
Computing for Musicology
(Course code: F104N5)

4. Map & filter for (quantitative) musical analysis

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

May 2009 (last updated: May 2019)

Licenciatura em Música
(http://www.musica.ilch.uminho.pt/)

Universidade do Minho
Braga

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Recall word mappings

Recall

• the map operator, which we’ve seen being extremely useful in
Haskell programming and music processing.

Recalling examples of our use of map:

• words, ... — eg. conversion to uppercase letters:

map toUpper "Mendelssohn" = "MENDELSSOHN"

• music parts, ... — eg. augmentation, and so on:

map (id × (/n)) p

augments/diminishes part p depending on whether n is
smaller or larger than 1.

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Recall word filtering

Further recall filtering:

filter (∈ [’a’ . . ’z’])
"Joseph Haydn died two hundred years ago"

yielding

"osephydndiedtwohundredyersgo"

based on the membership property (∈ [’a’ . . ’z’]) which selects
lowercase characters.

Filtering extends to any kind of list in Haskell, not just words, eg:

filter odd [1 . .]

yields the list of all odd natural numbers

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, . .]

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Combining map and filter

These two operations — map and filter play a major role in
programming, in a way such that they complement each other:

• filter p selects those elements in a list which are of interest
according to selection criterion p;

• map f transforms all elements in a list, one after the other,
according to transformation f .

One can combine these two operations in a single operation using
composition:

map f · filter p

This performs a selection followed by a transformation. For
instance,

((map toUpper) · (filter notVowel)) "Joseph Haydn"

yields "JSPH HYDN".

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Comprehending map and filter

Haskell offers an alternative notation for

(map f . filter p)l

in which we easily see selection and transformation explicitly
combined:

[f c | c ← l , p c] = (map f · filter p) l

Notation [f c | c ← l , p c] means:

take those elements from l, one at a time, which satisfy
p, and transform them via f .

For instance,

[toUpper c | c ← "Joseph Haydn", notVowel c]

yields the same "JSPH HYDN".

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Quantitative analysis

• Maps and filters are also useful in performing quantitative
analysis.

• Suppose, for instance, that a given list l contains all the
published works of a given composer and that, for each such
work w :

• date w yields its date of composition (eg. 1805)
• desc w yields the title, or description of w (eg.
"Symphony No. 3 in E flat major ’Eroica’")

• op w yields its opus number (eg. opus 55)

• Now suppose we want to count the number of works
composed at a given date d .

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Querying

Clearly, we have to filter list l by selecting only the works
composed by such date, eg. by writing

[w | w ← l , date w ≡ d]

Then counting amounts to calculating the length of such a list of
selections:

length [o | o ← l , date o ≡ d]

What we have just done is known in the literature of information
retrieval as querying:

Given a particular source of data (list l in our example),
querying such data source consists of obtaining
information (eg. statistical) from such information.

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Querying

• As a rule, queries are to be repeated over and over again as
the data source evolves (eg. as performed by the National
Statistics Institute).

• It is thus a good idea to give queries a name, as we do below
concerning the query in the previous slide:

nrOfWorksByDat d l = length [o | o ← l , date o ≡ d]

An alternative definition for this query involving filter is:

nrOfWorksByDat d = length · (filter ((≡ d) · date))

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Counting data and building histograms

From the Wikipedia:

In statistics, a histogram is a graphical display of
tabulated frequencies, shown as bars. (...) In a more
general (...) sense, a histogram is a mapping mi that
counts the number of observations that fall into various
disjoint categories (known as bins)

For instance,

0

2

4

6

8 6

1800

3

1806

�� ��

1

1809

�� �� 1

1810

�� ��

3

1825

��

3

1826

�� ��

��

��

��

�� ��

depicts the histogram of the number of string quartets composed
per year by L. van Beethoven (1770-1827).

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Counting and building histograms
In Haskell, the contents of histograms are simply lists of pairs,

[(b1,c1),...,(bn,cn)]

where the bs are bins and the cs are numbers.

