Why Adjunctions Matter

WADT 2022

Aveiro, 30th June 2022

J.N. Oliveira

INESC TEC & University of Minho

(ロ) (御) (唐) (唐) 道→ 唐| 990

KOD KARD KED KED EN MAG

Thanks for inviting!

Algebraic Development Techniques:

- WADT 82 \dots (algebraic) abstract data type trend
- WADT 92 Hermida fibred adjunctions
- WADT ... lots of other interesting topics!

Algebraic techniques in this talk:

- Adjunctions as central device for reasoning.
- Galois connections as one of their most useful instances.

Perspective:

• mathematics of program construction.

KO K K (F K E K E K A E K A K K K K K K K K K

Thanks for inviting!

Algebraic Development Techniques:

- WADT 82 \dots (algebraic) abstract data type trend
- WADT 92 Hermida fibred adjunctions
- WADT ... lots of other interesting topics!

Algebraic techniques in this talk:

- Adjunctions as central device for reasoning.
- Galois connections as one of their most useful instances.

Perspective:

• mathematics of program construction.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Why Adjunctions Matter

- For the average programmer, **adjunctions** are (if known) more respected than loved.
- However, they are key to explaining many things we do as programmers.
- I will try to show how practical adjunctions are by revealing their "chemistry" in action.
- Starting from **Galois connections**, their simplest (but quite interesting) instances, with applications.

[Motivation](#page-1-0) [Recursion comes in](#page-85-0) [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

Inspiration

"My experience has been that theories are often more structured and more interesting when they are based on the real problems; somehow they are more exciting than completely abstract theories will ever be." Donald [Knuth \(1973\)](#page-144-1)

KOD KARD KED KED EN MAG

"(...) this was agreed upon and Jim Thatcher proposed the name ADJ as a (terrible) pun on the title of the book that we had planned to write $(...)$ [recalling] that **adjointness** is a very important concept in category theory $(...)$ "

KO K K (F K E K E K A E K A K K K K K K K K K

(Joseph A. Goguen, Memories of ADJ, EATCS nr. 36, 1989)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Things come in dichotomies

In everyday life, things come "in pairs"

• good • bad • action • the left • easy • reaction • the right • hard

In a sense, each pair defines itself:

- one of its elements exists...
- ... because the other also exists, and is **opposite** to it.

Circularity? We can deal with it.

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Things come in dichotomies

In everyday life, things come "in pairs"

• good • bad • action • reaction • the left • the right • easy • hard

In a sense, each pair defines itself:

- one of its elements exists...
- ... because the other also exists, and is **opposite** to it.

Circularity? We can deal with it.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Things come in dichotomies

In everyday life, things come "in pairs"

• good • bad • action • the left • reaction • the right • easy • hard

In a sense, each pair defines itself:

- one of its elements exists...
- ... because the other also exists, and is **opposite** to it.

Circularity? We can deal with it.

Perfect antithesis

The perfect antithesis (opposition, inversion) is the bijection or isomorphism.

For instance, multiplying and dividing are inverses of each other in \bm{R} :

$$
(x / y) * y = x
$$

$$
(x * y) / y = x
$$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Lossless transformations:

(Also "energy preserving".)

Perfect antithesis

The perfect antithesis (opposition, inversion) is the **bijection** or isomorphism.

For instance, multiplying and dividing are inverses of each other in \bm{R} :

$$
(x / y) * y = x
$$

$$
(x * y) / y = x
$$

Lossless transformations:

(Also "energy preserving".)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

KOD KARD KED KED EN MAG

However, in practice...

 $ipg2pdf \cdot pdf2ipg \neq id$ $pdf2ipg \cdot ipg2pdf \neq id$

(though our eyes can't see the difference in most cases...)

KOD KARD KED KED EN MAG

However, in practice...

 $ipg2pdf \cdot pdf2ipg \neq id$ $pdf2ipg \cdot ipg2pdf \neq id$

(though our eyes can't see the difference in most cases...)

(1)

Lossy inversions

In general, transformations are **lossy**

$$
\left\{\n\begin{array}{l}\nf\ (g \ x) \leqslant x \\
a \sqsubseteq g\ (f \ a)\n\end{array}\n\right.
$$

in the sense that each "round trip" loses information.

So we have under and over **approximations** captured by preorders:

 $(f$ and g assumed monotonic)

KO K K (F K E K E K A E K A K K K K K K K K K

We write
$$
x \xrightarrow{(\leq)} y
$$
 (resp.
\n $x \xrightarrow{(\sqsubseteq)} y$) to denote $x \leq y$ (resp.
\n $x \sqsubseteq y$).

But we drop the orderings, e.g. $x \longrightarrow y$, wherever these are clear from the context.

KO K K (F K E K E K A E K A K K K K K K K K K

Arrows enable us to express our reasoning graphically.

$f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

 $f a \leqslant x \Leftrightarrow a \sqsubseteq g x$ (2)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

[Motivation](#page-1-0) [Recursion comes in](#page-85-0) [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

 $f \dashv g$

(Courtesy of R. Backhouse)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

 $f a \leqslant x \Leftrightarrow a \sqsubseteq g x$

- f lower (aka left) adjoint
- g upper (aka right) adjoint

In fact, note the *superlatives* in

- f a lowest x such that $a \sqsubseteq g x$
- $g x \rightarrow$ greatest a such that $f a \leq x$

 $f \dashv g$

(Courtesy of R. Backhouse)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

 $f a \leqslant x \Leftrightarrow a \sqsubseteq g x$

- f lower (aka left) adjoint
- g upper (aka right) adjoint

In fact, note the *superlatives* in

- f a lowest x such that $a \sqsubseteq g x$
- $g \times -$ greatest a such that $f \times g \times x$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Handling approximations

Did you say "superlatives"?

We have plenty of these in **software requirements**:

... the **largest** prefix of x with at most n elements

(take $n \times$, Haskell terminology)

... the **largest** number that multiplied by y is at most x

(integer division $x \div y$).

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Handling approximations

Did you say "superlatives"?

We have plenty of these in **software requirements**:

the **largest** prefix of x with at most n elements

 $(take n x, Haskell terminology)$

the **largest** number that multiplied by y is at most x

(integer division $x \div y$).

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

On numeric division

In the reals (R) : $a \times y = x \Leftrightarrow a = x/y$ — an isomorphism. In the natural numbers (N_0) : $a \times y \leqslant x \Leftrightarrow a \leqslant x \div y$

— a Galois connection.

K ロ ▶ K @ ▶ K 할 X K 할 X [활]할 (?) Q @

On numeric division

In the reals (R) : $a \times y = x \Leftrightarrow a = x/y$ — an isomorphism. In the natural numbers (N_0) : $a \times y \leqslant x \Leftrightarrow a \leqslant x \div y$

— a Galois connection.

K ロ ▶ K @ ▶ K 할 X K 할 X [활]할 (?) Q @

KO K K (F K E K E K A E K A K K K K K K K K K

The easy and the hard

Whole division specification:

Hard $(\div y)$ explained by easy (x, y) .

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

The easy and the hard

Another example:

take n x_s should yield the **longest** possible **prefix** of x_s not exceeding n in length.

Specification:

KO K K (F K E K E H E V A C K

The easy and the hard

Many examples, e.g.

The function takeWhile p xs should yield the **longest prefix** of x_s whose elements all satisfy predicate p .

and

The function filter $p \times s$ should yield the **longest sublist** of x_s such that all x in such a sublist satisfy predicate p .

NB: assuming the sublist ordering $ys \le xs$ such that e.g. "ab" \le "acb" holds but "ab" \preceq "bca" does not hold.

Programming from specifications

Can the well-known implementation

$$
x \div y =
$$

\nif $x \ge y$
\nthen $1 + (x - y) \div y$
\nelse 0

be calculated from the specification

 $z \times y \leqslant x \Leftrightarrow z \leqslant x \div y$?

Ups! Not quite right subtratction in N_0 is not invertible!

No worry — another GC comes to the rescue:

$$
a\ominus b\leqslant x \Leftrightarrow a\leqslant x+b
$$

KO K K (F K E K E H E V A C K

Programming from specifications

Can the well-known implementation

$$
x \div y =
$$

\nif $x \ge y$
\nthen $1 + (x - y) \div y$
\nelse 0

be calculated from the specification

 $z \times v \leqslant x \Leftrightarrow z \leqslant x \div v$?

