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Model driven engineering

Model driven engineering (MDE) is a voluminous area of work, full
of approaches, acronyms, notations.

UML has taken the lead in unifying such notations, but it is too
informal to be accepted as a reference (formal) approach.

Model-oriented formal methods — eg. VDM [3], Z [6] — solve
this informality problem at a high-cost: many people find it hard to
understand models written in maths (cf. maths illiteracy if not
mathphobic behaviour).

Alloy [2] offers a good compromise — it is formal in a light-weight
manner.
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Alloy

What Alloy offers

• A unified approach to modeling based on the notion of a
relation — “everything is a relation” in Alloy.

• A minimal syntax (centered upon relational composition) with
an object-oriented flavour which captures much of what
otherwise would demand for UML+OCL.

• A pointfree subset.

• A model-checker for model assertions (counter-examples
within scope).
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Alloy

What Alloy does not offer

• Complete calculus for deduction (proof theory)

• Strong type checking

Opportunities

• Enrich the standard Alloy modus operandi with relational
algebra (vulg. AoP [1], algebra of programming) calculational
proofs

• Follow an Alloy-centric design method for high assurance
model-oriented design.
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Life-cycle

Alloy
Model "Checking"

PF-calculus
Proof

OK
Success

PF-notation
Refinement

Model refinedFound flaw

Refinement validated Check proof steps

Source: [5]
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Relational composition

• The Swiss army knife of Alloy

• It subsumes function application and “field selection”

• Encourages a navigational (point-free) style based on pattern
x .(R.S).

• Example:

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
me.parent.parent = {(P4)}
Person.parent = {(P2),(P3),(P4)}
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Relations are Boolean matrices

The same in matrix form:

Note how me, me.parent etc are all at most Person 1
!◦oo .
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By the way

A relation B A
Voo is said to be a vector if either A or B are

the singleton type 1.

Relation 1 A
Voo is said to be a row-vector; clearly, V ⊆ !

Relation B 1
Voo is said to be a column-vector; clearly, V ⊆ !◦

Every vector 1 A
Voo can be uniquely represented by

coreflexive (diagonal) δ V . Conversely, every coreflexive Φ can be
represented by vector ! · Φ. This arises from:

Φ ⊆ Ψ ⇔ ! · Φ ⊆ ! ·Ψ (195)

— recall exercise 65.
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When “everything is a relation”

In Alloy, sets are relations of arity 1 (ie. vectors) , eg.

Person = {(P1), (P2), (P3), (P4)}

Scalars are vectors of size 1, eg. me = {(P1)}

Relations are first order, but there are multi-ary relations.

However, Alloy relations are not n-ary in the usual sense: instead
of thinking of R ∈ 2A×B×C as a set of triples (there is no such
thing as tupling in Alloy), think of R in terms of currying:

R ∈ (B → C )A

(More about this later.)
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Kleene algebra flavour

Basic operators:

. composition
+ union
^ transitive closure
* transitive-reflexive closure

(There is no explicit recursion is Alloy.) Other relational operators:

~ converse
++ override
& intersection
- difference
-> Cartesian product
<: domain restriction
:> range restriction
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Semantic rules

Semantic rules for the at most ordering, intersection, union and
converse:

[[R in S ]] = [[R]] ⊆ [[S ]] (196)

[[R & S ]] = [[R]] ∩ [[S ]] (197)

[[R + S ]] = [[R]] ∪ [[S ]] (198)

[[ ˜R]] = [[R]]◦ (199)

Basic facts:

[[no R]] = [[R]] ⊆ ⊥ (200)

[[some R]] = [[R]] ⊃ ⊥ (201)

[[lone R]] = 〈∃ a, b :: [[R]] ⊆ b · a◦〉 (202)
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Semantic rules

Alloy’s syntax for > makes types explicit:

[[A → B]] = [[B]] · > · [[A]] (203)

Types A and B are sets which, in our semantics, will be captured
by coreflexives.