For example, list

[(1800, 6), (1806, 3), (1809, 1), (1810, 1), (1825, 3), (1826, 3)]

contains the information depicted in the previous slide, where the
bins are years 1800,1806,...,1826.

From any list one can calculate the histogram of its contents by
counting how repeated each element in the list is:

hist l = nub [(x , count x l) | x ← l]
where count a l = length [x | x ← l , x ≡ a]

(The nub function eliminates repetition of pairs.)

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Counting and building histograms

• Clearly, in building a histogram most of the work goes into
selecting all occurrences of the data of interest in a list.

• Then hist yields the histogram from this list.

• Example: we want to produce the histogram of keys in
Beethoven’s works. For this we assume that

key x

yields the key of work x .

• Clearly, map key extracts the list of all keys, to be passed on
to hist. The query to build is then:

keyHist = hist · (map key)

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Lab assignment
Perform data analysis over library LvB.hs and compare your
results which the following plot telling the number of works written
by the composer on a particular clef (minor and major modes
ignored). Observe the peak at point −3, corresponding to E[
major and C minor:

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Exercises

Exercise 1: In the context of the previous slides, complete the query in
Haskell

getSymphonies l =

which searches data source l and finds the opus number and publishing
date of each symphony (should yield the empty list in case the composer
wrote none!).
Suggestion: involves checking whether word "Symphony" is a prefix of
the description of each work. Writing auxiliary predicate

isSymphony w ≡ ...

will help. Load library LvB.hs (catalogue of woks by L. van Beethoven
(1770-1827), WoO’s excluded) and test your query.

�

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Exercises

Exercise 2: Write the query which computed the works per year
histogram of Beethoven’s string quartets given above.

�

Exercise 3: Write the query which computes the works per year
histogram of Beethoven’s piano sonatas between 1800 and 1810.

�

Exercise 4: Run keyHist for Beethoven’s violin and piano sonatas only.

�

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Exercises

Exercise 5: Implement the function concat which joins a list of lists
into a single list by completing and simplifying

concat [] = ...
concat [a] = ...
concat (l ++ r) = ...

�

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Implementing filter

Let us try and define filter p ourselves. As earlier on, three
properties of the function being defined need to be identified:

filter p [] =
filter p [c] =
filter p (w ++ y) = ... (filter p w) ... (filter p y) ...

The first and last aren’t too difficult to find:

filter p [] = []
filter p [c] =
filter p (w ++ y) = (filter p w) ++ (filter p y)

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Implementing filter

The second requires testing whether c fulfills selection criterion
(property) p. Haskell offers special syntax for this, either

filter p [c]
| p c = [c]
| otherwise = []

or its inlined version:

filter p [c] = if p c then [c] else []

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Implementing filter

To complete the encoding, we incorporate the middle clause into
the third by instantiating w to [c] and simplifying:

filter p ([c] ++ y) = (filter p [c]) ++ (filter p y)

≡ { simplification of left hand side }

filter p (c : y) = (filter p [c]) ++ (filter p y)

≡ { substitution in right hand side }

filter p (c : y) = (if p c then [c] else []) ++ (filter p y)

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

Implementing filter

Putting everything together, we obtain the following piece of
Haskell:

filter p [] = []
filter p (c : y) = (if p c then [c] else []) ++ (filter p y)

By doing a similar exercise one obtains the following Haskell for
map f :

map f [] = []
map f (c : y) = [f c] ++ (map f y)

which simplifies to:

map f [] = []
map f (c : y) = (f c) : (map f y)

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

A glimpse at multi-dimensional analysis

(Not included in the current version of these slides)

Map Filter Filter following Map Comprehensions Querying Histograms Exercises Last but not least More about Haskell

More about Haskell

If you want to know more about Haskell (including its application
to music synthesis) have a look at the following (really good) book:

P. Hudak: The Haskell School of Expression - Learning
Functional Programming Through Multimedia.
Cambridge University Press, 2000. ISBN 0-521-64408-9.

	Map
	Filter
	Filter following Map
	Comprehensions
	Querying
	Histograms
	Exercises
	Last but not least
	More about Haskell

