
Why Adjunctions Matter

WADT 2022

Aveiro, 30th June 2022

J.N. Oliveira

INESC TEC & University of Minho

Motivation Recursion comes in Adjoint recursion Many applications! References

Thanks for inviting!

Algebraic Development Techniques:

• WADT 82 ... – (algebraic) abstract data type trend

• WADT 92 – Hermida fibred adjunctions

• WADT ... – lots of other interesting topics!

Algebraic techniques in this talk:

• Adjunctions as central device for reasoning.

• Galois connections as one of their most useful instances.

Perspective:

• mathematics of program construction.

Motivation Recursion comes in Adjoint recursion Many applications! References

Thanks for inviting!

Algebraic Development Techniques:

• WADT 82 ... – (algebraic) abstract data type trend

• WADT 92 – Hermida fibred adjunctions

• WADT ... – lots of other interesting topics!

Algebraic techniques in this talk:

• Adjunctions as central device for reasoning.

• Galois connections as one of their most useful instances.

Perspective:

• mathematics of program construction.

Motivation Recursion comes in Adjoint recursion Many applications! References

Why Adjunctions Matter

• For the average programmer, adjunctions are (if known)
more respected than loved.

• However, they are key to explaining many things we do as
programmers.

• I will try to show how practical adjunctions are by revealing
their ”chemistry” in action.

• Starting from Galois connections, their simplest (but quite
interesting) instances, with applications.

Motivation Recursion comes in Adjoint recursion Many applications! References

Inspiration

”My experience has been that
theories are often more
structured and more
interesting when they are
based on the real problems;
somehow they are more
exciting than completely
abstract theories will ever be.”
Donald Knuth (1973)

Motivation Recursion comes in Adjoint recursion Many applications! References

“(...) this was agreed upon and Jim
Thatcher proposed the name ADJ as
a (terrible) pun on the title of the
book that we had planned to write
(...) [recalling] that adjointness is a
very important concept in category

theory (...)”

(Joseph A. Goguen, Memories of ADJ, EATCS nr. 36, 1989)

Motivation Recursion comes in Adjoint recursion Many applications! References

Things come in dichotomies

In everyday life, things come “in pairs”

• good

• bad

• action

• reaction

• the left

• the right

• easy

• hard

In a sense, each pair defines itself:

• one of its elements exists...

• ... because the other also exists, and is opposite to it.

Circularity? We can deal with it.

Motivation Recursion comes in Adjoint recursion Many applications! References

Things come in dichotomies

In everyday life, things come “in pairs”

• good

• bad

• action

• reaction

• the left

• the right

• easy

• hard

In a sense, each pair defines itself:

• one of its elements exists...

• ... because the other also exists, and is opposite to it.

Circularity? We can deal with it.

Motivation Recursion comes in Adjoint recursion Many applications! References

Things come in dichotomies

In everyday life, things come “in pairs”

• good

• bad

• action

• reaction

• the left

• the right

• easy

• hard

In a sense, each pair defines itself:

• one of its elements exists...

• ... because the other also exists, and is opposite to it.

Circularity? We can deal with it.

Motivation Recursion comes in Adjoint recursion Many applications! References

Perfect antithesis

The perfect antithesis (opposition,
inversion) is the bijection or
isomorphism.

For instance, multiplying and dividing
are inverses of each other in IR:

(x / y) ∗ y = x
(x ∗ y) / y = x

Lossless transformations:

B

g

''∼= A

f

gg

{
f (g b) = b
g (f a) = a

(Also “energy preserving”.)

Motivation Recursion comes in Adjoint recursion Many applications! References

Perfect antithesis

The perfect antithesis (opposition,
inversion) is the bijection or
isomorphism.

For instance, multiplying and dividing
are inverses of each other in IR:

(x / y) ∗ y = x
(x ∗ y) / y = x

Lossless transformations:

B

g

''∼= A

f

gg

{
f (g b) = b
g (f a) = a

(Also “energy preserving”.)

Motivation Recursion comes in Adjoint recursion Many applications! References

However, in practice...

jpg2pdf

&&

6∼=

pdf2jpg

dd

jpg2pdf · pdf2jpg 6= id
pdf2jpg · jpg2pdf 6= id

(though our eyes can’t see the difference in most cases...)

Motivation Recursion comes in Adjoint recursion Many applications! References

However, in practice...

jpg2pdf

&&

6∼=

pdf2jpg

dd

jpg2pdf · pdf2jpg 6= id
pdf2jpg · jpg2pdf 6= id

(though our eyes can’t see the difference in most cases...)

Motivation Recursion comes in Adjoint recursion Many applications! References

Lossy inversions

In general, transformations are lossy

{
f (g x) 6 x
a v g (f a)

(1)

in the sense that each “round trip” loses information.

So we have under and over approximations captured by
preorders:

(6)

g

((
(v)

f

hh

(f and g assumed monotonic)

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

We write x
(6) // y (resp.

x
(v) // y) to denote x 6 y (resp.

x v y).

But we drop the orderings, e.g.
x // y , wherever these are clear

from the context.

Arrows enable us to express our reasoning graphically.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.

Motivation Recursion comes in Adjoint recursion Many applications! References

f a g

f a 6 x ⇔ a v g x

• f — lower (aka left) adjoint

• g — upper (aka right) adjoint

(Courtesy of R. Backhouse)
In fact, note the superlatives in

• f a — lowest x such that a v g x

• g x — greatest a such that f a 6 x

Motivation Recursion comes in Adjoint recursion Many applications! References

f a g

f a 6 x ⇔ a v g x

• f — lower (aka left) adjoint

• g — upper (aka right) adjoint

(Courtesy of R. Backhouse)
In fact, note the superlatives in

• f a — lowest x such that a v g x

• g x — greatest a such that f a 6 x

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

Did you say “superlatives”?

We have plenty of these in software requirements:

... the largest prefix of x with at most n elements

(take n x , Haskell terminology)

... the largest number that multiplied by y is at most x

(integer division x ÷ y).

Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

Did you say “superlatives”?

We have plenty of these in software requirements:

... the largest prefix of x with at most n elements

(take n x , Haskell terminology)

... the largest number that multiplied by y is at most x

(integer division x ÷ y).

Motivation Recursion comes in Adjoint recursion Many applications! References

On numeric division

In the reals (IR):

a× y = x ⇔ a = x / y

— an isomorphism.

In the natural numbers (IN0):

a× y 6 x ⇔ a 6 x ÷ y

— a Galois connection.

x y
... x ÷ y

x ÷ y
largest a
such that
a× y 6 x .