Ups! Not quite right subtratction in N_0 is not invertible!

No worry — another GC comes to the rescue:

 $a \ominus b \leqslant x \Leftrightarrow a \leqslant x + b$

KO K K (F K E K E H E V A C K

KO K K (F K E K E H E V A C K

Indirect equality

Now another brick in the wall (**partial orders** only):

 $a = b \Leftrightarrow (\forall z :: z \leqslant a \Leftrightarrow z \leqslant b)$ (4)

This principle of indirect equality blends nicely with GCs:

 $z \leqslant \varrho$ a \ldots (go to the easy side, do things there and come back) $z \leqslant ... g ... a' ...$ $g \ a = ...g \ ... \ a' ...$

KO K K (F K E K E H E V A C K

Indirect equality

Now another brick in the wall (**partial orders** only):

 $a = b \Leftrightarrow (\forall z :: z \leqslant a \Leftrightarrow z \leqslant b)$ (4)

This principle of indirect equality blends nicely with GCs:

 $z \leqslant \varepsilon a$ ⇔ { ... } \ldots (go to the **easy** side, do things there and come back) ⇔ { ... } $z \leqslant ...g ... z' ...$ \therefore { indirect equality } $g \; a = ...g \, ... \, a' ...$
K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Example — $x \div y$

Case $x \geqslant y$:

 $z \leq x \div y$ \Leftrightarrow { (xy) + $(\div y)$ and $(x \ominus y) + y = x$ for $x \geq y$ } $z \times y \leqslant (x \ominus y) + y$ \Leftrightarrow { $(\ominus y) \dashv (+y)$ } $(z \times y) \ominus y \leqslant x \ominus y$ \Leftrightarrow { factoring y works also for \ominus } $(z \ominus 1) \times y \leqslant x \ominus y$ $\Leftrightarrow \int$ chain the two **GC**s } $z \leqslant 1 + (x \ominus y) \div y$ $\{$ recursive branch calculated thanks to indirect equality $\}$ $x \div y = 1 + (x \ominus y) \div y$

Specification GC:

length ys $\leq n \wedge ys \sqsubseteq xs \Leftrightarrow ys \sqsubseteq take n xs$ (5)

KO K K (F K E K E H E V A C K

Standard implementation (Haskell):

\n
$$
\text{take } 0 = []
$$
\n

\n\n $\text{take } -[] = []$ \n

\n\n $\text{take } (n + 1) (h : xs) = h : \text{take } n \times s$ \n

The same question again: how to derive the **implementation** of take from the specification?

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

$Example - take$

Before that:

We can derive properties of take without knowing its implementation.

Example:

What happens if we chain two takes in a row?

We calculate

 $(take \, m) \cdot (take \, n)$

in the next slide.

- $ys \sqsubset take \ m \ (take \ n \ xs)$ ⇔ { GC [\(5\)](#page-37-0) } length ys \leqslant m \wedge ys \sqsubset take n xs $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$ length ys \leqslant m \wedge length ys \leqslant n \wedge ys $\sqsubset x$ s $\Leftrightarrow \{ \min \mathsf{GC}: a \leqslant x \wedge a \leqslant y \Leftrightarrow a \leqslant x \land m\mathsf{in}' \, y \}$ length ys \leq (m 'min' n) \wedge ys \sqsubseteq xs
- $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$

 $ys \leq$ take $(m'min' n)$ xs

 \therefore { indirect equality } take m (take $n xs)$) = take (m 'min' n) xs

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

 $ys \sqsubset take \ m \ (take \ n \ xs)$ ⇔ { GC [\(5\)](#page-37-0) } length ys \leqslant m \wedge ys \sqsubset take n xs $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$ length ys \leqslant m \wedge length ys \leqslant n \wedge ys \sqsubset xs $\Leftrightarrow \{ \min \mathsf{GC} : a \leqslant x \wedge a \leqslant y \Leftrightarrow a \leqslant x \land m \mathsf{in}' \mathsf{y} \}$ length ys \leq (m 'min' n) \wedge ys \sqsubseteq xs $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$ $\Leftrightarrow \{ \text{ again GC (5)} \}$ $ys \leq$ take $(m'min' n)$ xs \therefore { indirect equality } take m (take $n xs)$) = take (m 'min' n) xs

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Now the **implementation** (3 cases):

take $0 = []$ ys \sqsubseteq take 0 \sqsubseteq $ys \sqsubset take \sqsubset [$] ⇔ { GC } length ys $\leq 0 \wedge y$ s \sqsubset \sqsubset length ys \leq \land ys \sqsubseteq \lceil $\Leftrightarrow \{ length [] = 0 \}$ $ys = []$ $\sqrt{s} \sqsubset [$ $\Leftrightarrow \{$ antisymmetry of (\sqsubseteq) \therefore { indirect equality } $vs \sqsubset [$] take \Box \Box \Box \therefore { indirect equality } take $0 =$ [] K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Now the **implementation** (3 cases):

take $0 = []$ take $\lfloor | \rfloor = | \rfloor$ ys \sqsubseteq take 0 \sqsubseteq $ys \sqsubseteq take \sqsubseteq []$ ⇔ { GC } ⇔ { GC } length ys $\leq 0 \wedge ys \sqsubseteq$ length ys \leq \land ys \sqsubset [] $\Leftrightarrow \{ length [] = 0 \}$ $\Leftrightarrow \{ length [] \leqslant _ \}$ $ys = []$ $\mathsf{y} \mathsf{s} \sqsubset [$ $\Leftrightarrow \{$ antisymmetry of (\sqsubseteq) $\{$ indirect equality $\}$ $vs \sqsubset [$ take \lfloor \rfloor \lfloor \rfloor \therefore { indirect equality } take $0 =$ [] K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

KO K K (F K E K E H E V A C K

Example — take

Finally, the remaining case:

take $(n+1)$ $(h:xs) = h$: take n xs

We will need the following fact about list-prefixing:

 $s \sqsubseteq (h : t) \Leftrightarrow s = [] \vee \langle \exists s' : s = (h : s') : s' \sqsubseteq t \rangle$ (6)

(More about this later.)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

 $\mathsf{y}\mathsf{s} \prec \mathsf{take}\, (n+1)\, (h:\mathsf{x}\mathsf{s})$ $\Leftrightarrow \{GC(3) : prefix(6)\}$ $\Leftrightarrow \{GC(3) : prefix(6)\}$ $\Leftrightarrow \{GC(3) : prefix(6)\}$ $\Leftrightarrow \{GC(3) : prefix(6)\}$ $\Leftrightarrow \{GC(3) : prefix(6)\}$ length ys $\leqslant n + 1 \wedge (ys = [] \vee \langle \exists y s' : ys = (h : ys') : ys' \preceq xs) \rangle$ $\Leftrightarrow \{\text{distribution} : \text{length} \left[\cdot \leq n+1 \right] \}$ $\mathsf{y}\mathsf{s} = [\,] \vee \langle \exists \; \mathsf{y}\mathsf{s}' \; : \; \mathsf{y}\mathsf{s} = (\mathsf{h} \colon \mathsf{y}\mathsf{s}') : \; \mathsf{length} \; \mathsf{y}\mathsf{s} \leqslant \mathsf{n} + 1 \land \mathsf{y}\mathsf{s}' \preceq \mathsf{x}\mathsf{s} \rangle$ $\Leftrightarrow \{$ length $(h : t) = 1 +$ length t } $\mathsf{y}\mathsf{s} = [\,] \vee \langle \exists \; \mathsf{y}\mathsf{s}' \; : \; \mathsf{y}\mathsf{s} = (\mathsf{h} \colon \mathsf{y}\mathsf{s}') : \; \mathsf{length} \; \mathsf{y}\mathsf{s}' \leq \mathsf{n} \wedge \mathsf{y}\mathsf{s}' \preceq \mathsf{x}\mathsf{s} \rangle$ ⇔ { GC [\(3\)](#page-30-0) } $ys = [] \vee \langle \exists ys' : ys = (h : ys') : ys' \preceq take n xs \rangle$ \Leftrightarrow { fact [\(6\)](#page-43-0) } $vs \prec h$: take n xs { indirect equality over list prefixing (\sqsubseteq) } take $(n+1)$ $(h : xs) = h : take \; n \; xs$

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Nice but...

