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Thanks for inviting!

Algebraic Development Techniques:

• WADT 82 ... – (algebraic) abstract data type trend

• WADT 92 – Hermida fibred adjunctions

• WADT ... – lots of other interesting topics!

Algebraic techniques in this talk:

• Adjunctions as central device for reasoning.

• Galois connections as one of their most useful instances.

Perspective:

• mathematics of program construction.
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Why Adjunctions Matter

• For the average programmer, adjunctions are (if known)
more respected than loved.

• However, they are key to explaining many things we do as
programmers.

• I will try to show how practical adjunctions are by revealing
their ”chemistry” in action.

• Starting from Galois connections, their simplest (but quite
interesting) instances, with applications.
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Inspiration

”My experience has been that
theories are often more
structured and more
interesting when they are
based on the real problems;
somehow they are more
exciting than completely
abstract theories will ever be.”
Donald Knuth (1973)
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“(...) this was agreed upon and Jim
Thatcher proposed the name ADJ as
a (terrible) pun on the title of the
book that we had planned to write
(...) [recalling] that adjointness is a
very important concept in category

theory (...)”

(Joseph A. Goguen, Memories of ADJ, EATCS nr. 36, 1989)
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Things come in dichotomies

In everyday life, things come “in pairs”

• good

• bad

• action

• reaction

• the left

• the right

• easy

• hard

In a sense, each pair defines itself:

• one of its elements exists...

• ... because the other also exists, and is opposite to it.

Circularity? We can deal with it.
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Perfect antithesis

The perfect antithesis (opposition,
inversion) is the bijection or
isomorphism.

For instance, multiplying and dividing
are inverses of each other in IR:

(x / y) ∗ y = x
(x ∗ y) / y = x

Lossless transformations:

B

g

''∼= A

f

gg

{
f (g b) = b
g (f a) = a

(Also “energy preserving”.)
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However, in practice...

jpg2pdf

&&

6∼=

pdf2jpg

dd

jpg2pdf · pdf2jpg 6= id
pdf2jpg · jpg2pdf 6= id

(though our eyes can’t see the difference in most cases...)
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Lossy inversions

In general, transformations are lossy

{
f (g x) 6 x
a v g (f a)

(1)

in the sense that each “round trip” loses information.

So we have under and over approximations captured by
preorders:

(6)

g

((
(v)

f

hh

(f and g assumed monotonic)
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Handling approximations

We write x
(6) // y (resp.

x
(v) // y ) to denote x 6 y (resp.

x v y).

But we drop the orderings, e.g.
x // y , wherever these are clear

from the context.

Arrows enable us to express our reasoning graphically.
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Handling approximations

(v)

a

g x

6

-f (6)

f a

6

f (g x) x-

�
�
���

-g
(v)

g (f a)
�
�
���

g x

a�

6

f a 6 x ⇔ a v g x (2)

We say f and g are Galois connected and write f a g to say so.
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f a g

f a 6 x ⇔ a v g x

• f — lower (aka left) adjoint

• g — upper (aka right) adjoint

(Courtesy of R. Backhouse)
In fact, note the superlatives in

• f a — lowest x such that a v g x

• g x — greatest a such that f a 6 x



Motivation Recursion comes in Adjoint recursion Many applications! References

f a g

f a 6 x ⇔ a v g x

• f — lower (aka left) adjoint

• g — upper (aka right) adjoint

(Courtesy of R. Backhouse)
In fact, note the superlatives in

• f a — lowest x such that a v g x

• g x — greatest a such that f a 6 x



Motivation Recursion comes in Adjoint recursion Many applications! References

Handling approximations

Did you say “superlatives”?

We have plenty of these in software requirements:

... the largest prefix of x with at most n elements

(take n x , Haskell terminology)

... the largest number that multiplied by y is at most x

(integer division x ÷ y).
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On numeric division

In the reals (IR):

a× y = x ⇔ a = x / y

— an isomorphism.

In the natural numbers (IN0):

a× y 6 x ⇔ a 6 x ÷ y

— a Galois connection.

x y
... x ÷ y

x ÷ y
largest a
such that
a× y 6 x .
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The easy and the hard

Whole division specification:

a× y 6 x ⇔ a 6 x ÷ y

that is:

a ×y︸︷︷︸
f

6 x ⇔ a 6 x ÷y︸︷︷︸
g

that is:

(×y) ` (÷y)

Hard (÷y) explained by easy (×y).
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The easy and the hard

Another example:

take n xs should yield the longest possible prefix of xs
not exceeding n in length.

Specification:

length ys 6 n ∧ ys v xs︸ ︷︷ ︸
easy

⇔ ys v take n xs︸ ︷︷ ︸
hard

(3)

— another GC.
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The easy and the hard

Many examples, e.g.

The function takeWhile p xs should yield the longest
prefix of xs whose elements all satisfy predicate p.

and

The function filter p xs should yield the longest sublist
of xs such that all x in such a sublist satisfy predicate p.