Motivation Recursion comes in Adjoint recursion Many applications! References

On numeric division

In the reals (IR):

a× y = x ⇔ a = x / y

— an isomorphism.

In the natural numbers (IN0):

a× y 6 x ⇔ a 6 x ÷ y

— a Galois connection.

x y
... x ÷ y

x ÷ y
largest a
such that
a× y 6 x .

Motivation Recursion comes in Adjoint recursion Many applications! References

The easy and the hard

Whole division specification:

a× y 6 x ⇔ a 6 x ÷ y

that is:

a ×y︸︷︷︸
f

6 x ⇔ a 6 x ÷y︸︷︷︸
g

that is:

(×y) ` (÷y)

Hard (÷y) explained by easy (×y).

Motivation Recursion comes in Adjoint recursion Many applications! References

The easy and the hard

Another example:

take n xs should yield the longest possible prefix of xs
not exceeding n in length.

Specification:

length ys 6 n ∧ ys v xs︸ ︷︷ ︸
easy

⇔ ys v take n xs︸ ︷︷ ︸
hard

(3)

— another GC.

Motivation Recursion comes in Adjoint recursion Many applications! References

The easy and the hard

Many examples, e.g.

The function takeWhile p xs should yield the longest
prefix of xs whose elements all satisfy predicate p.

and

The function filter p xs should yield the longest sublist
of xs such that all x in such a sublist satisfy predicate p.

NB: assuming the sublist ordering ys � xs such that e.g. "ab" � "acb" holds
but "ab" � "bca" does not hold.

Motivation Recursion comes in Adjoint recursion Many applications! References

Programming from specifications

Can the well-known
implementation

x ÷ y =
if x > y
then 1 + (x − y)÷ y
else 0

be calculated from the
specification

z × y 6 x ⇔ z 6 x ÷ y ?

Ups! Not quite right -
subtratction in IN0 is not
invertible!

No worry — another GC comes
to the rescue:

a	 b 6 x ⇔ a 6 x + b

Motivation Recursion comes in Adjoint recursion Many applications! References

Programming from specifications

Can the well-known
implementation

x ÷ y =
if x > y
then 1 + (x − y)÷ y
else 0

be calculated from the
specification

z × y 6 x ⇔ z 6 x ÷ y ?

Ups! Not quite right -
subtratction in IN0 is not
invertible!

No worry — another GC comes
to the rescue:

a	 b 6 x ⇔ a 6 x + b

Motivation Recursion comes in Adjoint recursion Many applications! References

Indirect equality

Now another brick in the wall (partial orders only):

a = b ⇔ 〈∀ z :: z 6 a⇔ z 6 b〉 (4)

This principle of indirect equality blends nicely with GCs:

z 6 g a

⇔ { ... }

. . . (go to the easy side, do things there and come back)

⇔ { ... }

z 6 ...g ... a′ ...

:: { indirect equality }

g a = ...g ... a′...

Motivation Recursion comes in Adjoint recursion Many applications! References

Indirect equality

Now another brick in the wall (partial orders only):

a = b ⇔ 〈∀ z :: z 6 a⇔ z 6 b〉 (4)

This principle of indirect equality blends nicely with GCs:

z 6 g a

⇔ { ... }

. . . (go to the easy side, do things there and come back)

⇔ { ... }

z 6 ...g ... a′ ...

:: { indirect equality }

g a = ...g ... a′...

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — x ÷ y

Case x > y :

z 6 x ÷ y

⇔ { (×y) a (÷y) and (x 	 y) + y = x for x > y }

z × y 6 (x 	 y) + y

⇔ { (y) a (+y) }

(z × y)	 y 6 x 	 y

⇔ { factoring y works also for 	 }

(z 	 1)× y 6 x 	 y

⇔ { chain the two GCs }

z 6 1 + (x 	 y)÷ y

:: { recursive branch calculated thanks to indirect equality }

x ÷ y = 1 + (x 	 y)÷ y

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — take

Specification GC:

length ys 6 n ∧ ys v xs ⇔ ys v take n xs (5)

Standard implementation (Haskell):

take 0 = []
take [] = []
take (n + 1) (h : xs) = h : take n xs

The same question again: how to derive the implementation of
take from the specification?

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — take

Before that:

We can derive properties of take without knowing its
implementation.

Example:

What happens if we chain two takes in a row?

We calculate

(take m) · (take n)

in the next slide.

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — take

ys v take m (take n xs)

⇔ { GC (5) }

length ys 6 m ∧ ys v take n xs

⇔ { again GC (5) }

length ys 6 m ∧ length ys 6 n ∧ ys v xs

⇔ { min GC: a 6 x ∧ a 6 y ⇔ a 6 x ‘min‘ y }

length ys 6 (m ‘min‘ n) ∧ ys v xs

⇔ { again GC (5) }

ys 6 take (m ‘min‘ n) xs

:: { indirect equality }

take m (take n xs)) = take (m ‘min‘ n) xs

N
o

in
d

u
ct

io
n

(N
o

im
p

le
m

en
ta

ti
on

ye
t!

)

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — take

ys v take m (take n xs)

⇔ { GC (5) }

length ys 6 m ∧ ys v take n xs

⇔ { again GC (5) }

length ys 6 m ∧ length ys 6 n ∧ ys v xs

⇔ { min GC: a 6 x ∧ a 6 y ⇔ a 6 x ‘min‘ y }

length ys 6 (m ‘min‘ n) ∧ ys v xs

⇔ { again GC (5) }

ys 6 take (m ‘min‘ n) xs

:: { indirect equality }

take m (take n xs)) = take (m ‘min‘ n) xs

N
o

in
d

u
ct

io
n

(N
o

im
p

le
m

en
ta

ti
on

ye
t!

)

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — take
Now the implementation (3 cases):

take 0 = []

ys v take 0

⇔ { GC }

length ys 6 0 ∧ ys v
⇔ { length [] = 0 }

ys = []

⇔ { antisymmetry of (v) }

ys v []

:: { indirect equality }

take 0 = []

take [] = []

ys v take []

⇔ { GC }

length ys 6 ∧ ys v []

⇔ { length [] 6 }

ys v []

:: { indirect equality }

take [] = []

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — take
Now the implementation (3 cases):

take 0 = []

ys v take 0

⇔ { GC }

length ys 6 0 ∧ ys v
⇔ { length [] = 0 }

ys = []

⇔ { antisymmetry of (v) }

ys v []

:: { indirect equality }

take 0 = []

take [] = []

ys v take []

⇔ { GC }

length ys 6 ∧ ys v []

⇔ { length [] 6 }

ys v []

:: { indirect equality }

take [] = []

Motivation Recursion comes in Adjoint recursion Many applications! References

Example — take

Finally, the remaining case:

take (n + 1) (h : xs) = h : take n xs

We will need the following fact about list-prefixing:

s v (h : t) ⇔ s = [] ∨ 〈∃ s ′ : s = (h : s ′) : s ′ v t〉 (6)

(More about this later.)