- Where did we get assumption [\(6\)](#page-43-0) from?
- How do we calculate from GCs instead of proving from GCs?

Galois connections $+$ indirect equality

- S.-C. Mu and J.N. Oliveira. Programming from Galois connections. JLAP, 81(6):680–704, 2012.
- P.F. Silva, J.N. Oliveira. 'Galculator': functional prototype of a Galois connection based proof assistant. PPDP '08, 44–55, 2008.

Galois connections

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

From GCs to adjunctions

Recall
$$
a \xrightarrow{(\leq)} b
$$
 meaning
\n $(a, b) \in (\leq)$

that is

$$
(\leqslant) (a, b) = True
$$

that is

 (\leqslant) $(a, b) = \{(a, b)\}\;$

— singleton set made of one of the pairs of relation (\leqslant) .

From GCs to adjunctions

Now compare

 (\leqslant) $(a, b) = \{(a, b)\}\;$

with something like (broadening scope):

 $\mathfrak{C}(a, b) = \{$ 'things that relate a to b in context \mathfrak{C}' }

If such "things" have a **name**, e.g. m, we can write $m : a \rightarrow b$ to indicate their type.

We land into a **category** $-\mathfrak{C}$ — where a and b are objects and m is a morphism.

From GCs to adjunctions

Now compare

 (\leqslant) $(a, b) = \{(a, b)\}\;$

with something like (broadening scope):

 $\mathfrak{C}(a, b) = \{$ 'things that relate a to b in context \mathfrak{C}' }

If such "things" have a **name**, e.g. m, we can write $m : a \rightarrow b$ to indicate their type.

We land into a **category** $-\mathfrak{C}$ — where a and b are objects and m is a morphism.

Categories

Extremely versatile concept, e.g.

 \mathfrak{C} $(a, b) =$ $\{$ 'matrices with a-many columns and b-many rows' $\}$

or

 $\mathfrak{C}(a, b) = \{$ 'Haskell functions from type a to type b' $\}$

or

 $\mathfrak{C}(a, b) = \{$ 'binary relations in $a \times b'$ }

From preorders to categories

"Dramatic" increase in expressiveness:

The same game, but in the champions league \bigodot

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

From preorders to categories

"Dramatic" increase in expressiveness:

The same game, but in the champions league $\langle \cdot \rangle$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

("Lossy") natural transformations

Recall our starting point,

 $\int f(g x) \leqslant x$ $a \sqsubseteq g$ (f a)

which meanwhile we wrote thus:

$$
\begin{cases} f(g \times) \longrightarrow x \\ a \longleftarrow g(f a) \end{cases}
$$

Champions league version:

$$
\begin{cases} \mathbb{F}(\mathbb{G}X) \xrightarrow{\epsilon} X \\ A \xleftarrow{\eta} \mathbb{G}(\mathbb{F}A) \end{cases} (7)
$$

KO K K (F K E K E K A E K A K K K K K K K K K

where $\mathbb F$ and $\mathbb G$ are functors.

(More about ϵ and η later.)

("Lossy") natural transformations

Recall our starting point,

 $\int f(g x) \leqslant x$ $a \sqsubseteq g$ (f a)

which meanwhile we wrote thus:

$$
\begin{cases} f(g \times) \longrightarrow x \\ a \longleftarrow g(f a) \end{cases}
$$

Champions league version:

$$
\begin{cases} \mathbb{F}(\mathbb{G} X) \xrightarrow{\epsilon} X \\ A \xleftarrow{\eta} \mathbb{G}(\mathbb{F} A) \end{cases} (7)
$$

KO K K (F K E K E K A E K A K K K K K K K K K

where $\mathbb F$ and $\mathbb G$ are functors.

(More about ϵ and η later.)

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ > K @ → K 할 > K 할 > [할 = K) Q @

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ > K @ → K 할 > K 할 > [할 = K) Q @

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ > K @ → K 할 > K 할 > [할 = K) Q @

 $\mathfrak{D}(\mathbb{F} A, X) \cong \mathfrak{C}(A, \mathbb{G} X)$ (8)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

$$
\mathfrak{D}(\mathbb{F} A,X) \cong \mathfrak{C}(A,\mathbb{G} X) \tag{8}
$$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

(9)

KO K K (F K E K E K A E K A K K K K K K K K K

Adjunction $\mathbb{L} \rightarrow \mathbb{R}$

Terminology:

- \mathbb{L} left adjoint
- \mathbb{R} right adjoint
- $\lceil f \rceil$ R-transpose of f
- $|g|$ L-transpose of g

K ロ ▶ K @ ▶ K 할 X K 할 X [활]할 (?) Q @

Adjunction $\mathbb{L} \rightarrow \mathbb{R}$

In detail — universal property:

Terminology $-\epsilon = |id|$ is called the **co-unit** of the adjunction.

(Covariant) exponentials: $(2 \times K) \dashv (-K)$

Perhaps the most famous adjunction:

$$
\begin{cases} \mathbb{L} X = X \times K \\ \mathbb{R} X = X^{K} \\ \epsilon = \mathbf{e} \mathbf{v} \end{cases} \qquad \begin{cases} \begin{bmatrix} f \\ \end{bmatrix} = \mathbf{curry}\,f \\ \begin{bmatrix} f \\ \end{bmatrix} = \mathbf{uncarry}\,f \end{cases}
$$

where

curry f a $b = f(a, b)$ uncurry $g(a, b) = g a b$ **ev** $(f, k) = f k$

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

(Covariant) exponentials: $(2 \times K) \dashv (-K)$

$$
k = \text{curry } f \Leftrightarrow \underbrace{\text{ev} \cdot (k \times id)}_{\text{uncurry } k} = f
$$
\n
$$
k = \text{curry } f \qquad B^{K} \qquad B^{K} \times K \xrightarrow{\text{ev}} B
$$
\n
$$
k = \text{curry } f \qquad k \times id \qquad f
$$
\n
$$
A \qquad A \times K
$$
\n
$$
\text{Function:} \qquad f^{K} = (f \cdot) \qquad (10)
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Pairing: $\Delta \dashv \times$

$$
\left\{\n\begin{array}{l}\n\mathbb{L}\ X = \Delta \ X = (X, X) \\
\mathbb{R}\ (X, Y) = X \times Y \\
\epsilon = (\pi_1, \pi_2)\n\end{array}\n\right.
$$

$$
\left\{\n\begin{array}{l}\n\lceil(f,g)\rceil = \langle f,g\rangle \\
\lfloor k\rfloor = (\pi_1 \cdot k, \pi_2 \cdot k)\n\end{array}\n\right.
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Pairing: $\Delta \dashv \times$

That is:

$$
k = \langle f, g \rangle \quad \Leftrightarrow \quad \begin{cases} \pi_1 \cdot k = f \\ \pi_2 \cdot k = g \end{cases} \tag{11}
$$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Co-pairing: $(+)$ $\exists \Delta$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Co-pairing: $+ \Delta$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Power transpose: $\mathbb{J} \dashv \mathbb{P}$

 $\mathfrak{D} := \mathfrak{S}$ (sets + functions) and $\mathfrak{C} := \mathfrak{R}$ (sets + relations)

$$
\begin{cases} \mathbb{J} \, X = X \\ \mathbb{J} \, (\mathbb{J} \, k) \, x \Leftrightarrow y = k \, x \end{cases} \quad \begin{cases} \lceil R \rceil = \Lambda R \\ \mathbb{J} \, \lfloor k \rfloor \, x = y \in (k \, x) \end{cases}
$$

 \in : $A \leftarrow \mathbb{P}$ A is the set **membership** relation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

Corollaries of $k = \lceil f \rceil \Leftrightarrow \epsilon \cdot \mathbb{L} \; k = f$

K ロ ▶ K @ ▶ K 할 > K 할 > [활]할 | ⊙ Q ⊙

Corollaries

Dual formulation

As with GCs, universal property can be expressed in a dual way, as follows:

