Alloy meets the AoP -
 "Relational thinking" at work

J.N. Oliveira
Dept. Informática,
Universidade do Minho
Braga, Portugal

2009 (last update: Dec. 2014)
Braga, Portugal

Model driven engineering

Model driven engineering (MDE) is a voluminous area of work, full of approaches, acronyms, notations.

UML has taken the lead in unifying such notations, but it is too informal to be accepted as a reference (formal) approach.

Model-oriented formal methods - eg. VDM [3], Z [6] — solve this informality problem at a high-cost: many people find it hard to understand models written in maths (cf. maths illiteracy if not mathphobic behaviour).

Alloy [2] offers a good compromise - it is formal in a light-weight manner.

Alloy

What Alloy offers

- A unified approach to modeling based on the notion of a relation - "everything is a relation" in Alloy.
- A minimal syntax (centered upon relational composition) with an object-oriented flavour which captures much of what otherwise would demand for UML+OCL.
- A pointfree subset.
- A model-checker for model assertions (counter-examples within scope).

Alloy

What Alloy does not offer

- Complete calculus for deduction (proof theory)
- Strong type checking

Opportunities

- Enrich the standard Alloy modus operandi with relational algebra (vulg. AoP [1], algebra of programming) calculational proofs
- Follow an Alloy-centric design method for high assurance model-oriented design.

Life-cycle

Source: [5]

Relational composition

- The Swiss army knife of Alloy
- It subsumes function application and "field selection"
- Encourages a navigational (point-free) style based on pattern x (R.S).
- Example:

$$
\begin{aligned}
& \text { Person }=\{(P 1),(P 2),(P 3),(P 4)\} \\
& \text { parent }=\{(P 1, P 2),(P 1, P 3),(P 2, P 4)\} \\
& m e=\{(P 1)\} \\
& \text { me.parent }=\{(P 2),(P 3)\} \\
& \text { me.parent.parent }=\{(P 4)\} \\
& \text { Person.parent }=\{(P 2),(P 3),(P 4)\}
\end{aligned}
$$

Relations are Boolean matrices

The same in matrix form:

Note how me, me.parent etc are all at most Person $\leftarrow^{!^{\circ}} 1$.

By the way

A relation $B \longleftarrow{ }^{V} A$ is said to be a vector if either A or B are the singleton type 1 .

Relation $1 \stackrel{V}{\longleftarrow} A$ is said to be a row-vector; clearly, $V \subseteq$!
Relation $B \longleftarrow^{V} 1$ is said to be a column-vector; clearly, $V \subseteq!^{\circ}$
Every vector $1 \leftarrow^{V} A$ can be uniquely represented by coreflexive (diagonal) δV. Conversely, every coreflexive Φ can be represented by vector! Φ. This arises from:

$$
\begin{equation*}
\Phi \subseteq \Psi \quad \Leftrightarrow \quad!\cdot \Phi \subseteq!\cdot \psi \tag{195}
\end{equation*}
$$

- recall exercise 65.

When "everything is a relation"

In Alloy, sets are relations of arity 1 (ie. vectors), eg.

$$
\text { Person }=\{(P 1),(P 2),(P 3),(P 4)\}
$$

Scalars are vectors of size 1, eg. $m e=\{(P 1)\}$
Relations are first order, but there are multi-ary relations.
However, Alloy relations are not n-ary in the usual sense: instead of thinking of $R \in 2^{A \times B \times C}$ as a set of triples (there is no such thing as tupling in Alloy), think of R in terms of currying:

$$
R \in(B \rightarrow C)^{A}
$$

(More about this later.)

Kleene algebra flavour

Basic operators:

.	composition
+	union
-	transitive closure
*	transitive-reflexive closure

(There is no explicit recursion is Alloy.) Other relational operators:

\sim	converse
++	override
子	intersection
-	difference
->	Cartesian product
<:	domain restriction
:>	range restriction

Semantic rules

Semantic rules for the at most ordering, intersection, union and converse:

$$
\begin{align*}
\mathbb{R} \text { in } S \rrbracket & =\llbracket R \rrbracket \subseteq \llbracket S \rrbracket \tag{196}\\
\llbracket R \& S \rrbracket & =\llbracket R \rrbracket \cap \llbracket S \rrbracket \tag{197}\\
\llbracket R+S \rrbracket & =\llbracket R \rrbracket \cup \llbracket S \rrbracket \tag{19}\\
\mathbb{\sim} R \rrbracket & =\llbracket R \rrbracket^{\circ} \tag{199}
\end{align*}
$$

Basic facts:

$$
\begin{align*}
& \llbracket n o ~ \tag{200}\\
& \llbracket \rrbracket=\llbracket R \rrbracket \subseteq \perp \tag{201}\\
& \llbracket \text { some } R \rrbracket=\llbracket R \rrbracket \supset \perp \tag{202}\\
& \llbracket \text { lone } R \rrbracket=\left\langle\exists a, b:: \llbracket R \rrbracket \subseteq \underline{b} \cdot \underline{a}^{\circ}\right\rangle
\end{align*}
$$

Semantic rules

Alloy's syntax for \top makes types explicit:

$$
\begin{equation*}
\llbracket A \rightarrow B \rrbracket=\llbracket B \rrbracket \cdot \top \cdot \llbracket A \rrbracket \tag{203}
\end{equation*}
$$

Types A and B are sets which, in our semantics, will be captured by coreflexives.

In general, given a set s : A, we have the semantic rule

$$
\begin{equation*}
\llbracket s \rrbracket=A<\Phi_{s} A \tag{204}
\end{equation*}
$$

The largest such s is A itself, represented by the largest such coreflexive: the identity $i d_{A}$.