Motivation Recursion comes in Adjoint recursion Many applications! References

ys � take (n + 1) (h : xs)

⇔ { GC (3) ; prefix (6) }

length ys 6 n + 1 ∧ (ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : ys ′ � xs〉)

⇔ { distribution ; length [] 6 n + 1 }

ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : length ys 6 n + 1 ∧ ys ′ � xs〉

⇔ { length (h : t) = 1 + length t }

ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : length ys ′ 6 n ∧ ys ′ � xs〉

⇔ { GC (3) }

ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : ys ′ � take n xs〉

⇔ { fact (6) }

ys � h : take n xs

:: { indirect equality over list prefixing (v) }

take (n + 1) (h : xs) = h : take n xs

Motivation Recursion comes in Adjoint recursion Many applications! References

Nice but...

• Where did we get assumption (6) from?

• How do we calculate from GCs instead of proving from GCs?

Motivation Recursion comes in Adjoint recursion Many applications! References

Galois connections + indirect equality

• S.-C. Mu and J.N. Oliveira.
Programming from Galois
connections. JLAP,
81(6):680–704, 2012.

• P.F. Silva, J.N. Oliveira.
’Galculator’: functional
prototype of a Galois connection
based proof assistant. PPDP
’08, 44–55, 2008.

Galois connections

Motivation Recursion comes in Adjoint recursion Many applications! References

From GCs to adjunctions

Recall a
(6) // b meaning

(a, b) ∈ (6)

that is

(6) (a, b) = True

that is

(6) (a, b) = {(a, b)}

— singleton set made of one of the pairs of relation (6).

Motivation Recursion comes in Adjoint recursion Many applications! References

From GCs to adjunctions

Now compare

(6) (a, b) = {(a, b)}

with something like (broadening scope):

C (a, b) = { ’things that relate a to b in context C’ }

If such “things” have a name, e.g. m, we can write m : a→ b to
indicate their type.

We land into a category — C — where a and b are
objects and m is a morphism.

Motivation Recursion comes in Adjoint recursion Many applications! References

From GCs to adjunctions

Now compare

(6) (a, b) = {(a, b)}

with something like (broadening scope):

C (a, b) = { ’things that relate a to b in context C’ }

If such “things” have a name, e.g. m, we can write m : a→ b to
indicate their type.

We land into a category — C — where a and b are
objects and m is a morphism.

Motivation Recursion comes in Adjoint recursion Many applications! References

Categories

Extremely versatile concept, e.g.

C (a, b) =
{ ’matrices with a-many columns and b-many rows’ }

or

C (a, b) = { ’Haskell functions from type a to type b’ }

or

C (a, b) = { ’binary relations in a× b’ }

Motivation Recursion comes in Adjoint recursion Many applications! References

From preorders to categories

“Dramatic” increase in expressiveness:

Preorder Category
Object pair Morphism
Reflexivity Identity
Transitivity Composition
Monotonic function Functor
Equivalence Isomorphism
Pointwise ordering Natural transformation
Closure Monad
Galois connection Adjunction
Indirect equality Yoneda lemma

The same game, but in the champions league

Motivation Recursion comes in Adjoint recursion Many applications! References

From preorders to categories

“Dramatic” increase in expressiveness:

Preorder Category
Object pair Morphism
Reflexivity Identity
Transitivity Composition
Monotonic function Functor
Equivalence Isomorphism
Pointwise ordering Natural transformation
Closure Monad
Galois connection Adjunction
Indirect equality Yoneda lemma

The same game, but in the champions league

Motivation Recursion comes in Adjoint recursion Many applications! References

(”Lossy”) natural transformations

Recall our starting point,

{
f (g x) 6 x
a v g (f a)

which meanwhile we wrote
thus:

{
f (g x) // x

a g (f a)oo

Champions league version:

 F (G X)
ε // X

A G (F A)
ηoo

(7)

where F and G are functors.

(More about ε and η later.)

Motivation Recursion comes in Adjoint recursion Many applications! References

(”Lossy”) natural transformations

Recall our starting point,

{
f (g x) 6 x
a v g (f a)

which meanwhile we wrote
thus:

{
f (g x) // x

a g (f a)oo

Champions league version:

 F (G X)
ε // X

A G (F A)
ηoo

(7)

where F and G are functors.

(More about ε and η later.)

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X) ∼= C (A,G X) (8)

and say F and G are adjoint functors, writing F aG as before.

Motivation Recursion comes in Adjoint recursion Many applications! References

Adjunction L a R

Terminology:

C D

L A→ X

d e
++

∼= A→ R X

b c

jj

(9)

• L — left adjoint

• R — right adjoint

• df e — R-transpose of f

• bgc — L-transpose of g

Motivation Recursion comes in Adjoint recursion Many applications! References

Adjunction L a R

In detail — universal property:

D

L

77> C

R
ww

k = df e ⇔ ε · L k︸ ︷︷ ︸
bkc

= f

R X L (R X)
ε // X

A

k=df e

OO

L A

L k

OO

f

;;

Terminology — ε = bidc is called the co-unit of the adjunction.

Motivation Recursion comes in Adjoint recursion Many applications! References

(Covariant) exponentials: (× K) a (K)

Perhaps the most famous adjunction:


L X = X × K
R X = X K

ε = ev

{
df e = curry f
bf c = uncurry f

A× K → X

curry
++∼= A→ X K

uncurry

kk

where

curry f a b = f (a, b)

uncurry g (a, b) = g a b

ev (f , k) = f k

Motivation Recursion comes in Adjoint recursion Many applications! References

(Covariant) exponentials: (× K) a (K)

k = curry f ⇔ ev · (k × id)︸ ︷︷ ︸
uncurry k

= f

S

(×K)

99 S

K

yy

BK BK × K
ev // B

A

k=curry f

OO

A× K

k×id

OO

f

;;

Functor : f K = (f ·) (10)

Motivation Recursion comes in Adjoint recursion Many applications! References

Pairing: ∆ a ×


L X = ∆ X = (X ,X)
R (X ,Y) = X × Y
ε = (π1, π2)

{
d(f , g)e = 〈f , g〉
bkc = (π1 · k , π2 · k)

S

∆

77S
2

(×)

xx

B × A L (B × A)
(π1,π2)// (B,A)

C

k=〈f ,g〉

OO

L C

(k,k)

OO

(f ,g)