 $k = |f|$ ⇔ { identity; homset isomorphism } $\lceil k \cdot id \rceil = f$ $\Leftrightarrow \{ \text{absorption (16)}; [id] = \eta \}$ $\Leftrightarrow \{ \text{absorption (16)}; [id] = \eta \}$ $\Leftrightarrow \{ \text{absorption (16)}; [id] = \eta \}$ $(\mathbb{R} \; k) \cdot \eta$ $\overline{[k]}$ $=$ f

Dual formulation

Diagram:

KO K K (F K E K E K A E K A K K K K K K K K K

KOD KARD KED KED EN MAG

Dual formulation

Diagram:

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 바) 9 0 0

Dual corollaries

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Dual corollaries

absorption:

$$
\epsilon \cdot \mathbb{L} \eta = id \tag{28}
$$

Adjunction composition (exchange law)

Assuming $\mathbb{L} \dashv \mathbb{M} \dashv \mathbb{R}$ and inspecting $\mathbb{L} \ A \stackrel{k}{\longrightarrow} \mathbb{R} \ B$:

 $M L A \rightarrow B$ ∼= { ^M ^a ^R } $L A \rightarrow \mathbb{R} B$ \simeq { L $+M$ } $A \rightarrow M \mathbb{R} B$

On the one hand, $k = \lceil f \rceil_{\mathbb{R}}$ for exactly one $M L A \xrightarrow{f} B$.

On the other hand, $k = |g|_{\mathbb{L}}$ for exactly one $A \stackrel{g}{\longrightarrow} \mathbb{M} \mathbb{R} B$.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

So the exchange law

 $[f]_{\mathbb{R}} = |g|_{\mathbb{L}}$ (29)

holds for such $\mathbb{M} \mathbb{L} A \xrightarrow{f} B$ and $A \xrightarrow{g} \mathbb{M} \mathbb{R} B$.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

$(+)$ Δ Δ Δ (\times)

 $\mathbb{M} \mathbb{L} A \stackrel{f}{\longrightarrow} B$ is of type $\Delta (+) (A, C) \longrightarrow (B, D)$:

$$
f = (A + C, A + C) \xrightarrow{(m,n)} (B, D)
$$

 $A \stackrel{g}{\longrightarrow} \mathbb{M} \mathbb{R} B$ is of type $(A, C) \longrightarrow \Delta (\times) (B, D)$:

 $g = (A, C) \xrightarrow{(i,j)} (B \times D, B \times D)$

So

 $\lceil f \rceil_{\mathbb{R}} = \lceil g \rceil_{\mathbb{L}}$ becomes $\langle m, n \rangle = [i, j]$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

$(+)$ Δ Δ Δ (\times)

 $\mathbb{M} \mathbb{L} A \stackrel{f}{\longrightarrow} B$ is of type $\Delta (+) (A, C) \longrightarrow (B, D)$:

$$
f = (A + C, A + C) \xrightarrow{(m,n)} (B, D)
$$

 $A \stackrel{g}{\longrightarrow} \mathbb{M} \mathbb{R} B$ is of type $(A, C) \longrightarrow \Delta (\times) (B, D)$:

$$
g = (A, C) \xrightarrow{(i,j)} (B \times D, B \times D)
$$

So

 $[f]_{\mathbb{R}} = |g|_{\mathbb{L}}$ becomes $\langle m, n \rangle = [i, j]$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Solving $\langle m, n \rangle = [i, j]$

Find *m* and *n* for $i = \langle h, k \rangle$ and $j = \langle p, q \rangle$ in:

$$
\langle m, n \rangle = [\langle h, k \rangle, \langle p, q \rangle]
$$

\n
$$
\Leftrightarrow \{ (+) \pm \Delta \}
$$

\n
$$
\{(m, n) (i_1, i_1) = (h, k) \land \Delta + B \Leftrightarrow B
$$

\n
$$
\Leftrightarrow \{ \text{re-arranging } \} \land \{\Delta + B \Leftrightarrow B \Lef
$$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

 $(+)$ $\exists \Delta \exists (\times)$

The composition of the two adjunctions therefore yields the

exchange law:

 $\langle [h, p], [k, q] \rangle = [\langle h, k \rangle, \langle p, q \rangle]$ (30)

(As will be seen later, this law will play a role when dealing with mutual recursion.)

Recursion comes in

Algebras $A \xleftarrow{a} \mathbb{F} A$

Initial algebra
$$
\mu_{\mathbb{F}} \xleftarrow{\text{in}} \mathbb{F}
$$
 $\mu_{\mathbb{F}}$ such that morphism **in** $\xrightarrow{\text{(a)}} a$ is unique:

Morphisms
$$
a \xrightarrow{f} b
$$

between F-algebras

a \mathbf{f} ľ $\mu_\mathbb{F}$ f ļ \leftarrow ^a F μ F \mathbb{F} f r b $A \leftarrow F A$ b o

lead to F-recursion.

Terminology: $\left(\left| _\right|\right) =$ catamorphism.

KO K K (F K E K E K A E K A K K K K K K K K K

$(|$ | $|)$ meets $\mathbb{L} \dashv \mathbb{R}$

Chemistry with recursion:

 $\lceil f \rceil = (\lceil h \rceil)$ $\Leftrightarrow \{ cata-universal (31) \}$ $\Leftrightarrow \{ cata-universal (31) \}$ $\Leftrightarrow \{ cata-universal (31) \}$ $\lceil f \rceil \cdot \mathsf{in} = \lceil h \rceil \cdot \mathbb{F} \lceil f \rceil$ \Leftrightarrow { fusion [\(15\)](#page-73-0) twice } $f \cdot \mathbb{L}$ in $] = [h \cdot \mathbb{L} \mathbb{F} [f]]$ $\Leftrightarrow \{ \text{ isomorphism } [_] \}$ $f \cdot \mathbb{L}$ in $= h \cdot \mathbb{L} \mathbb{F} [f]$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

$(|$ ₋ $|)$ meets \mathbb{L} $\exists \mathbb{R}$

Therefore:

 $f \cdot \mathbb{L}$ in = h $\mathbb{L} \mathbb{F} [f] \quad \Leftrightarrow \quad [f] = (|h|)$ (32)

Diagrams:

(ロ) (個) (目) (目) (目) 目目 のQC

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Example: \Box meets $\Delta \vdash (\times)$

Pairing adjunction:

$$
\mathbb{L} f = \Delta f = (f, f)
$$

$$
\epsilon = (\pi_1, \pi_2)
$$

$$
[(f, g)] = \langle f, g \rangle
$$

Left-hand side:

$$
(f,g) \cdot \mathbb{L} \text{ in } = (h,k) \cdot \mathbb{L} \left(\mathbb{F} \left[(f,g) \right] \right)
$$

\n
$$
\Leftrightarrow \{ \mathbb{L} f = (f,f) : \left[(f,g) \right] = \langle f,g \rangle \}
$$

\n
$$
(f,g) \cdot (\text{in}, \text{in}) = (h,k) \cdot \left(\mathbb{F} \langle f,g \rangle, \mathbb{F} \langle f,g \rangle \right)
$$

\n
$$
\Leftrightarrow \{ \text{ composition and equality of pairs of functions } \}
$$

\n
$$
\{ \begin{array}{c} f \cdot \text{in} = h \cdot \mathbb{F} \langle f,g \rangle \\ g \cdot \text{in} = k \cdot \mathbb{F} \langle f,g \rangle \end{array}
$$

Cata meets $\Delta \dashv (\times)$

Right-hand side:

 $[(f, g)] = ([(h, k)]$ $\Leftrightarrow \{ [f, g] \equiv \langle f, g \rangle \text{ twice } \}$ $\langle f, g \rangle = \langle |\langle h, k \rangle| \rangle$

Putting both sides together we get the **mutual recursion** law:

$$
\langle f, g \rangle = (\langle h, k \rangle) \quad \Leftrightarrow \quad \begin{cases} f \cdot \mathbf{in} = h \cdot \mathbb{F} \langle f, g \rangle \\ g \cdot \mathbf{in} = k \cdot \mathbb{F} \langle f, g \rangle \end{cases}
$$
 (33)

Why mutual recursion matters

Mutual recursion very useful.

It comes handy in particular dynamic programming situations.