Semantic rules

Restricted to binary relations, "dot join" is (forward) binary relation composition:

$$
\begin{equation*}
\llbracket S \cdot R \rrbracket=\llbracket R \rrbracket \cdot \llbracket S \rrbracket \quad C< \tag{205}
\end{equation*}
$$

Dot join can be used in Alloy between relations which are not binary, eg. sets (unary relations, or vectors). We have the following semantic rule in the first case,

$$
\begin{equation*}
\llbracket s . R \rrbracket=\underbrace{\rho(\llbracket R \rrbracket \cdot \llbracket s \rrbracket)}_{s p(R, s)} \quad C \stackrel{\llbracket s . R \rrbracket}{\leftarrow} C \stackrel{\llbracket R \rrbracket}{\leftarrow} B \stackrel{\llbracket s \rrbracket}{\leftarrow} B \tag{206}
\end{equation*}
$$

for R binary and s a set (unary relation).

Semantic rules

Expression $s p(R, s)$ under the brace provides an explanation for this kind of composition: it yields the strongest post-condition ensured by R once pre-conditioned by s.

Thanks to

$$
\begin{equation*}
\llbracket R . s \rrbracket=\llbracket s . \sim R \rrbracket \tag{207}
\end{equation*}
$$

[2] one has

$$
\begin{equation*}
\llbracket R \cdot s \rrbracket=\delta(\llbracket s \rrbracket \cdot \llbracket R \rrbracket) \tag{208}
\end{equation*}
$$

where δ is the domain combinator (166).

Semantic rules

In case R is a function f and s is a scalar x (that is, a singleton vector), then $\llbracket x . f \rrbracket$ is the scalar $f x$.

Functions are declared using a suitable multiplicity keyword, eg.

$$
\operatorname{sig} A\{f: \text { one } B\}
$$

Thus,

$$
\operatorname{sig} A\{f: \text { one } B, g: \text { one } C\}
$$

declares $\langle f, g\rangle$, etc.
The table in the next slide gives the semantics of Alloy's multiplicities in relation algebra.

Multiplicities in Alloy + taxonomy

A lone -> B	A -> some B	A -> lone B	A some -> B
injective	entire	simple	surjective
A lone -> som	B A ->	e B A	me -> lone B
representation			straction
A lone -> one B		A some -> one B	
injection		surjection	
A one -> one B			
bijection			

(courtesy of Alcino Cunha)

Recalling terminology

Topmost criteria:

Definitions:

	Reflexive	Coreflexive
$\operatorname{ker} R$	entire R	injective R
$\operatorname{img} R$	surjective R	simple R

$$
\begin{aligned}
\operatorname{ker} R & =R^{\circ} \cdot R \\
\operatorname{img} R & =R \cdot R^{\circ}
\end{aligned}
$$

Semantic rules continued

Further Alloy operators are:

- domain and range restrictions

$$
\begin{align*}
\llbracket s<: R \rrbracket & =\llbracket R \rrbracket \cdot \llbracket s \rrbracket \tag{209}\\
\llbracket R:>s \rrbracket & =\llbracket s \rrbracket \cdot \llbracket R \rrbracket \tag{210}
\end{align*}
$$

where $\llbracket s \rrbracket$ is the coreflexive associated to set s;

- Relation overriding:

$$
\begin{equation*}
\llbracket R++S \rrbracket=\llbracket R \rrbracket \dagger \llbracket S \rrbracket \tag{211}
\end{equation*}
$$

To understand the meaning of the \dagger operator we will need to understand a most important operation in relation algebra: relational division.

Relational division

In the same way

$$
z \times y \leq x \equiv z \leq x \div y
$$

means that $x \div y$ is the largest number which multiplied by y approximates x,

$$
\begin{equation*}
Z \cdot Y \subseteq X \equiv Z \subseteq X / Y \tag{212}
\end{equation*}
$$

means that X / Y is the largest relation which pre-composed Y approximates X.

What is the pointwise meaning of X / Y ?

We reason:

First, the types of

$$
Z \cdot Y \subseteq X \equiv Z \subseteq X / Y
$$

Next, the calculation:

$$
\begin{array}{ll}
& c(X / Y) a \\
\Leftrightarrow & \quad\left\{\text { introduce points } C \longleftarrow \underline{c} 1 \text { and } A<\varkappa^{\underline{a}} 1\right\} \\
& x\left(\underline{c}^{\circ} \cdot(X / Y) \cdot \underline{a}\right) x \\
\Leftrightarrow & \quad\{\text { one-point }(14)\} \\
& x^{\prime}=x \Rightarrow x^{\prime}\left(\underline{c}^{\circ} \cdot(X / Y) \cdot \underline{a}\right) x
\end{array}
$$

Proceed by going pointfree:

We reason

$$
\begin{aligned}
& i d \subseteq \underline{c}^{0} \cdot(X / Y) \cdot \underline{a} \\
& \Leftrightarrow \quad\{\text { shunting rules }\} \\
& \underline{c} \cdot \underline{a}^{\circ} \subseteq X / Y \\
& \Leftrightarrow \quad\{\text { universal property (212) }\} \\
& \underline{c} \cdot \underline{a}^{\circ} \cdot Y \subseteq X \\
& \Leftrightarrow \quad\{\text { now shunt } \underline{c} \text { back to the right }\} \\
& \underline{a}^{\circ} \cdot Y \subseteq \underline{c}^{\circ} \cdot X \\
& \Leftrightarrow \quad\{\text { back to points via (70) }\} \\
& \langle\forall b: a Y b: c X b\rangle
\end{aligned}
$$

Outcome

In summary:

$$
\begin{equation*}
c(X / Y) a \Leftrightarrow\langle\forall b: a Y b: c X b\rangle \tag{213}
\end{equation*}
$$

Example:
a $Y b=$ passenger a choses flight b
$c X b=$ company c operates flight b
$c(X / Y) a=$ company c is the only one trusted by passenger a, that is, a only flies c.