NB: assuming the sublist ordering ys � xs such that e.g. "ab" � "acb" holds
but "ab" � "bca" does not hold.
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Programming from specifications

Can the well-known
implementation

x ÷ y =
if x > y
then 1 + (x − y)÷ y
else 0

be calculated from the
specification

z × y 6 x ⇔ z 6 x ÷ y ?

Ups! Not quite right -
subtratction in IN0 is not
invertible!

No worry — another GC comes
to the rescue:

a	 b 6 x ⇔ a 6 x + b
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Indirect equality

Now another brick in the wall (partial orders only):

a = b ⇔ 〈∀ z :: z 6 a⇔ z 6 b〉 (4)

This principle of indirect equality blends nicely with GCs:

z 6 g a

⇔ { ... }

. . . (go to the easy side, do things there and come back)

⇔ { ... }

z 6 ...g ... a′ ...

:: { indirect equality }

g a = ...g ... a′...
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Example — x ÷ y

Case x > y :

z 6 x ÷ y

⇔ { (×y) a (÷y) and (x 	 y) + y = x for x > y }

z × y 6 (x 	 y) + y

⇔ { (	 y) a (+y) }

(z × y)	 y 6 x 	 y

⇔ { factoring y works also for 	 }

(z 	 1)× y 6 x 	 y

⇔ { chain the two GCs }

z 6 1 + (x 	 y)÷ y

:: { recursive branch calculated thanks to indirect equality }

x ÷ y = 1 + (x 	 y)÷ y
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Example — take

Specification GC:

length ys 6 n ∧ ys v xs ⇔ ys v take n xs (5)

Standard implementation (Haskell):

take 0 = [ ]
take [ ] = [ ]
take (n + 1) (h : xs) = h : take n xs

The same question again: how to derive the implementation of
take from the specification?
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Example — take

Before that:

We can derive properties of take without knowing its
implementation.

Example:

What happens if we chain two takes in a row?

We calculate

(take m) · (take n)

in the next slide.
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Example — take

ys v take m (take n xs)

⇔ { GC (5) }

length ys 6 m ∧ ys v take n xs

⇔ { again GC (5) }

length ys 6 m ∧ length ys 6 n ∧ ys v xs

⇔ { min GC: a 6 x ∧ a 6 y ⇔ a 6 x ‘min‘ y }

length ys 6 (m ‘min‘ n) ∧ ys v xs

⇔ { again GC (5) }

ys 6 take (m ‘min‘ n) xs

:: { indirect equality }

take m (take n xs)) = take (m ‘min‘ n) xs

N
o

in
d

u
ct

io
n

(N
o

im
p

le
m

en
ta

ti
on

ye
t!

)
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Example — take
Now the implementation (3 cases):

take 0 = [ ]

ys v take 0

⇔ { GC }

length ys 6 0 ∧ ys v
⇔ { length [ ] = 0 }

ys = [ ]

⇔ { antisymmetry of (v) }

ys v [ ]

:: { indirect equality }

take 0 = [ ]

take [ ] = [ ]

ys v take [ ]

⇔ { GC }

length ys 6 ∧ ys v [ ]

⇔ { length [ ] 6 }

ys v [ ]

:: { indirect equality }

take [ ] = [ ]
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Example — take

Finally, the remaining case:

take (n + 1) (h : xs) = h : take n xs

We will need the following fact about list-prefixing:

s v (h : t) ⇔ s = [ ] ∨ 〈∃ s ′ : s = (h : s ′) : s ′ v t〉 (6)

(More about this later.)
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ys � take (n + 1) (h : xs)

⇔ { GC (3) ; prefix (6) }

length ys 6 n + 1 ∧ (ys = [ ] ∨ 〈∃ ys ′ : ys = (h : ys ′) : ys ′ � xs〉)

⇔ { distribution ; length [ ] 6 n + 1 }

ys = [ ] ∨ 〈∃ ys ′ : ys = (h : ys ′) : length ys 6 n + 1 ∧ ys ′ � xs〉

⇔ { length (h : t) = 1 + length t }

ys = [ ] ∨ 〈∃ ys ′ : ys = (h : ys ′) : length ys ′ 6 n ∧ ys ′ � xs〉

⇔ { GC (3) }

ys = [ ] ∨ 〈∃ ys ′ : ys = (h : ys ′) : ys ′ � take n xs〉

⇔ { fact (6) }

ys � h : take n xs

:: { indirect equality over list prefixing (v) }

take (n + 1) (h : xs) = h : take n xs
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Nice but...

• Where did we get assumption (6) from?

• How do we calculate from GCs instead of proving from GCs?
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Galois connections + indirect equality

• S.-C. Mu and J.N. Oliveira.
Programming from Galois
connections. JLAP,
81(6):680–704, 2012.

• P.F. Silva, J.N. Oliveira.
’Galculator’: functional
prototype of a Galois connection
based proof assistant. PPDP
’08, 44–55, 2008.

Galois connections
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From GCs to adjunctions

Recall a
(6) // b meaning

(a, b) ∈ (6)

that is

(6) (a, b) = True

that is

(6) (a, b) = {(a, b)}

— singleton set made of one of the pairs of relation (6).
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From GCs to adjunctions

Now compare

(6) (a, b) = {(a, b)}

with something like (broadening scope):

C (a, b) = { ’things that relate a to b in context C’ }

If such “things” have a name, e.g. m, we can write m : a→ b to
indicate their type.