In general, given a set s : A, we have the semantic rule

[[s]] = A A
Φsoo (204)

The largest such s is A itself, represented by the largest such
coreflexive: the identity idA.
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Semantic rules

Restricted to binary relations, “dot join” is (forward) binary
relation composition:

[[S .R]] = [[R]] · [[S ]] C B
[[R]]oo A

[[S]]oo (205)

Dot join can be used in Alloy between relations which are not
binary, eg. sets (unary relations, or vectors). We have the
following semantic rule in the first case,

[[s.R]] = ρ ([[R]] · [[s]])︸ ︷︷ ︸
sp(R,s)

C C
[[s.R]]oo B

[[R]]oo B
[[s]]oo (206)

for R binary and s a set (unary relation).
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Semantic rules

Expression sp(R, s) under the brace provides an explanation for
this kind of composition: it yields the strongest post-condition
ensured by R once pre-conditioned by s.

Thanks to

[[R.s]] = [[s .̃ R]] (207)

[2] one has

[[R.s]] = δ ([[s]] · [[R]]) (208)

where δ is the domain combinator (166).
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Semantic rules

In case R is a function f and s is a scalar x (that is, a singleton
vector), then [[x .f ]] is the scalar f x .

Functions are declared using a suitable multiplicity keyword, eg.

sig A { f : one B }

Thus,

sig A { f : one B, g : one C }

declares 〈f , g〉, etc.

The table in the next slide gives the semantics of Alloy’s
multiplicities in relation algebra.
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Multiplicities in Alloy + taxonomy

(courtesy of Alcino Cunha)
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Recalling terminology

Topmost criteria:

binary relation

VVVVVVVVVVVVVVVVVV

KKKKKKKKKK

ssssssssss

iiiiiiiiiiiiiiiiii

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R
img R surjective R simple R

kerR = R◦ · R
img R = R · R◦
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Semantic rules continued

Further Alloy operators are:

• domain and range restrictions

[[s <: R]] = [[R]] · [[s]] (209)

[[R :> s]] = [[s]] · [[R]] (210)

where [[s]] is the coreflexive associated to set s;

• Relation overriding:

[[R++S ]] = [[R]] † [[S ]] (211)

To understand the meaning of the † operator we will need to
understand a most important operation in relation algebra:
relational division.
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Relational division

In the same way

z × y ≤ x ≡ z ≤ x ÷ y

means that x ÷ y is the largest number which multiplied by y
approximates x ,

Z · Y ⊆ X ≡ Z ⊆ X/Y (212)

means that X/Y is the largest relation which pre-composed Y
approximates X .

What is the pointwise meaning of X/Y ?
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We reason:

First, the types of

Z · Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��~~
~~

~~
~

C B

Y

OO

X
oo

Next, the calculation:

c (X/Y ) a

⇔ { introduce points C 1
coo and A 1

aoo }

x(c◦ · (X/Y ) · a)x

⇔ { one-point (14) }

x ′ = x ⇒ x ′(c◦ · (X/Y ) · a)x

Proceed by going pointfree:
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We reason

id ⊆ c◦ · (X/Y ) · a

⇔ { shunting rules }

c · a◦ ⊆ X/Y

⇔ { universal property (212) }

c · a◦ · Y ⊆ X

⇔ { now shunt c back to the right }

a◦ · Y ⊆ c◦ · X
⇔ { back to points via (70) }

〈∀ b : a Y b : c X b〉
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Outcome

In summary:

c (X/Y ) a ⇔ 〈∀ b : a Y b : c X b〉 a?
X/Y

����
��

��
��

c b
_
Y

OO

�
X

oo

(213)

Example:

a Y b = passenger a choses flight b

c X b = company c operates flight b

c (X/Y ) a = company c is the only one trusted by passenger
a, that is, a only flies c .
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Pointwise meaning in full

The full pointwise encoding

Z · Y ⊆ X ≡ Z ⊆ X/Y

is:

〈∀ c , b : 〈∃ a : cZa : aYb〉 : cXb〉 ⇔ 〈∀ c , a : cZa : 〈∀ b : aYb : cXb〉〉

If we drop variables and regard the uppercase letters as denoting Boolean
terms dealing without variable c , this becomes

〈∀ b : 〈∃ a : Z : Y 〉 : X 〉 ⇔ 〈∀ a : Z : 〈∀ b : Y : X 〉〉

recognizable as the splitting rule (22) of the Eindhoven calculus.