Pointwise meaning in full

The full pointwise encoding

$$
Z \cdot Y \subseteq X \equiv Z \subseteq X / Y
$$

is:
$\langle\forall c, b:\langle\exists a: c Z a: a Y b\rangle: c X b\rangle \Leftrightarrow\langle\forall c, a: c Z a:\langle\forall b: a Y b: c X b\rangle\rangle$
If we drop variables and regard the uppercase letters as denoting Boolean terms dealing without variable c, this becomes

$$
\langle\forall b:\langle\exists a: Z: Y\rangle: X\rangle \Leftrightarrow\langle\forall a: Z:\langle\forall b: Y: X\rangle\rangle
$$

recognizable as the splitting rule (22) of the Eindhoven calculus.
Put in other words: existential quantification is lower adjoint of universal quantification.

Exercises

Exercise 73: Prove the equalities

$$
\begin{align*}
X \cdot f & =X / f^{\circ} \tag{214}\\
X / \perp & =\top \tag{215}\\
X / i d & =X \tag{216}
\end{align*}
$$

and check their pointwise meaning.
\square

Exercise 74: Define

$$
\begin{equation*}
X \backslash Y=\left(Y^{\circ} / X^{\circ}\right)^{\circ} \tag{217}
\end{equation*}
$$

and infer:

$$
\begin{align*}
a(R \backslash S) c & \Leftrightarrow\langle\forall b: b R a: b S c\rangle \tag{218}\\
R \cdot X \subseteq Y & \Leftrightarrow X \subseteq R \backslash Y \tag{219}
\end{align*}
$$

Relation overriding

Preliminary exercise:
Exercise 75: (a) Show that $R \subseteq \perp / S^{\circ} \Leftrightarrow \delta R \cap \delta S=\perp$; (b) Then use indirect equality to infer the universal property of term $R \cap \perp / S^{\circ}$ - the largest sub-relation of R whose domain is disjoint of that of S.

Then we define:
The relational overriding combinator,

$$
\begin{equation*}
R \dagger S=S \cup R \cap \perp / S^{\circ} \tag{220}
\end{equation*}
$$

yields the relation which contains the whole of S and that part of R where S is undefined - read $R \dagger S$ as " R overridden by $S^{\prime \prime}$.

PRopositio de homine et capra et lvpo

Recall the data model (55):

The function that moves a set of Beings to the other bank is an example of relational restriction and overriding:

$$
\begin{equation*}
\text { move }(\text { where, who }) \triangleq \text { where } \dagger\left(\text { cross } \cdot\left(\text { where } \cdot \Phi_{\text {who }}\right)\right) \tag{221}
\end{equation*}
$$

In Alloy syntax:

```
fun move[where: Being -> one Bank,
    who: set Being]: Being -> one Bank
    { where ++ (who <: where).cross }
```


Exercises

Exercise 76: (a) Show that $\perp \dagger S=S$ and that $R \dagger \perp=R$; (b) Infer the universal property:

$$
\begin{equation*}
X \subseteq R \dagger S \quad \Leftrightarrow \quad X-S \subseteq R \wedge \delta(X-S) \cdot \delta S=\perp \tag{222}
\end{equation*}
$$

Exercise 77: Function move (221) could have been defined in terms of the following (generic) selective update operator:

$$
\begin{equation*}
[R]_{\Phi}^{f} \triangleq R \dagger(f \cdot R \cdot \Phi) \tag{223}
\end{equation*}
$$

Prove the equalities: $[R]_{\Phi}^{i d}=R,[R]_{\perp}^{f}=R$ and $[R]_{i d}^{f}=f \cdot R$.

Exercises

Exercise 78: Tell which of the rules (200), (201), (202) could have been written with right-hand side $T \subseteq T \cdot \llbracket R \rrbracket \cdot T$.
\square

Exercise 79: The assertion in the following fragment of Alloy,

```
sig A { f : one B }
sig B {}
assert GC {
    all x: set A, y: set B | x.f in y <<> x in f.y
}
```

captures a "shunting rule" valid in such a language. Resort to the semantic rules given above to prove the validity of this assertion.

Modelling example

A conference model (adapted from Alcino Cunha): one has papers written by people, ie. the Alloy

```
sig Artigo {
autores : some Pessoa
}
```

which declares entire relation Artigo $\xrightarrow{\text { autores }}$ Pessoa, and a state which evolves by letting papers be submitted, reviewed and (possibly) accepted:

```
sig State {
    submetido : set Artigo,
    aceite : set Artigo,
    nota : Artigo -> Pessoa -> lone Nota
}
```


Example

For each state s，s．submetido and s．aceite are sets，which our semantics encodes by coreflexives Artigo $\stackrel{\text { ！s．submetido } \rrbracket}{\leftrightarrows}$ Artigo and Artigo $<\llbracket$ s．aceite】 Artigo．We will use the obvious abbreviations given in the following diagram：

$$
A<A c, S b \text { } A \xrightarrow[A u t]{ } P
$$

that is：
－$A=\llbracket$ Artigo $\rrbracket, P=\llbracket$ Pessoa \rrbracket
－Aut $=\llbracket a u t o r e s \rrbracket$（entire），
－$A c=\llbracket$ s．aceite $\rrbracket, S b=\llbracket$ s．submetido（coreflexives）．

What about 【s．nota】？

More on relational types

The Alloy type for 【s.nota】 is
Artigo -> Pessoa -> lone Nota

What is the semantics of types of the form $A \rightarrow B \rightarrow \cdots \rightarrow C$?
This question deserves some pondering on relational types. Given types A, B, we write $A \rightarrow B$ to denote the set of all relations from A to B.