88

Motivation Recursion comes in Adjoint recursion Many applications! References

Pairing: ∆ a ×

S

∆

66 S
2

(×)

ww

B × A (B × A,B × A)
(π1,π2)// (B,A)

C

k=〈f ,g〉

OO

(C ,C)

(k,k)

OO

(f ,g)

77

That is:

k = 〈f , g〉 ⇔
{
π1 · k = f
π2 · k = g

(11)

Motivation Recursion comes in Adjoint recursion Many applications! References

Co-pairing: (+) a∆


L (X ,Y) = X + Y
R X = ∆ X = (X ,X)
ε = ∇ = [id , id]

{
dke = (k · i1, k · i2)
b(f , g)c = [f , g]

S2

(+)

99 S

∆
xx

(A,A) A + A
∇ // A

(C ,D)

(f ,g)=(k·i1,k·i2)

OO

C + D

f +g

OO

k

<<

Motivation Recursion comes in Adjoint recursion Many applications! References

Co-pairing: + a∆

S2

(+)

44 S

∆

tt

(A,A) A + A
∇ // A

(C ,D)

(f ,g)=(k·i1,k·i2)

OO

C + D

f +g

OO

k

;;

{
f = k · i1
g = k · i2

⇔ k = [f , g]

Motivation Recursion comes in Adjoint recursion Many applications! References

Power transpose: J a P

D := S (sets + functions) and C := R (sets + relations)

{
J X = X
y (J k) x ⇔ y = k x

{
dRe = ΛR
y bkc x = y ∈ (k x)

∈ : A← P A is the set membership relation

k = ΛR ⇔ ∈ · k︸︷︷︸
bkc

= R

S

J

;;R

P
zz

P B P B
∈ // B

A

k=ΛR

OO

A

J k

OO

R

==

Motivation Recursion comes in Adjoint recursion Many applications! References

Corollaries of k = df e ⇔ ε · L k = f

reflection:

dεe = id (12)

that is,

ε = bidc (13)

cancellation:

ε · L df e = f (14)

fusion:

dhe · g = dh · L ge (15)

Motivation Recursion comes in Adjoint recursion Many applications! References

Corollaries

absorption:

(R g) · dhe = dg · he (16)

naturality:

h · ε = ε · L (R h) (17)

closed definition:

bkc = ε · (L k) (18)

functor

R h = dh · εe (19)

Motivation Recursion comes in Adjoint recursion Many applications! References

Dual formulation

As with GCs, universal property can be expressed in a dual way, as
follows:

k = bf c

⇔ { identity; homset isomorphism }

dk · ide = f

⇔ { absorption (16) ; dide = η }

(R k) · η︸ ︷︷ ︸
dke

= f

Motivation Recursion comes in Adjoint recursion Many applications! References

Dual formulation

Diagram:

k = bf c ⇔ R k · η︸ ︷︷ ︸
dke

= f

L B

k=bf c
��

R (L B)

R k
��

B
ηoo

f{{
C R C

Example (J a P):

R = ∈ · f︸︷︷︸
bf c

⇔ P R · η︸ ︷︷ ︸
ΛR

= f

R S

B

R=bf c
��

P B

P R
��

B
η={ }oo

f}}
C P C

Motivation Recursion comes in Adjoint recursion Many applications! References

Dual formulation

Diagram:

k = bf c ⇔ R k · η︸ ︷︷ ︸
dke

= f

L B

k=bf c
��

R (L B)

R k
��

B
ηoo

f{{
C R C

Example (J a P):

R = ∈ · f︸︷︷︸
bf c

⇔ P R · η︸ ︷︷ ︸
ΛR

= f

R S

B

R=bf c
��

P B

P R
��

B
η={ }oo

f}}
C P C

Motivation Recursion comes in Adjoint recursion Many applications! References

Dual corollaries

Now arising from k = bf c ⇔ R k · η︸ ︷︷ ︸
dke

= f

reflection:

bηc = id (20)

that is,

η = dide (21)

cancellation:

R bf c · η = f (22)

fusion:

g · bhc = bR g · hc (23)

Motivation Recursion comes in Adjoint recursion Many applications! References

Dual corollaries

absorption:

bhc · L g = bh · gc (24)

naturality:

h · ε = ε · L (R h) (25)

closed definition:

dge = (R g) · η (26)

functor

L g = bη · gc (27)

cancellation (corollary):

ε · L η = id (28)

Motivation Recursion comes in Adjoint recursion Many applications! References

Adjunction composition (exchange law)

Assuming L aM a R and inspecting L A
k // R B :

M L A→ B
∼= { M a R }

L A→ R B
∼= { L aM }

A→M R B

On the one hand, k = df eR
for exactly one

M L A
f // B .

On the other hand, k = bgcL
for exactly one

A
g //M R B .

So the exchange law

df eR = bgcL (29)

holds for such M L A
f // B and A

g //M R B .

Motivation Recursion comes in Adjoint recursion Many applications! References

(+) a∆ a (×)

M L A
f // B is of type ∆ (+) (A,C) // (B,D) :

f = (A + C ,A + C)
(m,n) // (B,D)

A
g //M R B is of type (A,C) // ∆ (×) (B,D) :

g = (A,C)
(i ,j) // (B × D,B × D)

So
df eR = bgcL becomes 〈m, n〉 = [i , j]

Motivation Recursion comes in Adjoint recursion Many applications! References

(+) a∆ a (×)

M L A
f // B is of type ∆ (+) (A,C) // (B,D) :

f = (A + C ,A + C)
(m,n) // (B,D)

A
g //M R B is of type (A,C) // ∆ (×) (B,D) :

g = (A,C)
(i ,j) // (B × D,B × D)

So
df eR = bgcL becomes 〈m, n〉 = [i , j]

Motivation Recursion comes in Adjoint recursion Many applications! References

Solving 〈m, n〉 = [i , j]

Find m and n for i = 〈h, k〉 and j = 〈p, q〉
in:

〈m, n〉 = [〈h, k〉, 〈p, q〉]

⇔ { (+) a∆ }{
(m, n) (i1, i1) = (h, k)
(m, n) (i2, i2) = (p, q)

⇔ { re-arranging }{
(m,m) (i1, i2) = (h, p)
(n, n) (i1, i2) = (k , q)

⇔ { ∆ a (×) }{
m = [h, p]
n = [k , q]

A
i1 //

h
�� p

))

A + B B
k

uu

q

��

i2oo

C C × Dπ1

oo
π2

// D

Motivation Recursion comes in Adjoint recursion Many applications! References

(+) a∆ a (×)

The composition of the two adjunctions therefore yields the

exchange law:

〈[h, p], [k, q]〉 = [〈h, k〉, 〈p, q〉] (30)

A
i1 //

h
�� p

))

A + B B
k

uu

q

��

i2oo

C C × Dπ1

oo
π2

// D

(As will be seen later, this law will play a role when dealing with
mutual recursion.)

