
A Note on the Under-Appreciated For-Loop

José N. Oliveira

Techn. Report TR-HASLab:01:2020

Oct 2020

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt

TR-HASLab:01:2020
A Note on the Under-Appreciated For-Loop
by José N. Oliveira

Abstract

This short research report records some thoughts concerning a simple algebraic
theory for for-loops arising from my teaching of the Algebra of Programming to
2nd year courses at the University of Minho. Interest in this so neglected recursion-
algebraic combinator grew recently after reading Olivier Danvy’s paper on folding
over the natural numbers. The report casts Danvy’s results as special cases of the
powerful adjoint-catamorphism theorem of the Algebra of Programming.

A Note on the Under-Appreciated For-Loop

José N. Oliveira

Oct 2020

Abstract

This short research report records some thoughts concerning a sim-
ple algebraic theory for for-loops arising from my teaching of the Al-
gebra of Programming to 2nd year courses at the University of Minho.
Interest in this so neglected recursion-algebraic combinator grew re-
cently after reading Olivier Danvy’s paper on folding over the natural
numbers. The report casts Danvy’s results as special cases of the pow-
erful adjoint-catamorphism theorem of the Algebra of Programming.

1 Context

I have been teaching Algebra of Programming to 2nd year courses at Minho Uni-
versity since academic year 1998/99, starting just a few days after AFP’98 took
place in Braga, where my department is located. Since then, experience has been
gathered on how to teach this topic [5], which is regarded as inaccessible by many
colleagues, let alone software practicioners.

Quite often I deviate from common practice in my lectures. For instance, my
first example of monadic programming is not a stateful computation or a I/O
primitive. Instead, I rather use the finite distribution monad [2] to throw two dice
on a Monopoly board with just one single line of code:

> do { a <- uniform [1..6]; b <- uniform [1..6]; return(a+b) }
7 16.7%
6 13.9%
8 13.9%
5 11.1%
9 11.1%
4 8.3%

10 8.3%
3 5.6%

11 5.6%
2 2.8%

12 2.8%

By challenging the students to write equivalent code in their favourite lan-
guages, which as a rule are C++, Java or Python, I intend to show how expressive
the device is (the monad) that they are going to learn. However, I never have time

1

to show how monads arise from adjunctions, which is a pity. (As section 3 below
shows, I believe.)

Another deviation from common practice is to use for-loops to introduce fold/
unfold combinators (and catamorphisms, anamorphisms and so on) instead of
the corresponding operations on lists. Just remove two letters from the word
“foldr“‘and you get “for”; just remove the multiplicand A× from the finite list
recursion pattern 1 + A × X and you get 1 + X , the recursive pattern of Peano
natural numbers (instead of lists).

This saves the students from a (perhaps too early) explanation of the parame-
terization on A and has the interesting advantage of bridging directly with school
maths through instances of a scheme easy to apprehend [5]. Take for instance the
following properties of multiplication, which can be found in any K7-K8 maths
textbook, and restrict them to the natural numbers: a× 0 = 0

a× 1 = a
a× (b+ c) = a× b+ a× c

(1)

From these the two line program{
a × 0 = 0
a × (b + 1) = a × b + a

(2)

arises by making c :=1 in the distributivity property and simplifying (whereby the
second property disappears because it is entailed by the other two). Then single
out section (a×),{

(a×) 0 = 0
(a×) (b + 1) = (a+) ((a×) b)

(3)

and go pointfree (k denotes the everywhere k constant function and succ b = b+1):{
(a×) · 0 = 0
(a×) · succ = (a+) · (a×)

This immediately yields the (1+)-catamorphism

(a×) = L [0 , a+] M

over the natural numbers, which can also be written as

(a×) = for (a+) 0 (4)

by defining the for-combinator:

for s z = L [z , s] M (5)

Thus for s z n means to iterate the loop body s n-times starting with initial value
z . And (a×) is just (a+) iterated.

Framed in the wider setting of initial algebra controlled recursion, the for s z
combinator inherits a number of properties stemming from initiality. For instance,
the calculation of the following property,

s · (for s z) = for s (s z) (6)

2

resorts to “cata-fusion” [5]:

s · (for s z) = for s (s z)

⇔ { (5) twice }

s · L [z , s] M = L [s z , s] M

⇐ { cata-fusion }

s · [z , s] = [s z , s · s]

⇔ { coproducts ; constant functions }

[s z , s · s] = [s z , s · s]
�

2 Calculating for-loops

Although the (iterative) functions that one can write with the for-combinator alone
are not very interesting, they become far more so once we exploit the theory of
catamorphisms, for instance the mutual-recursion law:

〈f , g〉 = L 〈h, k〉 M ⇔
{
f · in = h · F 〈f, g〉
g · in = k · F 〈f, g〉 (7)

In the case of natural numbers, in = [0 , succ] is the Peano algebra of natural num-
bers, for F X = 1 + X .