We land into a category — C — where a and b are
objects and m is a morphism.
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Categories

Extremely versatile concept, e.g.

C (a, b) =
{ ’matrices with a-many columns and b-many rows’ }

or

C (a, b) = { ’Haskell functions from type a to type b’ }

or

C (a, b) = { ’binary relations in a× b’ }
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From preorders to categories

“Dramatic” increase in expressiveness:

Preorder Category
Object pair Morphism
Reflexivity Identity
Transitivity Composition
Monotonic function Functor
Equivalence Isomorphism
Pointwise ordering Natural transformation
Closure Monad
Galois connection Adjunction
Indirect equality Yoneda lemma

The same game, but in the champions league



Motivation Recursion comes in Adjoint recursion Many applications! References

From preorders to categories

“Dramatic” increase in expressiveness:

Preorder Category
Object pair Morphism
Reflexivity Identity
Transitivity Composition
Monotonic function Functor
Equivalence Isomorphism
Pointwise ordering Natural transformation
Closure Monad
Galois connection Adjunction
Indirect equality Yoneda lemma

The same game, but in the champions league



Motivation Recursion comes in Adjoint recursion Many applications! References

(”Lossy”) natural transformations

Recall our starting point,

{
f (g x) 6 x
a v g (f a)

which meanwhile we wrote
thus:

{
f (g x) // x

a g (f a)oo

Champions league version:

 F (G X )
ε // X

A G (F A)
ηoo

(7)

where F and G are functors.

(More about ε and η later.)
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The big game

C

A

G X
6

m

-F D

F A

6
F m

F (G X ) X-
ε

�
�
���bmc = k

-G
C

G (F A)
��

���
G k

G X

A�

η

6
dke= m

We have an adjunction if

D (F A,X ) ∼= C (A,G X ) (8)

and say F and G are adjoint functors, writing F aG as before.
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Adjunction L a R

Terminology:

C D

L A→ X

d e
++

∼= A→ R X

b c

jj

(9)

• L — left adjoint

• R — right adjoint

• df e — R-transpose of f

• bgc — L-transpose of g
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Adjunction L a R

In detail — universal property:

D

L

77> C

R
ww

k = df e ⇔ ε · L k︸ ︷︷ ︸
bkc

= f

R X L (R X )
ε // X

A

k=df e

OO

L A

L k

OO

f

;;

Terminology — ε = bidc is called the co-unit of the adjunction.
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(Covariant) exponentials: ( × K ) a ( K )

Perhaps the most famous adjunction:


L X = X × K
R X = X K

ε = ev

{
df e = curry f
bf c = uncurry f

A× K → X

curry
++∼= A→ X K

uncurry

kk

where

curry f a b = f (a, b)

uncurry g (a, b) = g a b

ev (f , k) = f k
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(Covariant) exponentials: ( × K ) a ( K )

k = curry f ⇔ ev · (k × id)︸ ︷︷ ︸
uncurry k

= f

S

( ×K)

99 S

K

yy

BK BK × K
ev // B

A

k=curry f

OO

A× K

k×id

OO

f

;;

Functor : f K = (f ·) (10)
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Pairing: ∆ a ×


L X = ∆ X = (X ,X )
R (X ,Y ) = X × Y
ε = (π1, π2)

{
d(f , g)e = 〈f , g〉
bkc = (π1 · k , π2 · k)

S

∆

77S
2

(×)

xx

B × A L (B × A)
(π1,π2)// (B,A)

C

k=〈f ,g〉

OO

L C

(k,k)

OO

(f ,g)

88
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Pairing: ∆ a ×

S

∆

66 S
2

(×)

ww

B × A (B × A,B × A)
(π1,π2)// (B,A)

C

k=〈f ,g〉

OO

(C ,C )

(k,k)

OO

(f ,g)

77

That is:

k = 〈f , g〉 ⇔
{
π1 · k = f
π2 · k = g

(11)
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Co-pairing: (+) a∆


L (X ,Y ) = X + Y
R X = ∆ X = (X ,X )
ε = ∇ = [id , id ]

{
dke = (k · i1, k · i2)
b(f , g)c = [f , g ]

S2

(+)

99 S

∆
xx

(A,A) A + A
∇ // A

(C ,D)

(f ,g)=(k·i1,k·i2)

OO

C + D

f +g

OO

k

<<
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Co-pairing: + a∆

S2

(+)

44 S

∆

tt

(A,A) A + A
∇ // A

(C ,D)

(f ,g)=(k·i1,k·i2)

OO

C + D

f +g

OO

k

;;

{
f = k · i1
g = k · i2

⇔ k = [f , g ]
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Power transpose: J a P

D := S (sets + functions) and C := R (sets + relations)

{
J X = X
y (J k) x ⇔ y = k x

{
dRe = ΛR
y bkc x = y ∈ (k x)