Let $B^{A} \subseteq A \rightarrow B$ denote the set of all functions in such a type. It's well-known that binary predicates are in bijection with binary relations, $2^{A \times B} \cong A \rightarrow B$ and that the well-known curry / uncurry isomorphism

$$
\begin{equation*}
\left(C^{B}\right)^{A} \cong C^{A \times B} \tag{224}
\end{equation*}
$$

holds.

More on relational types

These can be used to show that any of the relation types $(A \times B) \rightarrow C, A \rightarrow(B \times C)$ or $(B \rightarrow C)^{A}$ are isomorphic.

Thus, every relation R of the first type is in 1-to-1 correspondence with a function f of the third type such as

$$
c R(a, b) \Leftrightarrow c(f a) b
$$

since $f a$ is a relation of type $B \rightarrow C$.
This is how n-ary relations in Alloy should be interpreted: they are (higher-order) functions which yield ($\mathrm{n}-1$)-ary relations as outputs and so on. For instance, $\llbracket a$.(s.nota) \rrbracket is of type Pessoa \rightarrow Nota.

In the sequel we will represent such relations in uncurried format, as in the next example.

Example - continued

We define

$$
\llbracket s . n o t a \rrbracket=A \times P \xrightarrow{N t} N
$$

under the above abbreviations and

- $N=\llbracket N o t a \rrbracket$,
- $N t=\llbracket s . n o t a \rrbracket($ simple)

The model declares yet another coreflexive on P (eople),

$$
\text { some sig Comissao in Pessoa }\}
$$

telling which people are in the reviewing committee, which we will denote by $P \lessdot$ Com P.

Example - model

Altogether, we have the type diagram

where the \neq signals a non-commutative triangle.

Example - invariants

The following invariants capture in Alloy the requirements of the problem:

```
fact Invariante {
    all s : State {
        s.nota in s.submetido -> Comissao -> Nota
        all a : Artigo | no a.(s.nota).Nota & a.autores
        ((s.nota).last).Pessoa in s.aceite
        all a : s.aceite | some a.(s.nota)
    }
}
```

The first one ensures that revisions submissions can only be made by committee members.

Example - invariants

Following (203), type
s.submetido -> Comissao -> Nota
corresponds to $N \leftarrow^{T \cdot(S b \times C o m)} A \times P$ once uncurried, whereby the first invariant becomes

$$
N t \subseteq \top \cdot(S b \times C o m)
$$

which could be written alternatively as

$$
\delta N t \subseteq S b \times C o m
$$

thanks to the universal-property of the domain operator (168).

Example - invariants

The second invariant, which ensures that no author can be a reviewer of any of her/his papers,

$$
\begin{aligned}
& \text { all a : Artigo | no a.(s.nota). Nota \& } \\
& \text { a.autores }
\end{aligned}
$$

converts to:

$$
\begin{array}{cc}
& \llbracket n o \text { a.(s.nota).Nota \& a.autores } \rrbracket \\
\Leftrightarrow & \{(208) ;(197)\} \\
& \delta(\llbracket N o t a \rrbracket \cdot \llbracket a .(\text { s.nota }) \rrbracket) \cap \llbracket \text { a.autores } \rrbracket \subseteq \perp \\
\Leftrightarrow & \quad\{\llbracket N o t a \rrbracket=\text { id } ;(206)\} \\
& \delta \llbracket a .(\text { s.nota }) \rrbracket) \cap \rho(\llbracket \text { autores } \rrbracket \cdot \llbracket a \rrbracket) \subseteq \perp
\end{array}
$$

Example - invariants

The universal quantification can be avoided by defining a relation of the same type as autores, relating papers with their reviewers:

$$
R v=P \stackrel{\pi_{2} \cdot(\delta N t) \cdot \pi_{1}^{\circ}}{\leftarrow} A
$$

where $p(R v)$ a means "person p has reviewed paper a ". Thus $R v \cap A u t \subseteq \perp$ must hold - the same as

$$
R v \subseteq(A u t \Rightarrow \perp)
$$

where $A u t \Rightarrow \perp$ means the "negation of $A u t$ ", as we shall later see.
NB: recal from (125) that, in general, $b(R \Rightarrow S)$ a means $\neg(b R a) \vee b S a$.

Example - invariants

The semantics of the third Alloy invariant
((s.nota).last).Pessoa in s.aceite
won't be considered for the moment because it calls for a relational operator we have nor yet seen (relation division, coming up soon).

Finally, the fourth invariant
all a : s.aceite | some a.(s.nota)
enforcing that accepted papers have at least one mark easily converts to

$$
A c \subseteq \top \cdot N t \cdot \pi_{1}^{\circ}
$$

Example - invariants diagram

Altogether, the three invariants can be drawn as commuting rectangles as follows:

Example - property

Model checking of property

```
check Propriedade {
all s : State | s.aceite in s.submetido
} for 6 but 1 State
```

(read: "only submitted papers can be accepted") finds no counter-examples.