The law extends to more that two mutually (primitive) recursive functions.
Therefore, once one is able to express the function of interest in a system of mu-
tually (1+)-recursive functions1, its implementation as a for-loop is immediately
derivable by (7). Take factorial, for instance:{

fac 0 = 0
fac (n + 1) = (n + 1) ∗ fac n

As n + 1 = for (1+) 1, term n + 1 can be thought of as in mutual recursion with
fac. By (7) one gets iterative factorial:

fac n = m where
(,m) = for loop (1, 1) n
loop (s,n) = (1 + s, s ∗ n)

My notes [5] have several examples of this programming technique, including
the derivation of for-loop implementations of R-valued functions approximated
by their corresponding Taylor series. For instance, the exponential function ex :
R→ R has Taylor series:

ex =

∞∑
i=0

xi

i!
(8)

1That is, primitive recursion functions.

3

The three threads of computation in this formula are made explicit in the follow-
ing system of mutually recursive functions, where exp x n computes the n-step
approximation of ex:{

exp x 0 = 1
exp x (n + 1) = h x n + exp x n{
h x 0 = x
h x (n + 1) = x

s2 n (h x n){
s2 0 = 2
s2 (n + 1) = 1 + s2 n

By (7) one calculates the following for-loop implementation

exp x n = e where
(e, ,) = for loop init n
init = (1, 2, x)
loop (e, s, h) = (h + e, s + 1, (x / s) ∗ h)

which could be translated directly to the encoding in e.g. C, if needed:

float exp(float x, int n)
{
float h=x; float e=1; int s=2; int i;
for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}
return e;

};

Functions involving more calculation threads require larger mutual recursion
bundles, for instance

cos x =

∞∑
i=0

(−1)i

(2i)!
x2i

which leads to a for-loop involving four variables:

cos x = prj · for loop init where
loop (c, f , j , k) = (c + f , (−x ↑ 2 / j) ∗ f , j + k , k + 8)
init = (1,−x ↑ 2 / 2, 12, 18)
prj (c, , ,) = c

In a sense, the mutual recursion law (7) gives us a hint on how many global vari-
ables are needed and how they “are born” in computer programs, out of the maths
definitions themselves.

3 Adjoint for-loops

It is well known that, in the case of lists, foldr comes with its “left”-version foldl,
which has the same funcionality and implements foldr more efficiently under
some mild conditions. What about for? Danvy [1] shows that a “left”-version
of for exists and that the right and left versions of the combinator are equivalent.
Proofs are discharged by natural number induction.

4

In this section I would like to show that such tail-recursive, “left-for” iterator
does not arise by sheer invention but rather from the adjunction that underlies the
continuation monad, as instance of a very general device known as adjoint-folds
[3].

The machinery may sound too heavy compared to natural number induction
but it has the pro of framing [1] in a theory of much wider scope.

Iteration: for-loops and forl-loops By expanding definition for s z = L [z , s] M
(5) to the pointwise level we get:{

for s z 0 = z
for s z (n+ 1) = s (for s z n)

(9)

The corresponding “left“-version given in [1] is (with the notation and function
terminology adapted){

forl s z 0 = z
forl s z (n + 1) = forl s (s z) n

(10)

Clearly, for s z is a (1+)-catamorphism while forl s z is not — it is tail recursive.
How does one prove that they are equivalent using algebra of programming tech-
niques? Note that, by flipping forl s , we get

forl s 0 z = z
forl s (n + 1) z = forl s n (s z)

which points to a (1+)-pattern of recursion but at a higher order, cf.

forl s 0 = id
forl s (n + 1) = λz → forl s n (s z)

Before completing the exercise, one asks: why flipping? why a higher-order for-
loop?

The answer below relates the tail-recursion pattern of the explicit definition
(10) and the Peano (1+)-recursion of (9) via adjoint-folds [3], in particular via the
adjoint-catamorphism theorem given below.

Contravariant exponential functor Let F X = KX for some non empty K .

Functor F is contravariant: given A
f // B , KA KBK f

oo is defined by K f =
(·f).

Contravariant exponential adjunction It turns out that F is adjoint of itself
in the opposite category, meaning that we have to reverse the arrows on the right
handside of the usual diagram:

k = flip f ⇔ f = (·k) · ε︸ ︷︷ ︸
flip k

KB K (KB)

(·k)
��

B
εoo

f||
A

k=flip f

OO

KA

(11)

5

The induced monad is the continuation monad, M X = K (KX). The counit ε
encodes the continuation style: given b ∈ B and a continuation f , then ε b f = f b.
In the diagram, f b = ((·k) · ε) b = (ε b) · k and thus f b a = ε b (k a) = k a b. That
is: f = flip k . So isomorphism flip · is its own inverse.