Examples follow in the Peano-recursion $(in = [zero, succ])$ setting, whose catamorphisms (folds) are **for**-loops,

for f $i = (|[i, f]]$

that is

for f i $0 = i$ for f i $(n+1) = f$ (for f i n)

Example (Church numerals): *church n f b = for f b n*.

KO K K (F K E K E K A E K A K K K K K K K K K

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Why mutual recursion matters — Fibonacci Classic DP problem

fib $0 = 1$ fib $1 = 1$ fib $(n + 2) =$ fib $(n + 1) +$ fib n

unfolds to:

 $f(0) = 1$ $f(n+1) = f n + f$ ib n $fib 0 = 1$ $fib(n+1) = f n$

That is:

$$
f \cdot [zero, succ] = [1, add] \cdot \langle f, fib \rangle
$$

fib \cdot [zero, succ] = [1, π_1] \cdot \langle f, fib \rangle

Why mutual recursion matters — Fibonacci

This together with the **exchange law** [\(30\)](#page-84-0) leads to:

 $\langle f, fib \rangle = (|[(1, 1), \langle add, \pi_1 \rangle])$ (34)

That is (Haskell):

```
fib = snd \cdot for \; loop \; (1,1) where
  loop(x, y) = (x + y, x)
```
For non-functional programmers:

```
for (i=1; i \le n; i++) {int a=x; x=x+y; y=a;}
```
KO K K (F K E K E K A E K A K K K K K K K K K

Why mutual recursion matters — Fibonacci

This together with the **exchange law** [\(30\)](#page-84-0) leads to:

 $\langle f, fib \rangle = (|[(1, 1), \langle add, \pi_1 \rangle])$ (34)

That is (Haskell):

 $fib = snd \cdot for \; loop \; (1,1)$ where $loop(x, y) = (x + y, x)$

For non-functional programmers:

```
int fib(int n)
{
   int x=1; int y=1; int i;
   for (i=1; i<=n; i++) {int a=x; x=x+y; y=a;}
   return y;
};
```
KO K K (F K E K E K A E K A K K K K K K K K K

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Why mutual recursion matters — Catalan numbers

$$
C_n=\frac{(2n)!}{(n+1)!(n!)}
$$

Lots of factorial (re)calculations - try "DP artilhery"?

 No — use **mutual recursion** instead, based on this property:

$$
C_{n+1} = \frac{4n+2}{n+2}C_n
$$

Three functions in mutual recursion:

$$
c n = C_n
$$

\n
$$
f n = 4n + 2
$$

\n
$$
g n = n + 2
$$

\nThen (next slide):

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Why mutual recursion matters — Catalan numbers

"Peano unfolding":

$$
c 0 = 1
$$

\n
$$
c (n + 1) = \frac{(f n) \times (c n)}{g n}
$$

\n
$$
f 0 = 2
$$

\n
$$
f (n + 1) = f n + 4
$$

\n
$$
g 0 = 2
$$

\n
$$
g (n + 1) = g n + 1
$$

Finally applying the law we get a **for-loop** with 3 local variables:

$$
c = pri \cdot (\text{for loop init}) \text{ where} \nloop (c, f, g) = ((f * c) \div g, f + 4, g + 1) \ninic = (1, 2, 2) \npri (c, -, -) = c
$$

Why mutual recursion matters — minimax

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Why mutual recursion matters — minimax

[Wikipedia:](https://en.wikipedia.org/wiki/Minimax)

```
function minimax(node, depth, maximizingPlayer) is
    if depth = 0 or node is a terminal node then
        return the heuristic value of node
    if maximizingPlayer then
        value := -\inftyfor each child of node do
            value := max(value, minimax(child, depth - 1, FALSE))return value
    else (** minimize plane * )value := +\inftyfor each child of node do
            value := min(value, minimax(child, depth - 1, TRUE))return value
```
 $(* Initial call *)$ minimax(origin, depth, TRUE)

Why mutual recursion matters — minimax

```
Mutual recursion (players alice and bob):
```
 $minimax = \langle$ alice, bob \rangle

where

```
\int alice \cdot in = [id, umax] \cdot \mathbb{F} bob
     bob \cdot in = [id, umin] \cdot \mathbb{F} alice
```
assuming

 $in = [Leaf, Fork]$ $\mathbb{F} f = id + f \times f$

in the contex of

data LTree $a =$ Leaf a | Fork (LTree a, LTree a)

(generalizable to other $\mathbb F$ tree-structures).

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Further chemistry with recursion

Back to [\(32\)](#page-87-0), recall $f \cdot \mathbb{L}$ in $= h \cdot \mathbb{L} \mathbb{F} [f] \Leftrightarrow [f] = (||h||)$

and the diagram:

How to get f instead of $\lfloor f \rfloor$ in the recursive call to obtain f as a hylomorphism?

Further chemistry with recursion

The resource we have for this is **cancellation** (14) :

 $\epsilon \cdot \mathbb{L} \left[f \right] = f$

However, L in $\mathbb{L} \mathbb{F}$ is in the wrong position and needs to commute with \mathbb{F} .

We need a **distributive** law $\mathbb{L} \mathbb{F} \to \mathbb{F} \mathbb{L}$.

More generally, we rely on some **natural transformation** $\phi: \mathbb{L} \mathbb{F} \to \mathbb{G} \mathbb{L}$

enabling such a commutation over some G.

Further chemistry with recursion

For $\epsilon \cdot \mathbb{L}$ $\lceil f \rceil = f$ to be of use, we need \mathbb{G} ϵ somewhere in the pipeline.

We thus refine $h := h \cdot \mathbb{G} \epsilon \cdot \phi$ above and carry on: $\lceil f \rceil = \left(\lceil h \cdot \mathbb{G} \epsilon \cdot \phi \rceil \right)$ ⇔ { [\(32\)](#page-87-0) } $f \cdot \mathbb{L}$ in = $h \cdot \mathbb{G} \epsilon \cdot \phi \cdot \mathbb{L} \mathbb{F} [f]$ $\Leftrightarrow \int$ natural- ϕ : $\phi \cdot \mathbb{L} \mathbb{F} f = \mathbb{G} \mathbb{L} f \cdot \phi$ $f \cdot \mathbb{L}$ in $= h \cdot \mathbb{G} \in \cdot \mathbb{G} \mathbb{L}$ $\lceil f \rceil \cdot \phi$ $\Leftrightarrow \int$ functor \mathbb{G} ; cancellation $\epsilon \cdot \mathbb{L}$ $\lceil f \rceil = f (14)$ $\lceil f \rceil = f (14)$ $f \cdot \mathbb{L}$ in $= h \cdot \mathbb{G} f \cdot \phi$

\mathbb{G} -hylo adjoint to \mathbb{F} -cata

We reach $f \cdot (\mathbb{L} \text{ in}) = h \cdot \mathbb{G} \cdot f \cdot \phi \quad \Leftrightarrow \quad [f] = ([(h \cdot \mathbb{G} \cdot \epsilon \cdot \phi)])$ G-hylomorphism adjoint F-catamorphism (35)

where natural transformation

 $\phi: \mathbb{L} \mathbb{F} \to \mathbb{G} \mathbb{F}$

captures the necessary switch of recursion-pattern between hylo (\mathbb{G}) and **cata** (\mathbb{F}) .

K ロ ▶ K @ ▶ K 할 > K 할 > [활]할 | ⊙ Q ⊙

Diagrams

Adjoint \mathbb{F} -cata (\mathfrak{D}) :

$$
A \leftarrow \stackrel{h}{\longrightarrow} \mathbb{G} \ A \leftarrow \stackrel{\mathbb{G} \ e}{\longrightarrow} \mathbb{G} \ \mathbb{L} \ \mathbb{R} \ A \leftarrow \stackrel{\phi}{\longrightarrow} \mathbb{L} \ \mathbb{F} \ \mathbb{R} \ A
$$

G-hylo-universal

The interest in

 $f \cdot (\mathbb{L} \text{ in}) = h \cdot \mathbb{G} \cdot f \cdot \phi \quad \Leftrightarrow \quad \lceil f \rceil = (\lceil h \cdot \mathbb{G} \cdot \epsilon \cdot \phi \rceil)$

is that one can use "cata-artilhery" to reason about h ylo f .