This happens because this property, $A c \subseteq S b$ - equivalent to

$$
A c \subseteq T \cdot S b
$$

(why?) — holds (next slide).

Example - proof

$$
\begin{array}{lc}
& A c \subseteq \top \cdot S b \\
\Leftarrow & \left\{A c \subseteq \top \cdot N t \cdot \pi_{1}^{\circ} \text { (fourth invariant) ; shunting }\right\} \\
& \top \cdot N t \subseteq \top \cdot S b \cdot \pi_{1} \\
\Leftarrow & \{N t \subseteq \top \cdot(S b \times C o m)(\text { first invariant }) ; T \cdot T=\top\} \\
& \top \cdot(S b \times C o m) \subseteq \top \cdot S b \cdot \pi_{1} \\
\Leftrightarrow & \left\{\text { free theorem: } \pi_{1} \cdot(R \times S) \subseteq R \cdot \pi_{1}\right\} \\
& \top \cdot(S b \times C o m) \subseteq \top \cdot \pi_{1} \cdot(S b \times C o m) \\
\Leftrightarrow & \quad\left\{\text { since } \top \cdot \pi_{1}=\top\right\}
\end{array}
$$

True

Example - methods

Every model has a state and methods changing the state.
Typically, such methods can be of the following kinds:

- Create - create a new state
- Read - read the state
- Update - change the state (eg. make it "larger")
- Delete - delete information from the state (make it "smaller")
This is the well-known CRUDe interface to object manipulation in state based software systems.

How free are we to "invent" a CRUDe interface for our models?

Example - methods

Since the state is made of relations, one may predict how the evolution of such relations interferes with the model invariants.

For instance, in our model we have three relations which can evolve - Sb, Ac and Nt. Looking at the invariants,

$$
\begin{align*}
N t & \subseteq \top \cdot(S b \times \mathrm{Com}) \tag{225}\\
\pi_{2} \cdot(\delta N t) \cdot \pi_{1}^{\circ} \cap A u t & \subseteq \perp \tag{226}\\
A c & \subseteq \top \cdot N t \cdot \pi_{1}^{\circ} \tag{227}
\end{align*}
$$

the following rules apply:
Relations on the upper side can always grow bigger; relations on the lower side can always go smaller; other situations call for contracts (pre-conditions).

Example - methods

Clearly:

- relation $S b$ can always grow bigger (no problem in accepting more submissions)
- relation $A c$ can always get smaller (eg. deciding not to accept a paper after all ${ }^{1}$)
This leaves out a most important relation, $N t$, which has to grow somehow, otherwise no papers will ever be accepted ($N t=\perp$ entails $A c=\perp$).

Think of a method which adds new marks to $N t, N t^{\prime}=N t \cup N e w$, where (type checking) New is of the same type as Nt. (In Alloy: s^{\prime}. nota $=$ s.nota + new)

[^0]
Example - contracts

We need contracts ensuring (225) and (226). Our aim is to find appropriate (weakest) pre-conditions, one invariant at a time:

$$
\begin{aligned}
& \underbrace{N t^{\prime} \subseteq \top \cdot(S b \times C o m)}_{(225) \text { for } N t^{\prime}} \\
\Leftrightarrow & \quad\left\{N t^{\prime}=N t \cup N e w ; \text { universal- } \cup(97)\right\} \\
& N t \subseteq \top \cdot(S b \times C o m) \wedge N e w \subseteq \top \cdot(S b \times C o m) \\
\Leftrightarrow & \{\text { definition }\} \\
& (225) \wedge \underbrace{N e w \subseteq \top \cdot(S b \times C o m)}_{\text {WP for }(225)}
\end{aligned}
$$

The contract therefore is: new marks can only be assigned by committee members to submitted papers.

Example - contracts

Next we address (226):

$$
\begin{array}{ll}
& \underbrace{\pi_{2} \cdot\left(\delta N t^{\prime}\right) \cdot \pi_{1}^{\circ} \cap A u t \subseteq \perp}_{(226) \text { for } N t^{\prime}} \\
\Leftrightarrow & \quad\left\{N t^{\prime}=N t \cup N e w ; \text { domain and composition distribute over } \cup\right\} \\
& \left(\pi_{2} \cdot(\delta N t) \cdot \pi_{1}^{\circ} \cup \pi_{2} \cdot(\delta N e w) \cdot \pi_{1}^{\circ}\right) \cap A u t \subseteq \perp \\
\Leftrightarrow & \{\cap \text { distributes over } \cup\} \\
& \left(\pi_{2} \cdot(\delta N t) \cdot \pi_{1}^{\circ} \cap A u t\right) \cup\left(\pi_{2} \cdot(\delta N e w) \cdot \pi_{1}^{\circ} \cap A u t\right) \subseteq \perp \\
\Leftrightarrow & \{\text { universal- } \cup(97)\}
\end{array}
$$

Example - contracts

Suppose now that we we want to refine the method which ranks papers to a one-at-a-time fashion, that is, New in $N t^{\prime}=N t \cup N e w$ is made of a paper a, a reviewer p and a mark n.

In our (uncurried) model this is captured by

$$
N e w=\underline{n} \cdot\langle\underline{a}, \underline{p}\rangle^{\circ}
$$

In Alloy, this is written a \rightarrow p $\rightarrow \mathrm{n}$ (curried notation).
Exercise 80: Check that $\underline{n} \cdot\langle\underline{a}, \underline{p}\rangle^{\circ}=\{(n,(a, p))\}$.

Below we instantiate the generic contracts calculated above for this situation.