Put in other words: existential quantification is lower adjoint of

universal quantification.
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Exercises

Exercise 73: Prove the equalities

X · f = X/f ◦ (214)

X/⊥ = > (215)

X/id = X (216)

and check their pointwise meaning.

�

Exercise 74: Define

X \ Y = (Y ◦/X ◦)◦ (217)

and infer:

a(R \ S)c ⇔ 〈∀ b : b R a : b S c〉 (218)

R · X ⊆ Y ⇔ X ⊆ R \ Y (219)

�
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Relation overriding

Preliminary exercise:

Exercise 75: (a) Show that R ⊆ ⊥/S◦ ⇔ δ R ∩ δ S = ⊥; (b) Then use
indirect equality to infer the universal property of term R ∩ ⊥/S◦ — the
largest sub-relation of R whose domain is disjoint of that of S .

�

Then we define:

The relational overriding combinator,

R † S = S ∪ R ∩ ⊥/S◦ (220)

yields the relation which contains the whole of S and
that part of R where S is undefined — read R † S as “R
overridden by S”.
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Propositio de homine et capra et lvpo

Recall the data model (55):

Being
Eats // Being

where
��

Bank
cross // Bank

The function that moves a set of Beings to the other bank is an
example of relational restriction and overriding:

move(where,who) 4 where † (cross · (where · Φwho)) (221)

In Alloy syntax:

fun move[where: Being -> one Bank,
who: set Being]: Being -> one Bank

{ where ++ (who <: where).cross }
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Exercises

Exercise 76: (a) Show that ⊥ † S = S and that R † ⊥ = R; (b) Infer
the universal property:

X ⊆ R † S ⇔ X − S ⊆ R ∧ δ (X − S) · δ S = ⊥ (222)

�

Exercise 77: Function move (221) could have been defined in terms of
the following (generic) selective update operator:

[R]fΦ 4 R † (f · R · Φ) (223)

Prove the equalities: [R]idΦ = R, [R]f⊥ = R and [R]fid = f · R.

�
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Exercises

Exercise 78: Tell which of the rules (200), (201), (202) could have
been written with right-hand side > ⊆ > · [[R]] · >.

�

Exercise 79: The assertion in the following fragment of Alloy,

sig A { f : one B }
sig B {}

assert GC {
all x: set A, y: set B | x.f in y <=> x in f.y

}

captures a “shunting rule” valid in such a language. Resort to the
semantic rules given above to prove the validity of this assertion.

�
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Modelling example

A conference model (adapted from Alcino Cunha): one has papers
written by people, ie. the Alloy

sig Artigo {
autores : some Pessoa
}

which declares entire relation Artigo
autores // Pessoa , and a

state which evolves by letting papers be submitted, reviewed and
(possibly) accepted:

sig State {
submetido : set Artigo,
aceite : set Artigo,
nota : Artigo -> Pessoa -> lone Nota

}
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Example

For each state s, s.submetido and s.aceite are sets, which our

semantics encodes by coreflexives Artigo Artigo
[[s.submetido]]oo and

Artigo Artigo
[[s.aceite]]oo . We will use the obvious abbreviations

given in the following diagram:

A A
Ac,Sb

oo
Aut

// P

that is:

• A = [[Artigo]], P = [[Pessoa]]

• Aut = [[autores]] (entire),

• Ac = [[s.aceite]], Sb = [[s.submetido]] (coreflexives).

What about [[s.nota]]?
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More on relational types

The Alloy type for [[s.nota]] is

Artigo -> Pessoa -> lone Nota

What is the semantics of types of the form A → B → · · · → C?

This question deserves some pondering on relational types. Given types
A, B, we write A → B to denote the set of all relations from A to B.