But not necessarily: $\vert - \vert$ - "shunting" on the right side

$$
\underbrace{f \cdot (\mathbb{L} \text{ in}) = h \cdot \mathbb{G} \cdot f \cdot \phi}_{\text{G-hylomorphism}} \quad \Leftrightarrow \quad f = \underbrace{\lfloor (\lceil h \cdot \mathbb{G} \cdot e \cdot \phi \rceil) \rfloor}_{\{\hbar\}}
$$

gives us a new combinator with *universal property*:

 $f = \langle h | \rangle \quad \Leftrightarrow \quad f \cdot \mathbb{L}$ in $= h \cdot \mathbb{G} f \cdot \phi$ (36)

$\langle | _ | \rangle$ fusion, reflection and so on

fusion:

 $k \cdot \langle f | \cdot \rangle = \langle g | \cdot \rangle \quad \Leftarrow \quad k \cdot f = g \cdot \mathbb{G} \cdot k \quad (37)$

reflection (in case ϕ is an **isomorphism**):

 $\langle |\alpha| \rangle = id$ (38)

where α abbreviates $\mathbb L$ in $\cdot \, \phi^\circ$ in

$$
f = \langle h \rangle
$$
 \Leftrightarrow $f \cdot \underbrace{\mathbb{L} \text{ in } \cdot \phi^{\circ}}_{\alpha} = h \cdot \mathbb{G} f$

cancellation:

 $\langle h|h| \cdot \alpha = h \cdot \mathbb{G} \langle h|h|$

Many applications!

Many results in the literature arise as instances of this theorem. For instance, the **structural recursion theorem** of [Bird and](#page-144-1) [de Moor \(1997\)](#page-144-1):

Theorem 3.1 If ϕ is natural in the sense that $G(h \times id) \cdot \phi = \phi \cdot (Fh \times id)$, then $f \cdot (\alpha \times id) = h \cdot Gf \cdot \phi$ if and only if $=$ apply \cdot (([curry $(h \cdot \text{Gapply} \cdot \phi)$]) $\times id$).

Details:

 $\mathbb{L} \dashv \mathbb{R} := (\times K) \dashv (_K) \qquad \left\{ \begin{array}{c} \mathbb{F} \; X = 1 + A \times X \\ \mathbb{F} \; X = 1 + A \times X \end{array} \right.$ $G X = (1 + K) + A \times X$ $\phi = (id + \text{assoc}) \cdot distl$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Many applications!

Many results in the literature arise as instances of this theorem. For instance, the **structural recursion theorem** of [Bird and](#page-144-1) [de Moor \(1997\)](#page-144-1):

Theorem 3.1 If ϕ is natural in the sense that $G(h \times id) \cdot \phi = \phi \cdot (Fh \times id)$, then $f \cdot (\alpha \times id) = h \cdot \mathsf{G} f \cdot \phi$ if and only if = $apply \cdot (([curry (h \cdot Gapply \cdot \phi)]) \times id).$

Details:

$$
\mathbb{L} \dashv \mathbb{R} := (\times \mathsf{K}) \dashv (-^{\mathsf{K}})) \qquad \left\{ \begin{array}{l} \mathbb{F} \ \mathsf{X} = 1 + \mathsf{A} \times \mathsf{X} \\ \mathbb{G} \ \mathsf{X} = (1 + \mathsf{K}) + \mathsf{A} \times \mathsf{X} \\ \phi = (id + \text{assoc}) \cdot \text{distl} \end{array} \right.
$$
K ロ > K @ > K 할 > K 할 > [할 = K) Q @

Relational catas thanks to $\mathbb{J} \dashv \mathbb{P}$

Adjoint \mathbb{F} -cata (functional):

$$
A \xleftarrow{R} \mathbb{G} A \xleftarrow{\mathbb{G} \in} \mathbb{G} \mathbb{P} A \xleftarrow{\phi} \mathbb{F} \mathbb{P} A
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있어

Relational catas thanks to $\mathbb{J} \dashv \mathbb{P}$

Recall (relational side):

$$
\begin{cases} \mathbb{J} X = \mathbb{J} X \\ y (\mathbb{J} f) x \Leftrightarrow y = f x \end{cases}
$$

Relational catas thanks to $\mathbb{J} \dashv \mathbb{P}$

Recall (relational side):

$$
\begin{cases} \mathbb{J} X = X \\ y (\mathbb{J} f) x \Leftrightarrow y = f x \end{cases}
$$

Because $J X = X$ we can choose $G X = F X$ and $\phi = id$.

Functor F extends to a **relator** \mathbb{G} .

As is usual, we use the same symbol for functor and relator, greatly simplifying diagrams:

Relational catas thanks to $\mathbb{J} \dashv \mathbb{P}$

 \vert -shunting again: $X \cdot \mathbf{in} = R \cdot \mathbb{F} X \Leftrightarrow \Delta X = (\Delta(R \cdot \mathbb{F} \in))$

This extends "banana-brackets" to relations and gives birth to inductive relations.

KO K K (F K E K E H E V A C K

Eilenberg-Wright Lemma

Put in another way:

The equivalence

$$
X = (|R|) \Leftrightarrow \Delta X = (|\Lambda(R \cdot \mathbb{F} \in)|) \tag{40}
$$

— known as the **Eilenberg-Wright** Lemma —

follows from the "adjoint catamorphism" theorem $(35)^1$ $(35)^1$ for the **power-transpose** adjunction $\mathbb{J} \dashv \mathbb{P}$.

 1 Also known as "adjoint fold" theorem [\(Hinze, 2013\)](#page-144-1).

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있어

Relational catas thanks to $\mathbb{J} \dashv \mathbb{P}$

In summary,

 $(J + P) + (| _|)$

leads as to inductive relations, with universal property:

 $X \cdot \mathbf{in} = R \cdot \mathbb{F} X \Leftrightarrow X = (R)$

Instance for **Peano recursion**, where

 $in = [zero, succ]$ $\mathbb{F} X = id + X$

but this time relationally:

$$
X = (|R|) \Leftrightarrow \begin{cases} X \cdot zero = R \cdot i_1 \\ X \cdot succ = R \cdot i_2 \cdot X \end{cases}
$$

KO K K (F K E K E H E V A C K

Relational catas thanks to $\mathbb{J} \dashv \mathbb{P}$

In summary,

 $(J + P) + (| _ |)$

leads as to inductive relations, with universal property:

 $X \cdot \mathbf{in} = R \cdot \mathbb{F} X \Leftrightarrow X = (R)$

Instance for Peano recursion, where

 $in = [zero, succ]$ $\mathbb{F} X = id + X$

but this time relationally:

$$
X = (|R|) \Leftrightarrow \begin{cases} X \cdot zero = R \cdot i_1 \\ X \cdot succ = R \cdot i_2 \cdot X \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Inductive relations thanks to $\mathbb{J} \dashv \mathbb{P}$

Remember $\mathcal{N}_0 \stackrel{(\geqslant)}{\longleftarrow} \mathcal{N}_0$?

Now we know how to define it over the Peano algebra,

$$
(\geqslant)=(\llbracket\top,\mathit{succ}\rrbracket)\tag{41}
$$

where \top is the largest relation of its type. ($b \top a = True$ for all a and b.) Unfolding [\(41\)](#page-115-0):

KOD KARD KED KED EN MAG

Inductive relations thanks to $\mathbb{J} \dashv \mathbb{P}$

Remember list **prefixes** and **sublists**, $y_s \sqsubseteq xs$ and $y_s \preceq xs$?