∈ : A← P A is the set membership relation

k = ΛR ⇔ ∈ · k︸︷︷︸
bkc

= R

S

J

;;R

P
zz

P B P B
∈ // B

A

k=ΛR

OO

A

J k

OO

R

==
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Corollaries of k = df e ⇔ ε · L k = f

reflection:

dεe = id (12)

that is,

ε = bidc (13)

cancellation:

ε · L df e = f (14)

fusion:

dhe · g = dh · L ge (15)
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Corollaries

absorption:

(R g) · dhe = dg · he (16)

naturality:

h · ε = ε · L (R h) (17)

closed definition:

bkc = ε · (L k) (18)

functor

R h = dh · εe (19)
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Dual formulation

As with GCs, universal property can be expressed in a dual way, as
follows:

k = bf c

⇔ { identity; homset isomorphism }

dk · ide = f

⇔ { absorption (16) ; dide = η }

(R k) · η︸ ︷︷ ︸
dke

= f
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Dual formulation

Diagram:

k = bf c ⇔ R k · η︸ ︷︷ ︸
dke

= f

L B

k=bf c
��

R (L B)

R k
��

B
ηoo

f{{
C R C

Example (J a P):

R = ∈ · f︸︷︷︸
bf c

⇔ P R · η︸ ︷︷ ︸
ΛR

= f

R S

B

R=bf c
��

P B

P R
��

B
η={ }oo

f}}
C P C
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Dual formulation

Diagram:

k = bf c ⇔ R k · η︸ ︷︷ ︸
dke

= f

L B

k=bf c
��

R (L B)

R k
��

B
ηoo

f{{
C R C

Example (J a P):

R = ∈ · f︸︷︷︸
bf c

⇔ P R · η︸ ︷︷ ︸
ΛR

= f

R S

B

R=bf c
��

P B

P R
��

B
η={ }oo

f}}
C P C
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Dual corollaries

Now arising from k = bf c ⇔ R k · η︸ ︷︷ ︸
dke

= f

reflection:

bηc = id (20)

that is,

η = dide (21)

cancellation:

R bf c · η = f (22)

fusion:

g · bhc = bR g · hc (23)
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Dual corollaries

absorption:

bhc · L g = bh · gc (24)

naturality:

h · ε = ε · L (R h) (25)

closed definition:

dge = (R g) · η (26)

functor

L g = bη · gc (27)

cancellation (corollary):

ε · L η = id (28)
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Adjunction composition (exchange law)

Assuming L aM a R and inspecting L A
k // R B :

M L A→ B
∼= { M a R }

L A→ R B
∼= { L aM }

A→M R B

On the one hand, k = df eR
for exactly one

M L A
f // B .

On the other hand, k = bgcL
for exactly one

A
g //M R B .

So the exchange law

df eR = bgcL (29)

holds for such M L A
f // B and A

g //M R B .
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(+) a∆ a (×)

M L A
f // B is of type ∆ (+) (A,C ) // (B,D) :

f = (A + C ,A + C )
(m,n) // (B,D)

A
g //M R B is of type (A,C ) // ∆ (×) (B,D) :

g = (A,C )
(i ,j) // (B × D,B × D)

So
df eR = bgcL becomes 〈m, n〉 = [i , j ]
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(+) a∆ a (×)

M L A
f // B is of type ∆ (+) (A,C ) // (B,D) :

f = (A + C ,A + C )
(m,n) // (B,D)

A
g //M R B is of type (A,C ) // ∆ (×) (B,D) :

g = (A,C )
(i ,j) // (B × D,B × D)

So
df eR = bgcL becomes 〈m, n〉 = [i , j ]
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Solving 〈m, n〉 = [i , j ]

Find m and n for i = 〈h, k〉 and j = 〈p, q〉
in:

〈m, n〉 = [〈h, k〉, 〈p, q〉]

⇔ { (+) a∆ }{
(m, n) (i1, i1) = (h, k)
(m, n) (i2, i2) = (p, q)

⇔ { re-arranging }{
(m,m) (i1, i2) = (h, p)
(n, n) (i1, i2) = (k , q)

⇔ { ∆ a (×) }{
m = [h, p]
n = [k , q]

A
i1 //

h
�� p

))

A + B B
k

uu

q

��

i2oo

C C × Dπ1

oo
π2

// D
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(+) a∆ a (×)

The composition of the two adjunctions therefore yields the

exchange law:

〈[h, p], [k, q]〉 = [〈h, k〉, 〈p, q〉] (30)

A
i1 //

h
�� p

))

A + B B
k

uu

q

��

i2oo

C C × Dπ1

oo
π2

// D

(As will be seen later, this law will play a role when dealing with
mutual recursion.)
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Recursion comes in

Algebras A F A
aoo

Morphisms a
f // b

between F-algebras

a

f
��

µF

f
��

F µF
aoo

F f
��

b A F A
b

oo

lead to F-recursion.

Initial algebra µF F µF
inoo such

that morphism in
(|a|) // a is unique:

µF

k=(|a|)
��

µF

in◦

''

k
��

∼= F µF
in

ff

F k
��

A A F A

a

ee

Universal property:

k = (|a|)⇔ k · in = a · F k (31)

Terminology: (| |) = catamorphism.