Let BA ⊆ A → B denote the set of all functions in such a type. It’s
well-known that binary predicates are in bijection with binary relations,
2A×B ∼= A → B and that the well-known curry / uncurry isomorphism

(CB)
A ∼= CA×B (224)

holds.
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More on relational types

These can be used to show that any of the relation types
(A× B) → C , A → (B × C ) or (B → C )A are isomorphic.

Thus, every relation R of the first type is in 1-to-1 correspondence
with a function f of the third type such as

c R(a, b) ⇔ c(f a)b

since f a is a relation of type B → C .

This is how n-ary relations in Alloy should be interpreted: they are
(higher-order) functions which yield (n-1)-ary relations as outputs
and so on. For instance, [[a.(s.nota)]] is of type Pessoa → Nota.

In the sequel we will represent such relations in uncurried format,
as in the next example.
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Example — continued

We define

[[s.nota]] = A× P
Nt // N

under the above abbreviations and

• N = [[Nota]],

• Nt = [[s.nota]] (simple)

The model declares yet another coreflexive on P(eople),

some sig Comissao in Pessoa {}

telling which people are in the reviewing committee, which we will

denote by P P
Comoo .
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Example — model

Altogether, we have the type diagram

P P
Com

oo

6= A× P

π2

iiSSSSSSSSSSSSSSSSSS

π1

uukkkkkkkkkkkkkkkkkk
Nt // IN

A A
Ac,Sb

oo

Aut

OO

where the 6= signals a non-commutative triangle.
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Example — invariants

The following invariants capture in Alloy the requirements of the
problem:

fact Invariante {
all s : State {

s.nota in s.submetido -> Comissao -> Nota
all a : Artigo | no a.(s.nota).Nota & a.autores
((s.nota).last).Pessoa in s.aceite
all a : s.aceite | some a.(s.nota)

}
}

The first one ensures that revisions submissions can only be made
by committee members.
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Example — invariants

Following (203), type

s.submetido -> Comissao -> Nota

corresponds to N A× P
>·(Sb×Com)oo once uncurried, whereby the

first invariant becomes

Nt ⊆ > · (Sb × Com)

which could be written alternatively as

δ Nt ⊆ Sb × Com

thanks to the universal-property of the domain operator (168).



MDE Alloy Alloy semantics MDE example Contracts Exercises Binary relation semantics Contracts

Example — invariants

The second invariant, which ensures that no author can be a
reviewer of any of her/his papers,

all a : Artigo | no a.(s.nota).Nota &
a.autores

converts to:

[[no a.(s.nota).Nota & a.autores]]

⇔ { (208) ; (197) }

δ ([[Nota]] · [[a.(s.nota)]]) ∩ [[a.autores]] ⊆ ⊥

⇔ { [[Nota]] = id ; (206) }

δ [[a.(s.nota)]]) ∩ ρ ([[autores]] · [[a]]) ⊆ ⊥
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Example — invariants

The universal quantification can be avoided by defining a relation
of the same type as autores, relating papers with their reviewers:

Rv = P A
π2·(δ Nt)·π◦1oo

where p(Rv)a means “person p has reviewed paper a”. Thus
Rv ∩ Aut ⊆ ⊥ must hold — the same as

Rv ⊆ (Aut ⇒⊥)

where Aut⇒⊥ means the “negation of Aut”, as we shall later see.

NB: recal from (125) that, in general, b(R ⇒ S)a means
¬(bRa) ∨ bSa.
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Example — invariants

The semantics of the third Alloy invariant

((s.nota).last).Pessoa in s.aceite

won’t be considered for the moment because it calls for a relational
operator we have nor yet seen (relation division, coming up soon).

Finally, the fourth invariant

all a : s.aceite | some a.(s.nota)

enforcing that accepted papers have at least one mark easily
converts to

Ac ⊆ > · Nt · π◦1
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Example — invariants diagram

Altogether, the three invariants can be drawn as commuting
rectangles as follows:

A× P
> // N

⊇

A× P

π2

��

A× P
δ Ntoo

Sb×Com

OO

Nt // N

id

OO

>

��

⊆
⊆
P A

π◦1

OO

Ac
//

Aut⇒⊥
oo A
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Example — property

Model checking of property

check Propriedade {
all s : State | s.aceite in s.submetido
} for 6 but 1 State

(read: ”only submitted papers can be accepted”) finds no
counter-examples.