Motivation Recursion comes in Adjoint recursion Many applications! References

Recursion comes in

Algebras A F A
aoo

Morphisms a
f // b

between F-algebras

a

f
��

µF

f
��

F µF
aoo

F f
��

b A F A
b

oo

lead to F-recursion.

Initial algebra µF F µF
inoo such

that morphism in
(|a|) // a is unique:

µF

k=(|a|)
��

µF

in◦

''

k
��

∼= F µF
in

ff

F k
��

A A F A

a

ee

Universal property:

k = (|a|)⇔ k · in = a · F k (31)

Terminology: (| |) = catamorphism.

Motivation Recursion comes in Adjoint recursion Many applications! References

(| |) meets L a R

Chemistry with recursion:

df e = (|dhe|)

⇔ { cata-universal (31) }

df e · in = dhe · F df e

⇔ { fusion (15) twice }

df · L ine = dh · L F df ee

⇔ { isomorphism d e }

f · L in = h · L F df e

µF

in◦

))

df e
��

∼= F µF
in

hh

F df e
��

R A F R A

dhe

ii

Motivation Recursion comes in Adjoint recursion Many applications! References

(| |) meets L a R

Therefore:

f · L in = h · L F df e ⇔ df e = (|dhe|) (32)

Diagrams:

C D

L µF

L in◦

**

f
��

∼= L F µF
L in

ii

L F df e
��

A L F R A

h

hh

µF

in◦

))

df e
��

∼= F µF
in

hh

F df e
��

R A F R A

dhe

ii

Motivation Recursion comes in Adjoint recursion Many applications! References

Example: (| |) meets ∆ a (×)

Pairing adjunction:

L f = ∆ f = (f , f)

ε = (π1, π2)

d(f , g)e = 〈f , g〉

Left-hand side:

(f , g) · L in = (h, k) · L (F d(f , g)e)

⇔ { L f = (f , f) ; d(f , g)e = 〈f , g〉 }

(f , g) · (in, in) = (h, k) · (F 〈f , g〉,F 〈f , g〉)

⇔ { composition and equality of pairs of functions }{
f · in = h · F 〈f , g〉
g · in = k · F 〈f , g〉

Motivation Recursion comes in Adjoint recursion Many applications! References

Cata meets ∆ a (×)

Right-hand side:

d(f , g)e = (|d(h, k)e|)

⇔ { d(f , g)e = 〈f , g〉 twice }

〈f , g〉 = (|〈h, k〉|)

Putting both sides together we get the mutual recursion law:

〈f , g〉 = (|〈h, k〉|) ⇔
{

f · in = h · F 〈f , g〉
g · in = k · F 〈f , g〉 (33)

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters

Mutual recursion very useful.

It comes handy in particular dynamic programming situations.

Examples follow in the Peano-recursion (in = [zero, succ]) setting,
whose catamorphisms (folds) are for-loops,

for f i = (|[i , f]|)

that is

for f i 0 = i

for f i (n + 1) = f (for f i n)

Example (Church numerals): church n f b = for f b n.

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — Fibonacci

Classic DP problem

fib 0 = 1
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

unfolds to:

f 0 = 1

f (n + 1) = f n + fib n

fib 0 = 1

fib(n + 1) = f n

That is:

f · [zero, succ] = [1, add] · 〈f , fib〉
fib · [zero, succ] = [1, π1] · 〈f , fib〉

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — Fibonacci

This together with the exchange law (30) leads to:

〈f , fib〉 = (|[(1, 1), 〈add , π1〉]|) (34)

That is (Haskell):

fib = snd · for loop (1, 1) where
loop (x , y) = (x + y , x)

For non-functional programmers:

int fib(int n)

{

int x=1; int y=1; int i;

for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}

return y;

};

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — Fibonacci

This together with the exchange law (30) leads to:

〈f , fib〉 = (|[(1, 1), 〈add , π1〉]|) (34)

That is (Haskell):

fib = snd · for loop (1, 1) where
loop (x , y) = (x + y , x)

For non-functional programmers:

int fib(int n)

{

int x=1; int y=1; int i;

for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}

return y;

};

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — Catalan numbers

Cn =
(2n)!

(n + 1)!(n!)

Lots of factorial (re)calculations — try “DP artilhery”?

No — use mutual recursion instead, based on this property:

Cn+1 =
4n + 2

n + 2
Cn

Three functions in mutual recursion:

c n = Cn

f n = 4n + 2

g n = n + 2

Then (next slide):

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — Catalan numbers

“Peano unfolding”:

c 0 = 1

c (n + 1) =
(f n)× (c n)

g n
f 0 = 2

f (n + 1) = f n + 4

g 0 = 2

g (n + 1) = g n + 1

Finally applying the law we get a for-loop with 3 local variables:

c = prj · (for loop init) where
loop (c , f , g) = ((f ∗ c)÷ g , f + 4, g + 1)
inic = (1, 2, 2)
prj (c , ,) = c

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — minimax

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — minimax

Wikipedia:

https://en.wikipedia.org/wiki/Minimax

Motivation Recursion comes in Adjoint recursion Many applications! References

Why mutual recursion matters — minimax

Mutual recursion (players alice and bob):

minimax = 〈alice, bob〉

where{
alice · in = [id , umax] · F bob
bob · in = [id , umin] · F alice

assuming

in = [Leaf ,Fork]

F f = id + f × f

in the contex of

data LTree a = Leaf a | Fork (LTree a, LTree a)

(generalizable to other F tree-structures).

Motivation Recursion comes in Adjoint recursion Many applications! References

Further chemistry with recursion

Back to (32), recall

f · L in = h · L F df e ⇔ df e = (|dhe|)

and the diagram:

C D

L µF

L in◦

**

f

��

∼= L F µF

L in

ii

L F df e
��

A L F R A

h

hh

µF

in◦

))

df e
��

∼= F µF

in

hh

F df e
��

R A F R A

dhe

ii

How to get f instead of df e in the recursive call to obtain f as a
hylomorphism?

Motivation Recursion comes in Adjoint recursion Many applications! References

Further chemistry with recursion

The resource we have for this is cancellation (14):

ε · L df e = f

However, L in L F df e is in the wrong position and needs to
commute with F.

We need a distributive law L F→ F L.

More generally, we rely on some natural transformation

φ : L F→ G L

enabling such a commutation over some G.