Example - contracts

WP for (225):

$$
\begin{array}{cc}
& \text { New } \subseteq \top \cdot(S b \times C o m) \\
\Leftrightarrow & \left\{\text { New }=\underline{n} \cdot\langle\underline{a}, \underline{p}\rangle^{\circ}\right\} \\
& \underline{n} \cdot\langle\underline{a}, \underline{p}\rangle^{\circ} \subseteq \top \cdot(S b \times C o m) \\
\Leftrightarrow & \\
& \{\text { shunting }\} \\
& \underline{n} \subseteq \top \cdot(\text { Sb } \times \text { Com }) \cdot\langle\underline{a}, \underline{p}\rangle \\
\Leftrightarrow & \\
& \{\times \text {-absorption }\} \\
& \underline{n} \subseteq \top \cdot\langle\text { Sb } \cdot \underline{a}, \text { Com } \cdot \underline{p}\rangle \\
\Leftrightarrow & \\
& \\
& a \text { going pointwise }\}
\end{array}
$$

Example - contracts

WP for (226):

$$
\begin{array}{lc}
& \pi_{2} \cdot(\delta \text { New }) \cdot \pi_{1}^{\circ} \cap A u t \subseteq \perp \\
\Leftrightarrow & \quad\left\{\text { New }=\underline{n} \cdot\langle\underline{a}, \underline{p}\rangle^{\circ}\right\} \\
& \pi_{2} \cdot\left(\delta\left(\underline{n} \cdot\langle\underline{a}, \underline{p}\rangle^{\circ}\right)\right) \cdot \pi_{1}^{\circ} \cap A u t \subseteq \perp \\
\Leftrightarrow & \quad\{\text { domain of composition and converse }\} \\
& \pi_{2} \cdot(\rho(\langle\underline{a}, \underline{p}\rangle)) \cdot \pi_{1}^{\circ} \cap \text { Aut } \subseteq \perp \\
\Leftrightarrow & \quad\{\langle\underline{a}, \underline{p}\rangle \text { is simple ; converses }\} \\
& \pi_{2} \cdot\langle\underline{a}, \underline{p}\rangle \cdot\left(\pi_{1} \cdot\langle\underline{a}, \underline{p}\rangle\right)^{\circ} \cap \text { Aut } \subseteq \perp \\
\Leftrightarrow & \quad\{\times \text {-cancellation }\} \\
& \underline{p} \cdot \underline{a}^{\circ} \cap \text { Aut } \subseteq \perp \\
\Leftrightarrow & \quad\{\text { introducing variables }\} \\
& \neg(p \text { Aut a) }
\end{array}
$$

Example - contracts

This corresponds to the Alloy p not in a.autores. The two calculated conditions can in fact be found in the proposed version of the method:

```
pred rever [a : Artigo, p : Pessoa, n : Nota, s,s' : State]
    // pre
    a in s.submetido
    p in Comissao
    p not in a.autores
    no p.(a.(s.nota))
    // pos
    s'.nota = s.nota + a->p->n
    n in last implies
    s'.aceite = s.aceite + a else s'.aceite = s.aceite
    s'.submetido = s.submetido
```

Exercise 81: The pre-condition of method rever includes yet another condition. Guess where this arises from.

Exercises

Exercise 82: Define a method which accepts papers, $A c^{\prime}=A c \cup N e w$, and calculate the corresponding contract entiled by the invariants of the model.

Exercise 83: Derive the Alloy code for the contract of the previous exercise for New $=\underline{a} \cdot \underline{a}^{\circ}$, that is, for the method which accepts one paper a at a time.
\square

Exercises

Exercise 84: The original Alloy model enforces Nt simple, cf. nota : Artigo -> Pessoa -> lone Nota; that is, no reviewer can assign more than one mark to a given paper. Simplicity of $N t$ is therefore another invariant "hidden in the notation". Resort to the the union-simplicity rule (140) to calculate the contract to impose on method $\mathrm{Nt}^{\prime}=\mathrm{Nt} \cup \mathrm{New}$ with respect to this requirement.
\square

Exercise 85: Recall the diagram of the starving invariant of problem Propositio de homine et capra et lvpo:

Write the same in Alloy syntax.

2nd case study — Verified FSystem (VFS)

A real-life case study:

- VSR (Verified Software Repository) initiative
- VFS (Verified File System) on Flash Memory — challenge put forward by Rajeev Joshi and Gerard Holzmann (NASA JPL) [4]
- Two levels - POSIX level and (NAND) flash level
- Working document: Intel ${ }^{\circledR}$ Flash File System Core Reference Guide (Oct. 2004) is POSIX aware.

2nd case study — Verified FSystem (VFS)

The problem (sample):

File System API Reference
4.6 FS_DeleteFileDir

Deletes a single file/directory from the media

Syntax

FFS_Status	FS_DeleteFileDir (
mOS_char	*full_path,
UINT8	static_info_type);

Parameters

Parameter	Description
"full_path	(IN) This is the full path of the filename for the file or directory to be deleted.
static_info_type	(IN) This tells whether this function is called to delete a file or a directory.

Error Codes/Return Values

2nd case study — Verified FSystem (VFS)

VFS in Alloy (simplified)

The system:

```
sig System {
    fileStore: Path -> lone File,
    table: FileHandle -> lone OpenFileInfo
}
```

Paths:

```
sig Path {
    dirName: one Path
}
```

The root is a path:

```
one sig Root extends Path {
}
```


Alloy diagrams for FSystem

Simplified:

Complete:

Binary relation semantics

Meaning of signatures:

```
sig Path {
    dirName: one Path
}
```

declares function Path $\xrightarrow{\text { dirName }}$ Path .

```
sig System {
    fileStore: Path -> lone File,
}
```

declares simple relation System \times Path $\xrightarrow{\text { fileStore }}$ File.
(NB: We often use harpoon arrows - for singling out simple relations.)