This happens because this property, Ac ⊆ Sb — equivalent to

Ac ⊆ > · Sb

(why?) — holds (next slide).
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Example — proof

Ac ⊆ > · Sb

⇐ { Ac ⊆ > · Nt · π◦1 (fourth invariant) ; shunting }

> · Nt ⊆ > · Sb · π1

⇐ { Nt ⊆ > · (Sb × Com) (first invariant) ; > · > = > }

> · (Sb × Com) ⊆ > · Sb · π1

⇐ { free theorem: π1 · (R × S) ⊆ R · π1 }

> · (Sb × Com) ⊆ > · π1 · (Sb × Com)

⇔ { since > · π1 = > }

True
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Example — methods

Every model has a state and methods changing the state.

Typically, such methods can be of the following kinds:

• Create — create a new state

• Read — read the state

• Update — change the state (eg. make it “larger”)

• Delete — delete information from the state (make it
“smaller”)

This is the well-known CRUDe interface to object manipulation in
state based software systems.

How free are we to “invent” a CRUDe interface for our models?
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Example — methods

Since the state is made of relations, one may predict how the
evolution of such relations interferes with the model invariants.

For instance, in our model we have three relations which can
evolve — Sb, Ac and Nt. Looking at the invariants,

Nt ⊆ > · (Sb × Com) (225)

π2 · (δ Nt) · π◦1 ∩ Aut ⊆ ⊥ (226)

Ac ⊆ > · Nt · π◦1 (227)

the following rules apply:

Relations on the upper side can always grow bigger; relations
on the lower side can always go smaller; other situations call
for contracts (pre-conditions).
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Example — methods

Clearly:

• relation Sb can always grow bigger (no problem in accepting
more submissions)

• relation Ac can always get smaller (eg. deciding not to accept
a paper after all 1)

This leaves out a most important relation, Nt, which has to grow
somehow, otherwise no papers will ever be accepted (Nt = ⊥
entails Ac = ⊥).

Think of a method which adds new marks to Nt, Nt ′ = Nt ∪ New ,
where (type checking) New is of the same type as Nt. (In Alloy:
s’.nota = s.nota + new)

1But please note that we are ignoring one invariant for the time being...
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Example — contracts

We need contracts ensuring (225) and (226). Our aim is to find
appropriate (weakest) pre-conditions, one invariant at a time:

Nt ′ ⊆ > · (Sb × Com)︸ ︷︷ ︸
(225) for Nt ′

⇔ { Nt ′ = Nt ∪ New ; universal-∪ (97) }

Nt ⊆ > · (Sb × Com) ∧ New ⊆ > · (Sb × Com)

⇔ { definition }

(225) ∧ New ⊆ > · (Sb × Com)︸ ︷︷ ︸
WP for (225)

The contract therefore is: new marks can only be assigned by
committee members to submitted papers.
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Example — contracts

Next we address (226):

π2 · (δ Nt ′) · π◦1 ∩ Aut ⊆ ⊥︸ ︷︷ ︸
(226) for Nt ′

⇔ { Nt ′ = Nt ∪ New ; domain and composition distribute over ∪ }

(π2 · (δ Nt) · π◦1 ∪ π2 · (δ New) · π◦1 ) ∩ Aut ⊆ ⊥

⇔ { ∩ distributes over ∪ }

(π2 · (δ Nt) · π◦1 ∩ Aut) ∪ (π2 · (δ New) · π◦1 ∩ Aut) ⊆ ⊥

⇔ { universal-∪ (97) }

(226) ∧ π2 · (δ New) · π◦1 ∩ Aut ⊆ ⊥︸ ︷︷ ︸
WP for (226)
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Example — contracts

Suppose now that we we want to refine the method which ranks
papers to a one-at-a-time fashion, that is, New in Nt ′ = Nt ∪New
is made of a paper a, a reviewer p and a mark n.