Motivation Recursion comes in Adjoint recursion Many applications! References

Further chemistry with recursion

For ε · L df e = f to be of use, we need G ε somewhere in the
pipeline.

We thus refine h := h ·G ε · φ above and carry on:

df e = (|dh ·G ε · φe|)

⇔ { (32) }

f · L in = h ·G ε · φ · L F df e

⇔ { natural-φ: φ · L F f = G L f · φ }

f · L in = h ·G ε ·G L df e · φ

⇔ { functor G; cancellation ε · L df e = f (14) }

f · L in = h ·G f · φ

Motivation Recursion comes in Adjoint recursion Many applications! References

G-hylo adjoint to F-cata

We reach

f · (L in) = h ·G f · φ︸ ︷︷ ︸
G-hylomorphism

⇔ df e = (|dh ·G ε · φe|)︸ ︷︷ ︸
adjoint F-catamorphism

(35)

where natural transformation

φ : L F→ G F

captures the necessary switch of recursion-pattern between hylo
(G) and cata (F).

Motivation Recursion comes in Adjoint recursion Many applications! References

Diagrams

G-hylo (C):

L µF

f
��

G L µF

G f
��

L F µF

L in

uu

φ
oo

A G A
hoo

Adjoint F-cata (D):

µF

df e
��

F µF
inoo

F df e
��

R A F R A
dh·G ε·φeoo

A G A
hoo G L R A

G εoo L F R A
φoo

Motivation Recursion comes in Adjoint recursion Many applications! References

G-hylo-universal

The interest in

f · (L in) = h ·G f · φ ⇔ df e = (|dh ·G ε · φe|)

is that one can use “cata-artilhery” to reason about hylo f .

But not necessarily: b c-“shunting” on the right side

f · (L in) = h ·G f · φ︸ ︷︷ ︸
G-hylomorphism

⇔ f = b(|dh ·G ε · φe|)c︸ ︷︷ ︸
〈|h|〉

gives us a new combinator with universal property:

f = 〈|h|〉 ⇔ f · L in = h ·G f · φ (36)

Motivation Recursion comes in Adjoint recursion Many applications! References

〈| |〉 fusion, reflection and so on

fusion:

k · 〈|f |〉 = 〈|g |〉 ⇐ k · f = g ·G k (37)

reflection (in case φ is an isomorphism):

〈|α|〉 = id (38)

where α abbreviates L in · φ◦ in

f = 〈|h|〉 ⇔ f · L in · φ◦︸ ︷︷ ︸
α

= h ·G f

cancellation:

〈|h|〉 · α = h ·G 〈|h|〉

Motivation Recursion comes in Adjoint recursion Many applications! References

Many applications!

Many results in the literature arise as instances of this theorem.
For instance, the structural recursion theorem of Bird and
de Moor (1997):

Details:

L a R := (×K) a (K))

{
F X = 1 + A× X
G X = (1 + K) + A× X

φ = (id + assocr) · distl

Motivation Recursion comes in Adjoint recursion Many applications! References

Many applications!

Many results in the literature arise as instances of this theorem.
For instance, the structural recursion theorem of Bird and
de Moor (1997):

Details:

L a R := (×K) a (K))

{
F X = 1 + A× X
G X = (1 + K) + A× X

φ = (id + assocr) · distl

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational catas thanks to J a P
G-hylo (relational):

µF

X
��

G µF

G X
��

F µF

J in

ww
φ
oo

A G A
Roo

Adjoint F-cata (functional):

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·G ∈·φ)oo

A G A
Roo G P A

G ∈oo F P A
φoo

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational catas thanks to J a P

Recall (relational side):{
J X = J X
y (J f) x ⇔ y = f x

relational G-recursion functional F-recursion

µF

X
��

G µF

G X
��

F µF

J in

ww
φ
oo

A G A
R

oo

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·G ε·φ)
oo

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational catas thanks to J a P

Recall (relational side):{
J X = X
y (J f) x ⇔ y = f x

Because J X = X we can choose G X = F X and φ = id .

Functor F extends to a relator G.

As is usual, we use the same symbol for functor and relator, greatly
simplifying diagrams:

µF

X
��

F µF
inoo

F X
��

A F A
R

oo

⇔

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·F ε·φ)

oo

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational catas thanks to J a P

b c-shunting again:

X · in = R · F X ⇔ ΛX = (|Λ(R · F ∈)|)

µF

X
��

F µF
inoo

F X
��

A F A
R

oo

⇔

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·F ε·φ)

oo

X · in = R · F X ⇔ X = ∈ · (|Λ(R · F ∈)|)︸ ︷︷ ︸
(|R|)

(39)

This extends “banana-brackets” to relations and gives birth to
inductive relations.

Motivation Recursion comes in Adjoint recursion Many applications! References

Eilenberg-Wright Lemma

Put in another way:

The equivalence

X = (|R|) ⇔ ΛX = (|Λ(R · F ∈)|) (40)

— known as the Eilenberg-Wright Lemma —

follows from the “adjoint catamorphism” theorem (35)1 for the
power-transpose adjunction J a P.

1Also known as “adjoint fold” theorem (Hinze, 2013).

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational catas thanks to J a P
In summary,

(J a P) + (| |)

leads as to inductive relations, with universal property:

X · in = R · F X ⇔ X = (|R|)

Instance for Peano recursion, where

in = [zero, succ]
F X = id + X

but this time relationally:

X = (|R|) ⇔
{

X · zero = R · i1
X · succ = R · i2 · X

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational catas thanks to J a P
In summary,

(J a P) + (| |)

leads as to inductive relations, with universal property:

X · in = R · F X ⇔ X = (|R|)

Instance for Peano recursion, where

in = [zero, succ]
F X = id + X

but this time relationally:

X = (|R|) ⇔
{

X · zero = R · i1
X · succ = R · i2 · X

Motivation Recursion comes in Adjoint recursion Many applications! References

Inductive relations thanks to J a P
Remember IN0 IN0

(>)oo ?

Now we know how to define it over the Peano algebra,

(>) = (|[>, succ]|) (41)

where > is the largest relation of its type. (b > a = True for all a and b.)
Unfolding (41):

(>) = (|[>, succ]|)

⇔ { previous slide }{
(>) · zero = >
(>) · succ = succ · (>)

⇔ { go pointwise (in R) }{
y > 0 = True
y > (x + 1) = 〈∃ z : y = z + 1 : z > x〉

�

Motivation Recursion comes in Adjoint recursion Many applications! References

Inductive relations thanks to J a P

Remember list prefixes and sublists, ys v xs and ys � xs?

