OCL? Why ERDs?

• What one draws in UML and ERDs can be captured by binary
relational diagrams — not only the class/entity attributive
structure + relationships but also the constraints which one
normally can’t depict at all

• Drawing a constraint as a rectangle means it’s well
understood, and that calculations will be easier to carry out
(run away from logical ∧ if you can!)

• Rectangles nicely encoded in plain PF-Alloy or hybrid
navigation-styled Alloy

As Alan Perlis once wrote down:

“Simplicity does not precede complexity, but follows it.”

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up

Marcelo F. Frias, Carlos G. Lopez Pombo, Gabriel A. Baum,
Nazareno M. Aguirre, and Thomas S.E. Maibaum.
Reasoning about static and dynamic properties in alloy: A
purely relational approach.
ACM Trans. Softw. Eng. Methodol., 14(4):478–526, 2005.

D. Jackson.
Software abstractions: logic, language, and analysis.
The MIT Press, Cambridge Mass., 2006.
ISBN 0-262-10114-9.

Joost Visser.
Real estate exchange.
Technical report, DI/UM , Braga, Jan 2007.
PortoDigital – SEC-11. Confidential.

	Context
	Alloy
	Haskell vs Alloy
	Binary relation semantics
	Constraints
	Rectangles
	Wrapping up