In our (uncurried) model this is captured by

New = n · 〈a, p〉◦

In Alloy, this is written a -> p -> n (curried notation).

Exercise 80: Check that n · 〈a, p〉◦ = {(n, (a, p))}.
�

Below we instantiate the generic contracts calculated above for
this situation.



MDE Alloy Alloy semantics MDE example Contracts Exercises Binary relation semantics Contracts

Example — contracts

WP for (225):

New ⊆ > · (Sb × Com)

⇔ { New = n · 〈a, p〉◦ }

n · 〈a, p〉◦ ⊆ > · (Sb × Com)

⇔ { shunting }

n ⊆ > · (Sb × Com) · 〈a, p〉

⇔ { ×-absorption }

n ⊆ > · 〈Sb · a,Com · p〉

⇔ { going pointwise }

a ∈ [[s.submetido]] ∧ p ∈ [[Comissao]]
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Example — contracts
WP for (226):

π2 · (δ New) · π◦1 ∩ Aut ⊆ ⊥

⇔ { New = n · 〈a, p〉◦ }

π2 · (δ (n · 〈a, p〉◦)) · π◦1 ∩ Aut ⊆ ⊥

⇔ { domain of composition and converse }

π2 · (ρ (〈a, p〉)) · π◦1 ∩ Aut ⊆ ⊥

⇔ { 〈a, p〉 is simple ; converses }

π2 · 〈a, p〉 · (π1 · 〈a, p〉)◦ ∩ Aut ⊆ ⊥

⇔ { ×-cancellation }

p · a◦ ∩ Aut ⊆ ⊥

⇔ { introducing variables }

¬(p Aut a)
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Example — contracts
This corresponds to the Alloy p not in a.autores. The two calculated
conditions can in fact be found in the proposed version of the method:

pred rever [a : Artigo, p : Pessoa, n : Nota, s,s’ : State] {
// pre
a in s.submetido
p in Comissao
p not in a.autores
no p.(a.(s.nota))
// pos
s’.nota = s.nota + a->p->n
n in last implies

s’.aceite = s.aceite + a else s’.aceite = s.aceite
s’.submetido = s.submetido

Exercise 81: The pre-condition of method rever includes yet another
condition. Guess where this arises from.
�
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Exercises

Exercise 82: Define a method which accepts papers, Ac ′ = Ac ∪ New ,
and calculate the corresponding contract entiled by the invariants of the
model.

�

Exercise 83: Derive the Alloy code for the contract of the previous
exercise for New = a · a◦, that is, for the method which accepts one
paper a at a time.

�



MDE Alloy Alloy semantics MDE example Contracts Exercises Binary relation semantics Contracts

Exercises

Exercise 84: The original Alloy model enforces Nt simple, cf. nota :
Artigo -> Pessoa -> lone Nota; that is, no reviewer can assign more
than one mark to a given paper. Simplicity of Nt is therefore another
invariant “hidden in the notation”. Resort to the the union-simplicity rule
(140) to calculate the contract to impose on method Nt ′ = Nt ∪ New
with respect to this requirement.

�

Exercise 85: Recall the diagram of the starving invariant of problem
Propositio de homine et capra et lvpo:

Being

where

��

Being
CanEatoo

Farmer

��
⊆

Bank Being
where

oo

Write the same in Alloy syntax.

�
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2nd case study — Verified FSystem (VFS)

A real-life case study:

• VSR (Verified Software Repository) initiative

• VFS (Verified File System) on Flash Memory — challenge put
forward by Rajeev Joshi and Gerard Holzmann (NASA JPL)
[4]

• Two levels — POSIX level and (NAND) flash level

• Working document: Intel R© Flash File System Core
Reference Guide (Oct. 2004) is POSIX aware.
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2nd case study — Verified FSystem (VFS)

The problem (sample):
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2nd case study — Verified FSystem (VFS)
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VFS in Alloy (simplified)

The system:

sig System {
fileStore: Path -> lone File,
table: FileHandle -> lone OpenFileInfo

}

Paths:

sig Path {
dirName: one Path

}

The root is a path:

one sig Root extends Path {
}
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Alloy diagrams for FSystem

Simplified: Complete:
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Binary relation semantics

Meaning of signatures:

sig Path {
dirName: one Path

}

declares function Path
dirName // Path .

sig System {
fileStore: Path -> lone File,

}

declares simple relation System × Path
fileStore/ File .