Now we have a way to define them properly:

 $(\sqsubseteq) : A^* \leftarrow A^*$ $(\sqsubseteq) = ($ [nil, cons \cup nil]

and

$$
(\preceq): A^* \leftarrow A^*
$$

\n
$$
(\preceq) = ([\text{nil}, \text{cons} \cup \pi_2])
$$

\nwhere
$$
\begin{cases} \n\frac{\text{nil}}{\text{cons }(h, t)} = h : t \\ \n\text{cons }(h, t) = h : t \n\end{cases}
$$
 make up the **initial algebra** of finite
\nlists:
\n**in** = [*nil*, *cons*]

K ロ ▶ K @ ▶ K 할 > K 할 > [활]할 | ⊙ Q ⊙

Inductive relations thanks to $\mathbb{J} \dashv \mathbb{P}$

Recalling $take$, now we see where (6) came from:

$$
(\sqsubseteq) = ([[ni], \text{cons} \cup \text{nil}])
$$
\n
$$
\Leftrightarrow \{ \text{universal property above } \}
$$
\n
$$
\{ (\sqsubseteq) \cdot \text{nil} = \text{nil}
$$
\n
$$
\{ (\sqsubseteq) \cdot \text{cons} = (\text{cons} \cup \text{nil}) \cdot (\text{id} \times (\sqsubseteq))
$$
\n
$$
\Leftrightarrow \{ \text{go pointwise } \}
$$
\n
$$
\{ y \sqsubseteq [] \Leftrightarrow y = []
$$
\n
$$
y \sqsubseteq (h:t) \Leftrightarrow y = [] \vee \langle \exists t' : y = h:t' : t' \sqsubseteq t \rangle
$$

Back to Galois connections — in R

Remember GC
$$
f b \sqsubseteq a \Leftrightarrow b \leq g a
$$
?

Now, every component of the GC — f, g, (\sqsubseteq) and (\le) — is a morphism in \mathfrak{R} and:

 $f \dashv g \quad \Leftrightarrow \quad f^{\circ} \cdot (\sqsubseteq) = (\leqslant) \cdot g$

NB: R° is the converse of R, which always exists in \mathfrak{R} – but not in the original $\mathfrak S$.

More about this

See e.g. my talk

[On the power of adjoint recursion.](https://ifipwg21wiki.cs.kuleuven.be/IFIP21/OnlineOct21) Contributed talk to IFIP WG 2.1 Short On-line Meeting #O6, 26 October 2021.

Several more examples also in

Ralf Hinze. Adjoint folds and unfolds — an extended study. Science of Computer Programming, 78(11): 2108–2159, 2013.

which inspired this work.

KO K K (F K E K E H E V A C K

Wrapping up

Original motivation was Ralf [Hinze \(2013\)](#page-144-1):

(...) Finally, we have left the exploration of **relational** adjoint (un)folds to future work.

As shown, doing this leads to the algebra of inductive relations.

Altogether,

- I have learned to appreciate "adjoint folds" even more.
- Adjunctions are a very fertile device for structuring the MPC — teaching them (inc. Galois connections) should be mainstream.
- Current work: "adjoint folds" in language semantics and in linear algebra.

KOD KARD KED KED EN MAG

Final quote

"My experience has been that theories are often more structured and more interesting when they are based on the real problems; somehow they are more exciting than completely abstract theories will ever be." Donald [Knuth](#page-144-2) [\(1973\)](#page-144-2)

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) **[Many applications!](#page-106-0)** [References](#page-144-0)

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Appendix

Composing $(+)$ \exists Δ and $\mathbb{L} \rightarrow \mathbb{R}$

 (C, D) $(\lceil f \rceil, \lceil g \rceil)$ OO

KOD KARD KED KED EN MAG

 $\int [f] = [k] \cdot i_1$ $[g] = [k] \cdot i_2$

 \Leftrightarrow $[k] = [[f], [g]]$

"Chemistry" between $\mathbb{L} \dashv \mathbb{R}$ and coproducts

 $\lfloor k \rfloor = \lfloor \lceil f \rceil, \lceil g \rceil \rfloor$ ⇔ { universal property } $\int [k] \cdot i_1 = [f]$ $\lceil k \rceil \cdot i_2 = \lceil g \rceil$ $\Leftrightarrow \qquad \{$ fusion [\(15\)](#page-73-0) twice $\}$ $\int k \cdot \mathbb{L} i_1 = t$ $k \cdot \mathbb{L} i_2 = g$ ⇔ { coproducts } $k \cdot [\mathbb{L} \; i_1, \mathbb{L} \; i_2]$ δ δ $=[f, g]$ $\Leftrightarrow \qquad \{ \text{ isomorphism } \delta \}$ $k = [f, g] \cdot \delta^{\circ}$

How can we be sure δ is an isomorphism?

Limits and colimits

Left adjoints L preserve colimits, and thus **coproducts**:

Diagram:

Example: $(\mathbb{L} X = X \times K)$

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있어

Limits and colimits

Left adjoints L preserve colimits, and thus **coproducts**:

Diagram:

Example: $(\mathbb{L} X = X \times K)$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

"Chemistry" between $\mathbb{L} \to \mathbb{R}$ and coproducts

In summary:

 $[[h], [k]] = [[h, k] \cdot \delta^{\circ}]$ and (43)

Diagrams:

Examples

For $\mathbb{L} \dashv \mathbb{R} := (\times \mathcal{K}) \dashv (_^K)$

(covariant exponentials), $[[h],[k]] = [[h,k] \cdot \delta^{\circ}]$ [\(43\)](#page-127-0) becomes $[\text{curv } f, \text{curv } g] = \text{curv } ([f, g] \cdot \text{dist}])$ (44)

For $\mathbb{L} \dashv \mathbb{R} := \mathbb{J} \dashv \mathbb{P}$

 δ is the identity (relation) and so [\(43\)](#page-127-0) becomes: $\Lambda[R, S] = [\Lambda R, \Lambda S]$ (45)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Thus **relational coproducts** can be defined by:

 $[R, S] = \in \{ [AR, AS]$

KO K K (F K E K E K A E K A K K K K K K K K K

Examples

For $\mathbb{L} \dashv \mathbb{R} := (\times \mathcal{K}) \dashv (_^K)$

(covariant exponentials), $[[h],[k]] = [[h,k] \cdot \delta^{\circ}]$ [\(43\)](#page-127-0) becomes $[\text{curv } f, \text{curv } g] = \text{curv } ([f, g] \cdot \text{dist}])$ (44)

For $\mathbb{L} \dashv \mathbb{R} := \mathbb{I} \dashv \mathbb{P}$

 δ is the identity (relation) and so [\(43\)](#page-127-0) becomes: $\Lambda[R, S] = [\Lambda R, \Lambda S]$ (45)

Thus relational coproducts can be defined by:

 $[R, S] = \in \cdot [AR, AS]$

Dual theorem

 \mathbb{R} out $\cdot f = \phi \cdot \mathbb{G} f \cdot h \Leftrightarrow |f| = [(\phi \cdot \mathbb{G} \eta \cdot h)]$ (46) Calculation: $|f| = [(|\phi \cdot \mathbb{G} \eta \cdot h|)]$ ⇔ { ana-universal } $out \cdot |f| = \mathbb{F} |f| \cdot |\phi \cdot \mathbb{G} \eta \cdot h|$ \Leftrightarrow { fusion [\(23\)](#page-78-0) twice } $\vert \mathbb{R}$ out $\cdot f \vert = \vert \mathbb{R} \mathbb{F} \vert f \vert \cdot \phi \cdot \mathbb{G} \eta \cdot h \vert$ $\Leftrightarrow \{\text{ isomorphism } | _ | ; \text{ natural-} \phi \}$ \mathbb{R} out $\cdot f = \phi \cdot \mathbb{G} \mathbb{R} |f| \cdot \mathbb{G} \eta \cdot h$ \Leftrightarrow { functor G; cancellation $\mathbb{R} |f| \cdot \eta = f (22)$ $\mathbb{R} |f| \cdot \eta = f (22)$ } \mathbb{R} out $\cdot f = \phi \cdot \mathbb{G} f \cdot h$ \Box

K ロ ▶ K @ ▶ K 할 X K 할 X [할 날 수 있다

Dual theorem — diagram

G-hylomorphism

 $[f] = [(\phi \cdot \mathbb{G} \eta \cdot h])]$

Monads

A monad

$$
A \xrightarrow{\eta} \mathbb{M}A \xleftarrow{\mu} \mathbb{M}^2A
$$

arises from any adjunction, where:

> $M = \mathbb{R} \cdot \mathbb{L}$ $\eta = \lceil id \rceil$ $\mu = \mathbb{R} \epsilon$

Monadic laws come straight from the adjunction laws.