Binary relation semantics

- Since (as we have seen)

$$
(A \times B) \rightharpoonup C \cong(B \rightharpoonup C)^{A}
$$

fileStore can be alternatively regarded as a function in $(\text { Path } \rightharpoonup \text { File })^{\text {System }}$, that is, for $s:$ System,

$$
\text { Path } \xrightarrow{\text { s.fileStore }} \text { File }
$$

- Thus the "navigation-styled" notation of Alloy: p.(s.fileStore) means the file accessible from path p in file system s.
- Similarly, line table: FileHandle -> lone OpenFileInfo in the model declares

FileHandle s.table OpenFileInfo

From Alloy to relational diagrams

We draw

where

- table s and fileStore s are simple relations
- the other arrows depict functions
(Diagram to be completed soon.)

Model constraints

Referential integrity:
Non-existing files cannot be opened:

```
pred ri[s: System]{
    all h: FileHandle, o: h.(s.table) |
    some (o.path).(s.fileStore)
}
```

Paths closure:
Mother directories exist and are indeed directories:

```
pred pc[s: System]{
    all p: Path |
        some p.(s.fileStore) =>
        (some d: (p.dirName).(s.fileStore) |
        d.fileType=Directory)
```

\}

2nd part of Alloy FSystem model

```
sig File {
        attributes: one Attributes
}
sig Attributes{
        fileType: one FileType
}
abstract sig FileType {}
one sig RegularFile extends FileType {}
one sig Directory extends FileType {}
```


Updated binary relational diagram

OpenFileDescriptor table s FileHandle

where

- table s, fileStore s are simple relations
- all the other arrows depict functions

Constraints: still missing

Updating diagram with constraints

Complete diagram, where Directory is the "everywhere-Directory" constant function:

OpenFileDescriptor table s FileHandle

Constraints:

- Top rectangle is the PF-transform of ri (referential integrity)
- Bottom rectangle is the PF-transform of $p c$ (path closure)

Constraints in symbols

Referential integrity:

$$
\begin{equation*}
r i(s) \triangleq \text { path } \cdot(\text { table } s) \subseteq(\text { fileStore } s)^{\circ} \cdot \top \tag{228}
\end{equation*}
$$

which is equivalent to

$$
r i(s) \triangleq \rho(\text { path } \cdot(\text { table } s)) \subseteq \delta(\text { fileStore } s)
$$

since $\rho R=\delta R^{\circ}$. PF version (228) nicely encodes into Alloy syntax

```
pred riPF[s: System]{
    s.table.path in (FileHandle->File).~(s.fileStore)
}
```

thanks to its emphasis on composition.

Constraints in symbols

Paths closure:

pc $N \triangleq$ Directory $\cdot N \subseteq$ fileType • attributes $\cdot N \cdot$ dirName (229)
where N abbreviates s.fileStore, recall

Again thanks to emphasis on composition, this is easily encoded in PF-Alloy:

```
pred pcPF[s: System]{
    s.fileStore.(File->Directory) in
    dirName.(s.fileStore).attributes.fileType
}
```


Monotonicity analysis

From

$$
r i(s) \triangleq \text { path } \cdot(\text { table } s) \subseteq(\text { fileStore } s)^{\circ} \cdot \top
$$

one infers:

- table s can always go smaller (eg. by closing files)
- fileStore s can always go larger (eg. by creating new files)

On the other hand ($N=$ fileStore s),
pc $N \triangle$ Directory $\cdot N \subseteq$ fileType \cdot attributes $\cdot N \cdot$ dirName
calls for contracts (in general).

Exercise

Exercise 86: Consider the following examples of file system operations:

- edit an existing file without changing its attributes
- open a file for editing
- create a file in the current directory
- rename an existing file system object (file or directory)

Tell which operations call for contracts with respect to the two invariants $r i$ and $p c$.
\square

VFS CRUD and its contracts

Example: Consider the operation which removes file system objects, as modeled in Alloy:

```
pred delete[s',s: System, sp: set Path]{
    s'.table = s.table
    s'.fileStore = (univ-sp) <: s.fileStore
}
```

that is,

$$
\begin{equation*}
\text { delete } s p(M, N) \triangleq\left(M, N \cdot \Phi_{(\notin s p)}\right) \tag{230}
\end{equation*}
$$

where M (resp. N) abbreviates s.table (resp. s.fileStore) and $\Phi_{(\notin s p)}$ is the coreflexive associated to the complement of $s p$.

Intuitively

Intuitively, delete will put at risk

- the ri constraint once we decide to delete file system objects which are open;
- the $p c$ constraint once we decide to delete directories
 with children.
(Model-checking in Alloy will easily spot these flaws, as checked above by a counter-example for the latter situation.)

Calculation

We want to calculate the weakest pre-condition (contract) for each constraint to be maintained.

For this we will recall the following properties of relational algebra: shunting (79),

$$
h \cdot R \subseteq S \Leftrightarrow R \subseteq h^{\circ} \cdot S
$$

pre-restriction (157),

$$
R \cdot \Phi=R \cap \top \cdot \Phi
$$

and

$$
\begin{equation*}
f \cdot R \subseteq T \cdot S \Leftrightarrow R \subseteq T \cdot S \tag{231}
\end{equation*}
$$

Exercise 87: Prove (231). Can this equivalence be generalized?