(NB: We often use harpoon arrows ⇀ for singling out simple
relations.)
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Binary relation semantics

• Since (as we have seen)

(A× B) ⇀ C ∼= (B ⇀ C )A

fileStore can be alternatively regarded as a function in
(Path ⇀ File)System, that is, for s : System,

Path
s.fileStore / File

• Thus the “navigation-styled” notation of Alloy: p.(s.fileStore)
means the file accessible from path p in file system s.

• Similarly, line table: FileHandle -> lone OpenFileInfo
in the model declares

FileHandle
s.table / OpenFileInfo
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From Alloy to relational diagrams

We draw

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File

Path

dirName

OO

where

• table s and fileStore s are simple relations

• the other arrows depict functions

(Diagram to be completed soon.)
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Model constraints

Referential integrity:

Non-existing files cannot be opened:

pred ri[s: System]{
all h: FileHandle, o: h.(s.table) |

some (o.path).(s.fileStore)
}

Paths closure:

Mother directories exist and are indeed directories:

pred pc[s: System]{
all p: Path |

some p.(s.fileStore) =>
(some d: (p.dirName).(s.fileStore) |

d.fileType=Directory)
}
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2nd part of Alloy FSystem model

sig File {
attributes: one Attributes

}

sig Attributes{
fileType: one FileType

}

abstract sig FileType {}
one sig RegularFile extends FileType {}
one sig Directory extends FileType {}
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Updated binary relational diagram

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File
attributes// Attributes

fileType
��

Path

dirName

OO

FileType

where

• table s, fileStore s are simple relations

• all the other arrows depict functions

Constraints: still missing
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Updating diagram with constraints

Complete diagram, where Directory is the “everywhere-Directory”
constant function:

OpenFileDescriptor

path

��

FileHandle
table so

>
��

⊆

Path
fileStore s

/ File
(fileStore s)◦oo attributes// Attributes

fileType

��

⊆

Path
fileStore s

/

dirName

OO

File
Directory

// FileType

Constraints:

• Top rectangle is the PF-transform of ri (referential integrity)

• Bottom rectangle is the PF-transform of pc (path closure)
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Constraints in symbols

Referential integrity:

ri(s) 4 path · (table s) ⊆ (fileStore s)◦ · > (228)

which is equivalent to

ri(s) 4 ρ (path · (table s)) ⊆ δ (fileStore s)

since ρ R = δ R◦. PF version (228) nicely encodes into Alloy
syntax

pred riPF[s: System]{
s.table.path in (FileHandle->File).~(s.fileStore)

}

thanks to its emphasis on composition.
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Constraints in symbols

Paths closure:

pc N 4 Directory · N ⊆ fileType · attributes · N · dirName (229)

where N abbreviates s.fileStore, recall

Path
N

/ File
attributes// Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileType

Again thanks to emphasis on composition, this is easily encoded
in PF-Alloy:

pred pcPF[s: System]{
s.fileStore.(File->Directory) in

dirName.(s.fileStore).attributes.fileType
}
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Monotonicity analysis

From

ri(s) 4 path · (table s) ⊆ (fileStore s)◦ · >

one infers:

• table s can always go smaller (eg. by closing files)

• fileStore s can always go larger (eg. by creating new files)

On the other hand (N = fileStore s),

pc N 4 Directory · N ⊆ fileType · attributes · N · dirName

calls for contracts (in general).
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Exercise

Exercise 86: Consider the following examples of file system operations:

• edit an existing file without changing its attributes

• open a file for editing

• create a file in the current directory

• rename an existing file system object (file or directory)

Tell which operations call for contracts with respect to the two invariants
ri and pc .