Motivation Recursion comes in Adjoint recursion Many applications! References

(| |) meets L a R

Chemistry with recursion:

df e = (|dhe|)

⇔ { cata-universal (31) }

df e · in = dhe · F df e

⇔ { fusion (15) twice }

df · L ine = dh · L F df ee

⇔ { isomorphism d e }

f · L in = h · L F df e

µF

in◦

))

df e
��

∼= F µF
in

hh

F df e
��

R A F R A

dhe

ii
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(| |) meets L a R

Therefore:

f · L in = h · L F df e ⇔ df e = (|dhe|) (32)

Diagrams:

C D

L µF

L in◦

**

f
��

∼= L F µF
L in

ii

L F df e
��

A L F R A

h

hh

µF

in◦

))

df e
��

∼= F µF
in

hh

F df e
��

R A F R A

dhe

ii
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Example: (| |) meets ∆ a (×)

Pairing adjunction:

L f = ∆ f = (f , f )

ε = (π1, π2)

d(f , g)e = 〈f , g〉

Left-hand side:

(f , g) · L in = (h, k) · L (F d(f , g)e)

⇔ { L f = (f , f ) ; d(f , g)e = 〈f , g〉 }

(f , g) · (in, in) = (h, k) · (F 〈f , g〉,F 〈f , g〉)

⇔ { composition and equality of pairs of functions }{
f · in = h · F 〈f , g〉
g · in = k · F 〈f , g〉
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Cata meets ∆ a (×)

Right-hand side:

d(f , g)e = (|d(h, k)e|)

⇔ { d(f , g)e = 〈f , g〉 twice }

〈f , g〉 = (|〈h, k〉|)

Putting both sides together we get the mutual recursion law:

〈f , g〉 = (|〈h, k〉|) ⇔
{

f · in = h · F 〈f , g〉
g · in = k · F 〈f , g〉 (33)
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Why mutual recursion matters

Mutual recursion very useful.

It comes handy in particular dynamic programming situations.

Examples follow in the Peano-recursion (in = [zero, succ]) setting,
whose catamorphisms (folds) are for-loops,

for f i = (|[i , f ]|)

that is

for f i 0 = i

for f i (n + 1) = f (for f i n)

Example (Church numerals): church n f b = for f b n.
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Why mutual recursion matters — Fibonacci

Classic DP problem

fib 0 = 1
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

unfolds to:

f 0 = 1

f (n + 1) = f n + fib n

fib 0 = 1

fib(n + 1) = f n

That is:

f · [zero, succ] = [1, add ] · 〈f , fib〉
fib · [zero, succ] = [1, π1] · 〈f , fib〉
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Why mutual recursion matters — Fibonacci

This together with the exchange law (30) leads to:

〈f , fib〉 = (|[(1, 1), 〈add , π1〉]|) (34)

That is (Haskell):

fib = snd · for loop (1, 1) where
loop (x , y) = (x + y , x)

For non-functional programmers:

int fib(int n)

{

int x=1; int y=1; int i;

for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}

return y;

};
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Why mutual recursion matters — Catalan numbers

Cn =
(2n)!

(n + 1)!(n!)

Lots of factorial (re)calculations — try “DP artilhery”?

No — use mutual recursion instead, based on this property:

Cn+1 =
4n + 2

n + 2
Cn

Three functions in mutual recursion:

c n = Cn

f n = 4n + 2

g n = n + 2

Then (next slide):
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Why mutual recursion matters — Catalan numbers

“Peano unfolding”:

c 0 = 1

c (n + 1) =
(f n)× (c n)

g n
f 0 = 2

f (n + 1) = f n + 4

g 0 = 2

g (n + 1) = g n + 1

Finally applying the law we get a for-loop with 3 local variables:

c = prj · (for loop init) where
loop (c , f , g) = ((f ∗ c)÷ g , f + 4, g + 1)
inic = (1, 2, 2)
prj (c , , ) = c
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Why mutual recursion matters — minimax
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Why mutual recursion matters — minimax

Wikipedia:

https://en.wikipedia.org/wiki/Minimax
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Why mutual recursion matters — minimax

Mutual recursion (players alice and bob):

minimax = 〈alice, bob〉

where{
alice · in = [id , umax ] · F bob
bob · in = [id , umin] · F alice

assuming

in = [Leaf ,Fork]

F f = id + f × f

in the contex of

data LTree a = Leaf a | Fork (LTree a, LTree a)

(generalizable to other F tree-structures).
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Further chemistry with recursion

Back to (32), recall

f · L in = h · L F df e ⇔ df e = (|dhe|)

and the diagram:

C D

L µF

L in◦

**

f

��

∼= L F µF

L in

ii

L F df e
��

A L F R A

h

hh

µF

in◦

))

df e
��

∼= F µF

in

hh

F df e
��

R A F R A

dhe

ii

How to get f instead of df e in the recursive call to obtain f as a
hylomorphism?
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Further chemistry with recursion

The resource we have for this is cancellation (14):

ε · L df e = f

However, L in L F df e is in the wrong position and needs to
commute with F.

We need a distributive law L F→ F L.