Unit: $\mathbb{R} \epsilon \cdot [id] = id = \mathbb{R} \epsilon \cdot (\mathbb{R} \mathbb{L} \eta)$ $\Leftrightarrow \{$ absorption [\(16\)](#page-74-0); functor \mathbb{R} } $\lceil \epsilon \rceil = id = \mathbb{R} (\epsilon \cdot \mathbb{L} \eta)$ true

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

Monads

A monad

$$
A \xrightarrow{\eta} \mathbb{M}A \xleftarrow{\mu} \mathbb{M}^2A
$$

arises from any adjunction, where:

> $M = \mathbb{R} \cdot \mathbb{L}$ $\eta = \lceil id \rceil$ $\mu = \mathbb{R} \epsilon$

Monadic laws come straight from the adjunction laws.

K ロ ▶ K @ ▶ K 할 > K 할 > [할 날 수 있어

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) [Many applications!](#page-106-0) [References](#page-144-0)

K ロ ▶ K @ ▶ K 할 > K 할 > [활]할 | ⊙ Q ⊙

Monad

Multiplication:

$$
\mu \cdot \mu = \mu \cdot \mathbb{M} \mu
$$

\n
$$
\Leftrightarrow \qquad \{ \mu = \mathbb{R} \epsilon; \text{ functor } \mathbb{R} \}
$$

\n
$$
\mathbb{R} \left(\epsilon \cdot \epsilon \right) = (\mathbb{R} \epsilon) \cdot (\mathbb{R} \left(\mathbb{L} \left(\mathbb{R} \epsilon \right) \right))
$$

\n
$$
\Leftrightarrow \qquad \{ \text{ functor } \mathbb{R} \}
$$

\n
$$
\mathbb{R} \left(\epsilon \cdot \epsilon \right) = \mathbb{R} \left(\epsilon \cdot \mathbb{L} \left(\mathbb{R} \epsilon \right) \right)
$$

\n
$$
\Leftrightarrow \qquad \{ \text{ natural-}\epsilon \left(17 \right) \}
$$

\n
$$
\mathbb{R} \left(\epsilon \cdot \epsilon \right) = \mathbb{R} \left(\epsilon \cdot \epsilon \right)
$$

Kleisli composition

From the usual definition of Kleisli composition,

 $f \bullet g = \mu \cdot M f \cdot g$ (aside) we can infer: $f \bullet g = \lfloor |f| \cdot |g| \rfloor$

f \bullet g $\{ f \bullet g = \mu \cdot \mathbb{M} f \cdot g \}$ $\mu \cdot M$ f $\cdot g$ $=$ { M = R · L; $\mu = \mathbb{R} \epsilon$ } $\mathbb{R} \epsilon \cdot (\mathbb{R} (\mathbb{L} f)) \cdot g$ $=$ { functor \mathbb{R} } $\mathbb{R} (\epsilon \cdot \mathbb{L} f) \cdot g$ = { cancellation: $\epsilon \cdot \mathbb{L} f = |f|$; $g = \lceil |g| \rceil$ } \mathbb{R} |f| · [|g|] = $\{ \text{ absorption: } (\mathbb{R} g) \cdot [h] = [g \cdot h] \}$ $\lceil |f| \cdot |g| \rceil$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

KO K K (F K E K E K A E K A K K K K K K K K K

Other relational hylos and their adjoints

Example: **list membership**

$$
\begin{cases}\n a \in [] = \text{False} \\
a \in (h : t) = (a = h) \lor a \in t\n\end{cases}
$$

is the relational hylo

 $\epsilon = [\perp, \pi_1 \cup \epsilon \cdot \pi_2] \cdot \mathbf{in}^{\circ}$ (47)

NB: not the relational **cata** $\epsilon = ([(\bot, \pi_1 \cup \pi_2)])$ that one might feel tempted to write... which is the empty relation!

KOD KAD KED KED EE VAN

Other relational hylos and their adjoints

ot a cata... But perhaps this hylo [\(47\)](#page-136-0) has an adjoint cata? Yes, since

 $\epsilon = [\perp, \pi_1 \cup \epsilon \cdot \pi_2] \cdot \mathsf{in}^{\circ}$

unfolds into

 $\epsilon \cdot \textbf{in} = [\bot, [id, id]]$ R \cdot id $+$ (id $+$ $\epsilon)$ ${\mathbb G} \epsilon$ \cdot id $+$ $(i_1 \cdot \pi_1 \cup i_2 \cdot \pi_2)$ $\overline{}$

where the core of

$$
\Phi: \underbrace{1+A\times A^*}_{\mathbb{F} A^*}\to \underbrace{1+(A+A^*)}_{\mathbb{G} A^*}
$$

is the (disjoint) union of the two projections $\pi_1 \cup \pi_2$.

KO K K (F K E K E K A E K A K K K K K K K K K

Relational hylos and their adjoints

What is its adjoint? Not surprisingly:

 $\Lambda \epsilon = (\Lambda [\bot, \pi_1 \cup \epsilon \cdot \pi_2])$

⇔ { P-transpose of coproducts [\(45\)](#page-128-0) } $\Lambda \epsilon = (|\Lambda \bot, \Lambda (\pi_1 \cup \epsilon \cdot \pi_2)|)$ ⇔ { introduce join etc (see below) } $\Lambda \epsilon = (\lbrack \{\,\}, join \rbrack)$ ⇔ { introduce elems }

$$
\Lambda \epsilon = \text{elems} \tag{48}
$$

where

$$
\begin{cases} \text{ elements } [] = \{ \} \\ \text{elems } (h:t) = \{ h \} \cup \text{elems } t \end{cases}
$$

Relational hylos and their adjoints

Details:

$$
\mathit{elements} = (|[\{\},\mathit{join}]) \quad \Leftrightarrow \quad
$$

 $\left\{ \begin{array}{c} \end{array} \right\}$ elems $\left[\begin{array}{c} \end{array} \right] = \left\{ \begin{array}{c} \end{array} \right\}$ elems $(h:t)=\set{h}\cup$ elems t

K ロ ▶ K @ ▶ K 할 > K 할 > [할 날 수 있어

where

join $(a, s) = \{a\} \cup s$

since:

$$
join = \Lambda(\pi_1 \cup \in \cdot \pi_2)
$$

$$
\Lambda(R \cup S) a = (\Lambda R a) \cup (\Lambda S a)
$$

$$
\Lambda \in = id
$$

etc.

Usual way of doing list membership: $\epsilon = \epsilon \cdot$ elems, cf. [\(48\)](#page-138-0).

(Contravariant) exponentials: $(K-) \dashv (K-)$

Isomorphism

becomes (note the arrows reversed on the left side)

$$
K^{A} \leftarrow B \underbrace{\cong}_{\text{flip}} A \rightarrow K^{B}
$$

recalling (Haskell):

flip :: $(a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$ flip f b a = f a b

(Contravariant) exponentials: $(K-) \rvert (K-)$

Contravariant self-adjunction. More formally:

 $\sqrt{ }$ \int \mathcal{L} $\mathbb{L} X = K^X$ $\mathbb{R} \times K = K^X$ $\epsilon = \mathsf{fid} = \mathsf{flip}$ id \int $\lceil f \rceil$ = flip f $\lfloor f \rfloor$ = flip f $k = flip f \Leftrightarrow f = K^k \cdot \textbf{fid}$ \overline{f} $\overline{$ flip k $\mathfrak S$ $K \mathfrak{S}^\mathsf{op}$ K \overline{a} K^B $K^{(K^B)}$ K^k ł \leftarrow fid B \swarrow 1 A $k=$ flip f OO K^A

(Contravariant) exponentials: $(K-) \dashv (K-)$

Contravariant exponential functor:

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

That is:

 $K^k = (\cdot k)$ (49)

[Motivation](#page-1-0) **[Recursion comes in](#page-85-0)** [Adjoint recursion](#page-102-0) **[Many applications!](#page-106-0)** [References](#page-144-0)

K ロ ▶ K @ ▶ K 할 > K 할 > [할 날 수 있어

References
KOD KARD KED KED EN MAG

R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall, 1997.

- Ralf Hinze. Adjoint folds and unfolds an extended study. Science of Computer Programming, 78(11):2108–2159, 2013. ISSN 0167-6423.
- D.E. Knuth. The dangers of computer-science theory. Studies in Logic and the Foundations of Mathematics, 74:189–195, 1973.
- J.N. Oliveira. A note on the under-appreciated for-loop. Technical Report TR-HASLab:01:2020 (PDF), HASLab/U.Minho and INESC TEC, 2020.