�
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VFS CRUD and its contracts

Example: Consider the operation which removes file system
objects, as modeled in Alloy:

pred delete[s’,s: System, sp: set Path]{
s’.table = s.table
s’.fileStore = (univ-sp) <: s.fileStore

}

that is,

delete sp (M,N) 4 (M,N · Φ( 6∈sp)) (230)

where M (resp. N) abbreviates s.table (resp. s.fileStore) and
Φ( 6∈sp) is the coreflexive associated to the complement of sp.
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Intuitively

Intuitively, delete will
put at risk

• the ri constraint
once we decide
to delete file
system objects
which are open;

• the pc
constraint once
we decide to
delete directories
with children.

(Model-checking in Alloy will easily spot these flaws, as checked
above by a counter-example for the latter situation.)
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Calculation

We want to calculate the weakest pre-condition (contract) for each
constraint to be maintained.

For this we will recall the following properties of relational algebra:
shunting (79),

h · R ⊆ S ⇔ R ⊆ h◦ · S

pre-restriction (157),

R · Φ = R ∩ > · Φ

and

f · R ⊆ > · S ⇔ R ⊆ > · S (231)

Exercise 87: Prove (231). Can this equivalence be generalized?

�
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Contract calculation – ri

ri(M,N · Φ( 6∈S))

⇔ { (228) }

path ·M ⊆ (N · Φ( 6∈S))
◦ · >

⇔ { converses (68,151) }

path ·M ⊆ Φ( 6∈S) · N◦ · >

⇔ { (158) }

path ·M ⊆ N◦ · > ∩ Φ( 6∈S) · >

⇔ { ∩-universal (96) }

path ·M ⊆ N◦ · > ∧ path ·M ⊆ Φ( 6∈S) · >

⇔ { (228) ; shunting (79) }

ri(M,N) ∧ M ⊆ path◦ · Φ( 6∈S) · >︸ ︷︷ ︸
wp
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Contract calculation – ri

The obtained weakest pre-condition wp converts back to the
pointwise

〈∀ b : b ∈ rng M : path b 6∈ S〉

which instantiates to

〈∀ b : b ∈ rng M : path b 6= p〉

for S := {p}. We are done as far invariant ri is concerned.

Exercise 88: Encode the calculated contract (weakest pre-condition) in
Alloy.

�
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Contract calculation – pc

For improved readability, we introduce abbreviations
ft := fileType · attributes and d := Directory in

pc(delete S (M,N))

⇔ { (230) and (229) }

d · (N · Φ( 6∈S)) ⊆ ft · (N · Φ( 6∈S)) · dirName

⇔ { shunting (79) }

d · N · Φ( 6∈S) · dirName◦ ⊆ ft · N · Φ( 6∈S)

⇔ { (157) }

d · N · Φ( 6∈S) · dirName◦ ⊆ ft · N ∩ > · Φ( 6∈S)

⇔ { ∩-universal ; shunting }
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Contract calculation – pc

{
d · N · Φ( 6∈S) ⊆ ft · N · dirName
d · N · Φ( 6∈S) ⊆ > · Φ( 6∈S) · dirName

⇔ { > absorbs d (231) }
d · N · Φ( 6∈S) ⊆ ft · N · dirName︸ ︷︷ ︸

weaker than pc(N)
N · Φ( 6∈S) ⊆ > · Φ( 6∈S) · dirName︸ ︷︷ ︸

wp

Back to points, wp is:

〈∀ q : q ∈ dom N ∧ q 6∈ S : dirName q 6∈ S〉

⇔ { predicate logic }

〈∀ q : q ∈ dom N ∧ (dirName q) ∈ S : q ∈ S〉
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Ensuring paths closure

In words:

if the parent directory of existing path q is marked for
deletion than so must be q.

Translating the calculated contract back to Alloy:

pred pre_delete[s: System, sp: set Path]{
all q: Path |

(some q.(s.fileStore) &&
q.dirName in sp) => q in sp

}
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Exercises

Exercise 89: Recalling exercise 86, calculate the contract required by
the operation

open K (M,N) 4 (M ∪ K ,N)

�

Exercise 90: Specify the POSIX mkdir operation and calculate its
contract.

�
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