More generally, we rely on some natural transformation

φ : L F→ G L

enabling such a commutation over some G.
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Further chemistry with recursion

For ε · L df e = f to be of use, we need G ε somewhere in the
pipeline.

We thus refine h := h ·G ε · φ above and carry on:

df e = (|dh ·G ε · φe|)

⇔ { (32) }

f · L in = h ·G ε · φ · L F df e

⇔ { natural-φ: φ · L F f = G L f · φ }

f · L in = h ·G ε ·G L df e · φ

⇔ { functor G; cancellation ε · L df e = f (14) }

f · L in = h ·G f · φ
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G-hylo adjoint to F-cata

We reach

f · (L in) = h ·G f · φ︸ ︷︷ ︸
G-hylomorphism

⇔ df e = (|dh ·G ε · φe|)︸ ︷︷ ︸
adjoint F-catamorphism

(35)

where natural transformation

φ : L F→ G F

captures the necessary switch of recursion-pattern between hylo
(G) and cata (F).
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Diagrams

G-hylo (C):

L µF

f
��

G L µF

G f
��

L F µF

L in

uu

φ
oo

A G A
hoo

Adjoint F-cata (D):

µF

df e
��

F µF
inoo

F df e
��

R A F R A
dh·G ε·φeoo

A G A
hoo G L R A

G εoo L F R A
φoo
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G-hylo-universal

The interest in

f · (L in) = h ·G f · φ ⇔ df e = (|dh ·G ε · φe|)

is that one can use “cata-artilhery” to reason about hylo f .

But not necessarily: b c-“shunting” on the right side

f · (L in) = h ·G f · φ︸ ︷︷ ︸
G-hylomorphism

⇔ f = b(|dh ·G ε · φe|)c︸ ︷︷ ︸
〈|h|〉

gives us a new combinator with universal property:

f = 〈|h|〉 ⇔ f · L in = h ·G f · φ (36)
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〈| |〉 fusion, reflection and so on

fusion:

k · 〈|f |〉 = 〈|g |〉 ⇐ k · f = g ·G k (37)

reflection (in case φ is an isomorphism):

〈|α|〉 = id (38)

where α abbreviates L in · φ◦ in

f = 〈|h|〉 ⇔ f · L in · φ◦︸ ︷︷ ︸
α

= h ·G f

cancellation:

〈|h|〉 · α = h ·G 〈|h|〉
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Many applications!

Many results in the literature arise as instances of this theorem.
For instance, the structural recursion theorem of Bird and
de Moor (1997):

Details:

L a R := (×K ) a ( K ))

{
F X = 1 + A× X
G X = (1 + K ) + A× X

φ = (id + assocr) · distl
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Relational catas thanks to J a P
G-hylo (relational):

µF

X
��

G µF

G X
��

F µF

J in

ww
φ
oo

A G A
Roo

Adjoint F-cata (functional):

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·G ∈·φ)oo

A G A
Roo G P A

G ∈oo F P A
φoo
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Relational catas thanks to J a P

Recall (relational side):{
J X = J X
y (J f ) x ⇔ y = f x

relational G-recursion functional F-recursion

µF

X
��

G µF

G X
��

F µF

J in

ww
φ
oo

A G A
R

oo

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·G ε·φ)
oo
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Relational catas thanks to J a P

Recall (relational side):{
J X = X
y (J f ) x ⇔ y = f x

Because J X = X we can choose G X = F X and φ = id .

Functor F extends to a relator G.

As is usual, we use the same symbol for functor and relator, greatly
simplifying diagrams:

µF

X
��

F µF
inoo

F X
��

A F A
R

oo

⇔

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·F ε·φ)

oo
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Relational catas thanks to J a P

b c-shunting again:

X · in = R · F X ⇔ ΛX = (|Λ(R · F ∈)|)

µF

X
��

F µF
inoo

F X
��

A F A
R

oo

⇔

µF

ΛX
��

F µF
inoo

F ΛX
��

P A F P A
Λ(R·F ε·φ)

oo

X · in = R · F X ⇔ X = ∈ · (|Λ(R · F ∈)|)︸ ︷︷ ︸
(|R|)

(39)

This extends “banana-brackets” to relations and gives birth to
inductive relations.
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Eilenberg-Wright Lemma

Put in another way:

The equivalence

X = (|R|) ⇔ ΛX = (|Λ(R · F ∈)|) (40)

— known as the Eilenberg-Wright Lemma —

follows from the “adjoint catamorphism” theorem (35)1 for the
power-transpose adjunction J a P.

1Also known as “adjoint fold” theorem (Hinze, 2013).
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Relational catas thanks to J a P
In summary,

(J a P) + (| |)

leads as to inductive relations, with universal property:

X · in = R · F X ⇔ X = (|R|)

Instance for Peano recursion, where

in = [zero, succ]
F X = id + X

but this time relationally:

X = (|R|) ⇔
{

X · zero = R · i1
X · succ = R · i2 · X
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Inductive relations thanks to J a P
Remember IN0 IN0

(>)oo ?