Contract calculation - ri

$$
\begin{array}{lc}
& \text { ri }\left(M, N \cdot \Phi_{(\notin S)}\right) \\
\Leftrightarrow & \{(228)\} \\
& \text { path } \cdot M \subseteq\left(N \cdot \Phi_{(\notin S)}\right)^{\circ} \cdot \top \\
\Leftrightarrow & \{\text { converses }(68,151)\} \\
& \text { path } \cdot M \subseteq \Phi_{(\notin S)} \cdot N^{\circ} \cdot \top \\
\Leftrightarrow & \{(158)\} \\
& \text { path } \cdot M \subseteq N^{\circ} \cdot \top \cap \Phi_{(\notin S)} \cdot \top \\
\Leftrightarrow & \{\cap \text {-universal (96)\}} \\
& \text { path } \cdot M \subseteq N^{\circ} \cdot \top \wedge \text { path } \cdot M \subseteq \Phi_{(\notin S)} \cdot \top \\
\Leftrightarrow & \{(228) ; \text { shunting }(79)\}
\end{array}
$$

Contract calculation - ri

The obtained weakest pre-condition $w p$ converts back to the pointwise

$$
\langle\forall b: b \in \operatorname{rng} M: \text { path } b \notin S\rangle
$$

which instantiates to

$$
\langle\forall b: b \in r n g M: \text { path } b \neq p\rangle
$$

for $S:=\{p\}$. We are done as far invariant $r i$ is concerned.
Exercise 88: Encode the calculated contract (weakest pre-condition) in Alloy.

Contract calculation - pc

For improved readability, we introduce abbreviations $f t:=$ fileType \cdot attributes and $d:=$ Directory in

$$
\begin{array}{lc}
& p c(\text { delete } S(M, N)) \\
\Leftrightarrow & \{(230) \text { and (229) \}} \\
& d \cdot\left(N \cdot \Phi_{(\notin S)}\right) \subseteq f t \cdot\left(N \cdot \Phi_{(\notin S)}\right) \cdot \operatorname{dirName} \\
\Leftrightarrow & \{\text { shunting (79) \}} \\
& d \cdot N \cdot \Phi_{(\notin S)} \cdot \operatorname{dirName}^{\circ} \subseteq f t \cdot N \cdot \Phi_{(\notin S)} \\
\Leftrightarrow & \{(157)\} \\
& d \cdot N \cdot \Phi_{(\notin S)} \cdot \operatorname{dirName}^{\circ} \subseteq f t \cdot N \cap \top \cdot \Phi_{(\notin S)} \\
\Leftrightarrow & \{\cap \text {-universal ; shunting \}}
\end{array}
$$

Contract calculation - pc

$$
\begin{gathered}
\left\{\begin{array}{l}
d \cdot N \cdot \Phi_{(\notin S)} \subseteq f t \cdot N \cdot \operatorname{dirName} \\
d \cdot N \cdot \Phi_{(\notin S)} \subseteq \top \cdot \Phi_{(\notin S)} \cdot \operatorname{dirName}
\end{array}\right. \\
\Leftrightarrow
\end{gathered} \begin{gathered}
\{\top \text { absorbs } d(231)\} \\
\underbrace{d \cdot N \cdot \Phi_{(\notin S)} \subseteq f t \cdot N \cdot \operatorname{dirName}}_{w p} \\
\underbrace{N \cdot \Phi_{(\notin S)} \subseteq \top \cdot \Phi_{(\notin S)} \cdot \operatorname{dirName}}_{\text {weaker than } p c(N)}
\end{gathered}
$$

Back to points, wp is:

$$
\begin{array}{ll}
& \langle\forall q: q \in \operatorname{dom} N \wedge q \notin S: \operatorname{dirName} q \notin S\rangle \\
& \quad\{\text { predicate logic }\} \\
& \langle\forall q: q \in \operatorname{dom} N \wedge(\operatorname{dirName} q) \in S: q \in S\rangle
\end{array}
$$

Ensuring paths closure

In words:
if the parent directory of existing path q is marked for deletion than so must be q.

Translating the calculated contract back to Alloy:

```
pred pre_delete[s: System, sp: set Path]{
    all q: Path |
            (some q.(s.fileStore) &&
                q.dirName in sp) => q in sp
}
```


Exercises

Exercise 89: Recalling exercise 86, calculate the contract required by the operation

$$
\text { open } K(M, N) \triangleq(M \cup K, N)
$$

Exercise 90: Specify the POSIX mkdir operation and calculate its contract.

R R．Bird and O．de Moor．
Algebra of Programming．
Series in Computer Science．Prentice－Hall International， 1997.
埥 D．Jackson．
Software Abstractions：Logic，Language，and Analysis．
The MIT Press，Cambridge Mass．， 2012.
Revised edition，ISBN 0－262－01715－2．
圊 C．B．Jones．
Systematic Software Development Using VDM．
Series in Computer Science．Prentice－Hall International， 1986.
围 R．Joshi and G．J．Holzmann．
A mini challenge：build a verifiable filesystem．
Formal Asp．Comput．，19（2）：269－272， 2007.
目 J．N．Oliveira and M．A．Ferreira．
Alloy meets the algebra of programming：A case study．
IEEE Transactions on Software Engineering，39（3）：305－326， 2013.J.M. Spivey.

The Z Notation - A Reference Manual.
Series in Computer Science. Prentice-Hall International, 1989. C.A.R. Hoare (series editor).

[^0]: ${ }^{1}$ But please note that we are ignoring one invariant for the time being...