Now we have a way to define them properly:

(v) : A∗ ← A∗

(v) = (|[nil , cons ∪ nil]|)

and

(�) : A∗ ← A∗

(�) = (|[nil , cons ∪ π2]|)

where

{
nil = []
cons (h, t) = h : t

make up the initial algebra of finite

lists:

in = [nil , cons]

Motivation Recursion comes in Adjoint recursion Many applications! References

Inductive relations thanks to J a P

Recalling take, now we see where (6) came from:

(v) = (|[nil , cons ∪ nil]|)

⇔ { universal property above }{
(v) · nil = nil
(v) · cons = (cons ∪ nil) · (id × (v))

⇔ { go pointwise }{
y v []⇔ y = []
y v (h : t)⇔ y = [] ∨ 〈∃ t ′ : y = h : t ′ : t ′ v t〉

Motivation Recursion comes in Adjoint recursion Many applications! References

Back to Galois connections — in R

Remember GC f b v a⇔ b 6 g a?

Now, every component of the GC — f , g , (v) and (6) — is a
morphism in R and:

A

f ◦

��

A

g

��

(v)oo

=

B B
(6)

oo

(42)

f a g ⇔ f ◦ · (v) = (6) · g

NB: R◦ is the converse of R, which always exists in R — but not
in the original S.

Motivation Recursion comes in Adjoint recursion Many applications! References

More about this

See e.g. my talk

On the power of adjoint recursion. Contributed talk to
IFIP WG 2.1 Short On-line Meeting #O6, 26 October
2021.

Several more examples also in

Ralf Hinze. Adjoint folds and unfolds — an extended
study. Science of Computer Programming, 78(11):
2108–2159, 2013.

which inspired this work.

https://ifipwg21wiki.cs.kuleuven.be/IFIP21/OnlineOct21

Motivation Recursion comes in Adjoint recursion Many applications! References

Wrapping up

Original motivation was Ralf Hinze (2013):

(...) Finally, we have left the exploration of relational
adjoint (un)folds to future work.

As shown, doing this leads to the algebra of inductive relations.

Altogether,

• I have learned to appreciate ”adjoint folds” even more.

• Adjunctions are a very fertile device for structuring the MPC
— teaching them (inc. Galois connections) should be
mainstream.

• Current work: “adjoint folds” in language semantics and in
linear algebra.

Motivation Recursion comes in Adjoint recursion Many applications! References

Final quote

”My experience has been that theories are often more
structured and more interesting when they are based on
the real problems; somehow they are more exciting than
completely abstract theories will ever be.”Donald Knuth
(1973)

Motivation Recursion comes in Adjoint recursion Many applications! References

Appendix

Motivation Recursion comes in Adjoint recursion Many applications! References

Composing (+) a∆ and L a R

S2

(+)

==S

∆
yy

L

==C

R
||

(R A,R A) R A + R A
[id ,id] // R A

(C ,D)

(df e,dge)

OO

C + D

df e+dge

OO

dke

88

{
df e = dke · i1
dge = dke · i2

⇔ dke = [df e, dge]

Motivation Recursion comes in Adjoint recursion Many applications! References

“Chemistry” between L a R and coproducts

dke = [df e, dge]

⇔ { universal property }{
dke · i1 = df e
dke · i2 = dge

⇔ { fusion (15) twice }{
k · L i1 = f
k · L i2 = g

⇔ { coproducts }

k · [L i1,L i2]︸ ︷︷ ︸
δ

= [f , g]

⇔ { isomorphism δ }

k = [f , g] · δ◦

How can we be sure δ is an isomorphism?

Motivation Recursion comes in Adjoint recursion Many applications! References

Limits and colimits

Left adjoints L preserve colimits, and thus coproducts:

L (A + B)

δ◦
++

∼= L A + L B

δ

kk
δ = [L i1,L i2]

Diagram:

L A
i1 //

L i1 %%

L A + L B

δ
��

L B
i2oo

L i2yy
L (A + B)

Example: (L X = X × K)

(A + B)× K

δ◦=distl
,,

∼= A× K + B × K

δ=undistl

ll

Motivation Recursion comes in Adjoint recursion Many applications! References

Limits and colimits

Left adjoints L preserve colimits, and thus coproducts:

L (A + B)

δ◦
++

∼= L A + L B

δ

kk
δ = [L i1,L i2]

Diagram:

L A
i1 //

L i1 %%

L A + L B

δ
��

L B
i2oo

L i2yy
L (A + B)

Example: (L X = X × K)

(A + B)× K

δ◦=distl
,,

∼= A× K + B × K

δ=undistl

ll

Motivation Recursion comes in Adjoint recursion Many applications! References

“Chemistry” between L a R and coproducts

In summary:

[dhe, dke] = d[h, k] · δ◦e (43)

Diagrams:

A

dhe

��

i1 // A + B

[dhe, dke]

��

B
i2oo

dke

��
R C

L (A + B)

δ◦

��
L A

h
%%

i1 // L A + L B

[h,k]
��

L B
i2oo

k
yy

C

Motivation Recursion comes in Adjoint recursion Many applications! References

Examples

For L a R := (×K) a (K)

(covariant exponentials), [dhe, dke] = d[h, k] · δ◦e (43) becomes

[curry f , curryg] = curry([f , g] · distl) (44)

For L a R := J a P

δ is the identity (relation) and so (43) becomes:

Λ[R, S] = [ΛR,ΛS] (45)

Thus relational coproducts can be defined by:

[R, S] = ∈ · [ΛR,ΛS]

Motivation Recursion comes in Adjoint recursion Many applications! References

Examples

For L a R := (×K) a (K)

(covariant exponentials), [dhe, dke] = d[h, k] · δ◦e (43) becomes

[curry f , curryg] = curry([f , g] · distl) (44)

For L a R := J a P

δ is the identity (relation) and so (43) becomes:

Λ[R, S] = [ΛR,ΛS] (45)

Thus relational coproducts can be defined by:

[R, S] = ∈ · [ΛR,ΛS]

Motivation Recursion comes in Adjoint recursion Many applications! References

Dual theorem

R out · f = φ ·G f · h ⇔ bf c = [(bφ ·G η · hc)] (46)

Calculation:
bf c = [(bφ ·G η · hc)]

⇔ { ana-universal }

out · bf c = F bf c · bφ ·G η · hc

⇔ { fusion (23) twice }

bR out · f c = bR F bf c · φ ·G η · hc

⇔ { isomorphism b c ; natural-φ }

R out · f = φ ·G R bf c ·G η · h

⇔ { functor G; cancellation R bf c · η = f (22) }

R out · f = φ ·G f · h
�

Motivation Recursion comes in Adjoint recursion Many applications! References

Dual theorem — diagram

G-hylomorphism

R µF

R out

))
G R µF

φ // R F µF

A
h

//

f

OO

G A

G f

OO

F-anamorphism :

µF

out

** F µF

L A
bφ·G η·hc

//

bf c
OO

F L A

F bf c
OO

bf c = [(bφ ·G η · hc)]

Motivation Recursion comes in Adjoint recursion Many applications! References

Monads

A monad

A
η //MA M2A

µoo

arises from any
adjunction,
where:

M = R · L
η = dide
µ = R ε

Monadic laws
come straight
from the
adjunction laws.