Now we know how to define it over the Peano algebra,

(>) = (|[>, succ]|) (41)

where > is the largest relation of its type. (b > a = True for all a and b.)
Unfolding (41):

(>) = (|[>, succ]|)

⇔ { previous slide }{
(>) · zero = >
(>) · succ = succ · (>)

⇔ { go pointwise (in R) }{
y > 0 = True
y > (x + 1) = 〈∃ z : y = z + 1 : z > x〉

�
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Inductive relations thanks to J a P

Remember list prefixes and sublists, ys v xs and ys � xs?

Now we have a way to define them properly:

(v) : A∗ ← A∗

(v) = (|[nil , cons ∪ nil ]|)

and

(�) : A∗ ← A∗

(�) = (|[nil , cons ∪ π2]|)

where

{
nil = [ ]
cons (h, t) = h : t

make up the initial algebra of finite

lists:

in = [nil , cons]
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Inductive relations thanks to J a P

Recalling take, now we see where (6) came from:

(v) = (|[nil , cons ∪ nil ]|)

⇔ { universal property above }{
(v) · nil = nil
(v) · cons = (cons ∪ nil) · (id × (v))

⇔ { go pointwise }{
y v [ ]⇔ y = [ ]
y v (h : t)⇔ y = [ ] ∨ 〈∃ t ′ : y = h : t ′ : t ′ v t〉
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Back to Galois connections — in R

Remember GC f b v a⇔ b 6 g a?

Now, every component of the GC — f , g , (v) and (6) — is a
morphism in R and:

A

f ◦

��

A

g

��

(v)oo

=

B B
(6)

oo

(42)

f a g ⇔ f ◦ · (v) = (6) · g

NB: R◦ is the converse of R, which always exists in R — but not
in the original S.
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More about this

See e.g. my talk

On the power of adjoint recursion. Contributed talk to
IFIP WG 2.1 Short On-line Meeting #O6, 26 October
2021.

Several more examples also in

Ralf Hinze. Adjoint folds and unfolds — an extended
study. Science of Computer Programming, 78(11):
2108–2159, 2013.

which inspired this work.

https://ifipwg21wiki.cs.kuleuven.be/IFIP21/OnlineOct21
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Wrapping up

Original motivation was Ralf Hinze (2013):

(...) Finally, we have left the exploration of relational
adjoint (un)folds to future work.

As shown, doing this leads to the algebra of inductive relations.

Altogether,

• I have learned to appreciate ”adjoint folds” even more.

• Adjunctions are a very fertile device for structuring the MPC
— teaching them (inc. Galois connections) should be
mainstream.

• Current work: “adjoint folds” in language semantics and in
linear algebra.
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Final quote

”My experience has been that theories are often more
structured and more interesting when they are based on
the real problems; somehow they are more exciting than
completely abstract theories will ever be.”Donald Knuth
(1973)
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Appendix
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Composing (+) a∆ and L a R

S2

(+)

==S

∆
yy

L

==C

R
||

(R A,R A) R A + R A
[id ,id ] // R A

(C ,D)

(df e,dge)

OO

C + D

df e+dge

OO

dke

88

{
df e = dke · i1
dge = dke · i2

⇔ dke = [df e, dge]
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“Chemistry” between L a R and coproducts

dke = [df e, dge]

⇔ { universal property }{
dke · i1 = df e
dke · i2 = dge

⇔ { fusion (15) twice }{
k · L i1 = f
k · L i2 = g

⇔ { coproducts }

k · [L i1,L i2]︸ ︷︷ ︸
δ

= [f , g ]

⇔ { isomorphism δ }

k = [f , g ] · δ◦

How can we be sure δ is an isomorphism?
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Limits and colimits

Left adjoints L preserve colimits, and thus coproducts:

L (A + B)

δ◦
++

∼= L A + L B

δ

kk
δ = [L i1,L i2]

Diagram:

L A
i1 //

L i1 %%

L A + L B

δ
��

L B
i2oo

L i2yy
L (A + B)

Example: (L X = X × K )

(A + B)× K

δ◦=distl
,,

∼= A× K + B × K

δ=undistl

ll
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“Chemistry” between L a R and coproducts

In summary:

[dhe, dke] = d[h, k] · δ◦e (43)

Diagrams:

A

dhe

��

i1 // A + B

[dhe, dke]

��

B
i2oo

dke

��
R C

L (A + B)

δ◦

��
L A

h
%%

i1 // L A + L B

[h,k]
��

L B
i2oo

k
yy

C
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Examples

For L a R := (×K ) a ( K )

(covariant exponentials), [dhe, dke] = d[h, k] · δ◦e (43) becomes

[curry f , curryg ] = curry([f , g ] · distl) (44)

For L a R := J a P

δ is the identity (relation) and so (43) becomes:

Λ[R, S ] = [ΛR,ΛS ] (45)

Thus relational coproducts can be defined by:

[R, S ] = ∈ · [ΛR,ΛS ]
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Dual theorem

R out · f = φ ·G f · h ⇔ bf c = [(bφ ·G η · hc)] (46)

Calculation:
bf c = [(bφ ·G η · hc)]

⇔ { ana-universal }

out · bf c = F bf c · bφ ·G η · hc

⇔ { fusion (23) twice }

bR out · f c = bR F bf c · φ ·G η · hc

⇔ { isomorphism b c ; natural-φ }

R out · f = φ ·G R bf c ·G η · h

⇔ { functor G; cancellation R bf c · η = f (22) }

R out · f = φ ·G f · h
�
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Dual theorem — diagram

G-hylomorphism

R µF

R out

))
G R µF

φ // R F µF

A
h

//

f

OO

G A

G f

OO

F-anamorphism :

µF

out

** F µF

L A
bφ·G η·hc

//

bf c
OO

F L A

F bf c
OO

bf c = [(bφ ·G η · hc)]
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Monads

A monad

A
η //MA M2A

µoo

arises from any
adjunction,
where:

M = R · L
η = dide
µ = R ε

Monadic laws
come straight
from the
adjunction laws.

Unit:

µ · η = id = µ ·M η

⇔ { µ = R ε, η = dide etc }

R ε · dide = id = R ε · (R L η)

⇔ { absorption (16); functor R }

dεe = id = R (ε · L η)

⇔ { reflection (12); cancellation (28) }
true

�
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Monad

Multiplication:

µ · µ = µ ·M µ

⇔ { µ = R ε; functor R }

R (ε · ε) = (R ε) · (R (L (R ε)))

⇔ { functor R }

R (ε · ε) = R (ε · L (R ε))

⇔ { natural-ε (17) }

R (ε · ε) = R (ε · ε)
�
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Kleisli composition

From the usual
definition of Kleisli
composition,

f • g = µ ·M f · g
(aside) we can infer:

f • g = dbf c · bgce

f • g

= { f • g = µ ·M f · g }

µ ·M f · g
= { M = R · L; µ = R ε }

R ε · (R (L f )) · g

= { functor R }

R (ε · L f ) · g

= { cancellation: ε · L f = bf c; g = dbgce }

R bf c · dbgce

= { absorption: (R g) · dhe = dg · he }

dbf c · bgce
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Other relational hylos and their adjoints

Example: list membership

{
a ε [ ] = False
a ε (h : t) = (a = h) ∨ a ε t

is the relational hylo

ε = [⊥, π1 ∪ ε · π2] · in◦ (47)

NB: not the relational cata ε = (|[⊥, π1 ∪ π2]|) that one might feel
tempted to write... which is the empty relation!
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Other relational hylos and their adjoints

ot a cata... But perhaps this hylo (47) has an adjoint cata? Yes,
since

ε = [⊥, π1 ∪ ε · π2] · in◦

unfolds into

ε · in = [⊥, [id , id ]]︸ ︷︷ ︸
R

· id + (id + ε)︸ ︷︷ ︸
G ε

· id + (i1 · π1 ∪ i2 · π2)︸ ︷︷ ︸
Φ

where the core of

Φ : 1 + A× A∗︸ ︷︷ ︸
F A∗

→ 1 + (A + A∗)︸ ︷︷ ︸
G A∗

is the (disjoint) union of the two projections π1 ∪ π2.
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Relational hylos and their adjoints

What is its adjoint? Not surprisingly:

Λε = (|Λ[⊥, π1 ∪ ∈ · π2]|)

⇔ { P-transpose of coproducts (45) }

Λε = (|[Λ⊥,Λ(π1 ∪ ∈ · π2)]|)

⇔ { introduce join etc (see below) }

Λε = (|[{ }, join]|)

⇔ { introduce elems }

Λε = elems (48)

where{
elems [ ] = { }
elems (h : t) = {h} ∪ elems t



Motivation Recursion comes in Adjoint recursion Many applications! References

Relational hylos and their adjoints

Details:

elems = (|[{ }, join]|) ⇔
{

elems [ ] = { }
elems (h : t) = {h} ∪ elems t

where

join (a, s) = {a} ∪ s

since:

join = Λ(π1 ∪ ∈ · π2)

Λ(R ∪ S) a = (ΛR a) ∪ (ΛS a)

Λ∈ = id

etc.

Usual way of doing list membership: ε = ∈ · elems, cf. (48).
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(Contravariant) exponentials: (K ) a (K )

Isomorphism

L A→ B

d e
++

∼= A→ R B

b c

jj

becomes (note the arrows reversed on the left side)

K A ← B

flip
++

∼= A→ K B

flip

jj

recalling (Haskell):

flip :: (a -> b -> c) -> b -> a -> c

flip f b a = f a b
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(Contravariant) exponentials: (K ) a (K )

Contravariant self-adjunction. More formally:


L X = K X

R X = K X

ε = fid = flip id

{
df e = flip f
bf c = flip f

k = flip f ⇔ f = K k · fid︸ ︷︷ ︸
flip k

S

K

::S
op

K
yy

K B K (K B )

K k

��

B
fidoo

f||
A

k=flip f

OO

K A
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(Contravariant) exponentials: (K ) a (K )

Contravariant exponential functor:

{
K (−) : (A→ B)→ (B → K )→ A→ K
K k g = g · k

S
K // Sop

B K B

K k

��
A

k

OO

K A

That is:

K k = (·k) (49)
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