Unit:

µ · η = id = µ ·M η

⇔ { µ = R ε, η = dide etc }

R ε · dide = id = R ε · (R L η)

⇔ { absorption (16); functor R }

dεe = id = R (ε · L η)

⇔ { reflection (12); cancellation (28) }
true

�

Motivation Recursion comes in Adjoint recursion Many applications! References

Monads

A monad

A
η //MA M2A

µoo

arises from any
adjunction,
where:

M = R · L
η = dide
µ = R ε

Monadic laws
come straight
from the
adjunction laws.

Unit:

µ · η = id = µ ·M η

⇔ { µ = R ε, η = dide etc }

R ε · dide = id = R ε · (R L η)

⇔ { absorption (16); functor R }

dεe = id = R (ε · L η)

⇔ { reflection (12); cancellation (28) }
true

�

Motivation Recursion comes in Adjoint recursion Many applications! References

Monad

Multiplication:

µ · µ = µ ·M µ

⇔ { µ = R ε; functor R }

R (ε · ε) = (R ε) · (R (L (R ε)))

⇔ { functor R }

R (ε · ε) = R (ε · L (R ε))

⇔ { natural-ε (17) }

R (ε · ε) = R (ε · ε)
�

Motivation Recursion comes in Adjoint recursion Many applications! References

Kleisli composition

From the usual
definition of Kleisli
composition,

f • g = µ ·M f · g
(aside) we can infer:

f • g = dbf c · bgce

f • g

= { f • g = µ ·M f · g }

µ ·M f · g
= { M = R · L; µ = R ε }

R ε · (R (L f)) · g

= { functor R }

R (ε · L f) · g

= { cancellation: ε · L f = bf c; g = dbgce }

R bf c · dbgce

= { absorption: (R g) · dhe = dg · he }

dbf c · bgce

Motivation Recursion comes in Adjoint recursion Many applications! References

Other relational hylos and their adjoints

Example: list membership

{
a ε [] = False
a ε (h : t) = (a = h) ∨ a ε t

is the relational hylo

ε = [⊥, π1 ∪ ε · π2] · in◦ (47)

NB: not the relational cata ε = (|[⊥, π1 ∪ π2]|) that one might feel
tempted to write... which is the empty relation!

Motivation Recursion comes in Adjoint recursion Many applications! References

Other relational hylos and their adjoints

ot a cata... But perhaps this hylo (47) has an adjoint cata? Yes,
since

ε = [⊥, π1 ∪ ε · π2] · in◦

unfolds into

ε · in = [⊥, [id , id]]︸ ︷︷ ︸
R

· id + (id + ε)︸ ︷︷ ︸
G ε

· id + (i1 · π1 ∪ i2 · π2)︸ ︷︷ ︸
Φ

where the core of

Φ : 1 + A× A∗︸ ︷︷ ︸
F A∗

→ 1 + (A + A∗)︸ ︷︷ ︸
G A∗

is the (disjoint) union of the two projections π1 ∪ π2.

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational hylos and their adjoints

What is its adjoint? Not surprisingly:

Λε = (|Λ[⊥, π1 ∪ ∈ · π2]|)

⇔ { P-transpose of coproducts (45) }

Λε = (|[Λ⊥,Λ(π1 ∪ ∈ · π2)]|)

⇔ { introduce join etc (see below) }

Λε = (|[{ }, join]|)

⇔ { introduce elems }

Λε = elems (48)

where{
elems [] = { }
elems (h : t) = {h} ∪ elems t

Motivation Recursion comes in Adjoint recursion Many applications! References

Relational hylos and their adjoints

Details:

elems = (|[{ }, join]|) ⇔
{

elems [] = { }
elems (h : t) = {h} ∪ elems t

where

join (a, s) = {a} ∪ s

since:

join = Λ(π1 ∪ ∈ · π2)

Λ(R ∪ S) a = (ΛR a) ∪ (ΛS a)

Λ∈ = id

etc.

Usual way of doing list membership: ε = ∈ · elems, cf. (48).

Motivation Recursion comes in Adjoint recursion Many applications! References

(Contravariant) exponentials: (K) a (K)

Isomorphism

L A→ B

d e
++

∼= A→ R B

b c

jj

becomes (note the arrows reversed on the left side)

K A ← B

flip
++

∼= A→ K B

flip

jj

recalling (Haskell):

flip :: (a -> b -> c) -> b -> a -> c

flip f b a = f a b

Motivation Recursion comes in Adjoint recursion Many applications! References

(Contravariant) exponentials: (K) a (K)

Contravariant self-adjunction. More formally:


L X = K X

R X = K X

ε = fid = flip id

{
df e = flip f
bf c = flip f

k = flip f ⇔ f = K k · fid︸ ︷︷ ︸
flip k

S

K

::S
op

K
yy

K B K (K B)

K k

��

B
fidoo

f||
A

k=flip f

OO

K A

Motivation Recursion comes in Adjoint recursion Many applications! References

(Contravariant) exponentials: (K) a (K)

Contravariant exponential functor:

{
K (−) : (A→ B)→ (B → K)→ A→ K
K k g = g · k

S
K // Sop

B K B

K k

��
A

k

OO

K A

That is:

K k = (·k) (49)

Motivation Recursion comes in Adjoint recursion Many applications! References

References

Motivation Recursion comes in Adjoint recursion Many applications! References

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall, 1997.

Ralf Hinze. Adjoint folds and unfolds — an extended study.
Science of Computer Programming, 78(11):2108–2159, 2013.
ISSN 0167-6423.

D.E. Knuth. The dangers of computer-science theory. Studies in
Logic and the Foundations of Mathematics, 74:189–195, 1973.

J.N. Oliveira. A note on the under-appreciated for-loop. Technical
Report TR-HASLab:01:2020 (pdf), HASLab/U.Minho and
INESC TEC, 2020.

https://www4.di.uminho.pt/~jno/ps/haslabtr202010.pdf

	Motivation
	Recursion comes in
	Adjoint recursion
	Many applications!