From this we get the standard properties of adjunctions tuned to (11): reflex-
ion,

flip ε = id (12)

cancellation,

(·flip f) · ε = f (13)

fusion,

(flip h) · g = flip (K g · h) (14)

absorption,

K g · flip h = flip (h · g) (15)

and functor definition:

K h = flip (ε · h) = (·h) (16)

Also of interest is the relation between the constant function combinator k and the
identity:

K
· // K 1 = flip (1

id // KK) (17)

Adjoint catamorphism theorem (Proof in [5].) Let adjunction L a R be given,
with the choice of symbols clearly indicating which functor is the lower adjoint (L)
and which is the upper adjoint (R):

L A→ B

d e
++

∼= A→ R B

b c

jj (18)

Let T F T
inoo be an inductive type and φ : L F → G L be a natural transforma-

tion, that is, free theorem

φ · (L F k) = (G L k) · φ (19)

holds, for some functor G. Then:

f · (L in) = h · G f · φ ⇔ df e = L dh · G ε · φe M (20)

In words, the theorem shows how to convert a G-hylomorphism f into its adjoint F-
catamorphism df e across the adjunction L a R. Expressed by diagrams, it becomes

6

clear that the lefthand side of (20) is the G-hylomorphism

L µF

f

��

G L µF

G f

��

L F µF

L in

tt
φ
oo

A G A
hoo

f = L h M · [(φ · L out)]

which is converted into its adjoint F-catamorphism:

µF

df e
��

F µF
inoo

F df e
��

R A F R A
dh·G ε·φeoo

A G A
hoo G L R A

G εoo L F R A
φoo

df e = L dh · G ε · φe M

Peano adjoint catamorphisms Let us show that forl s is one such hylomor-
phism. We know:

F X = 1 + X
L X = KX

df e = flip f

and so the diagram of f will be (arrows reversed due to contravariance of L):

KN0

(·in)

))
G KN0

φ // K 1+N0

A

f

OO

h
// G A

G f

OO

We still need to find the recursion pattern G X that is adjoint to the Peano one,
F X = 1 + X . Since K 1+X is isomorphic to K ×KX , it is easy to opt for

G X = K ×X

That is, φ : K ×KX → K 1+X is the natural isomorphism bridging (1+)-recursion
and (K×) recursion:

φ (k , f) = [k , f] (21)

7

The flip of φ will be needed below. Let us calculate it by solving

1 + X
flip φ // KK×KX

= [f , g]

for f and g . This yields f = π1 by (15,17). Concerning g , we see that flip g has type
K ×KX → KX , that is, g = flip π2. All together:

flip φ = [π1 , flip π2] (22)

Thus we can picture, in the diagrams below, the generic theorem (20) tuned to the
contravariant exponential adjunction and Peano recursion: hylomorphism f

KN0

(·in)

))
K ×KN0

φ // K 1+N0

A

f

OO

h
// K ×A

id×f

OO

converts into its adjoint F-catamorphism:

N0

flip f

��

1 + N0
inoo

id+flip f

��
KA 1 + KA

flip (φ·(id×ε)·h)oo

K
h // K ×A

id×ε // K ×KKA φ // K 1+KA

That is,

flip f = L flip (φ · (id× ε) · h) M (23)

equivalent to:

f = flip L flip (φ · (id× ε) · h) M

Let A = K and h = 〈id, s〉 for some s :K → K in the diagram of f above. Then
hylo f unfolds as follows:

(·in) · f = φ · (id× f) · h

⇔ { h = 〈id, s〉; products }

(·in) · f = φ · 〈id, f · s〉

⇔ { apply both sides to z }

f z · in = φ (z , f (s z))

⇔ { φ (k , f) = [k , f] }

f z · in = [z , f (s z)]

⇔ { go pointwise }

8

{
f z 0 = z
f z (n + 1) = f (s z) n

⇔ { introduce forl s = f to make f parametric on s }{
forl s z 0 = z
forl s z (n + 1) = forl s (s z) n

Thus we reach forl s for the particular choice of h = 〈id, s〉. Next, let us calculate
its adjoint, which is the Peano catamorphism:

flip (forl s) = L flip (φ · (id× ε) · 〈id, s〉) M

We start by simplifying flip (φ · (id× ε) · 〈id, s〉):

flip (φ · (id× ε) · 〈id, s〉)

= { products; absorption (15) }

K 〈id,ε·s〉 · flip φ

= { (22) }

K 〈id,ε·s〉 · [π1 , flip π2]

= { coproducts; constant functions; (22) }

[K 〈id,ε·s〉 π1 , flip (π2 · 〈id, ε · s〉)]

= { (16); products }

[id, flip (ε · s)]

= { exponential functor (16) }

[id, (·s)]

Thus:

flip (forl s) = L [id, (·s)] M = for (·s) id (24)

Forl equal to for We finally prove that the equality

for = forl

holds:

for s = forl s

⇔ { isomorphism flip ·; (24) }

flip (for s) = L [id, (·s)] M

⇔ { cata-universal; (15) }{
flip (for s) · 0 = id
flip (for s) · succ = flip (for s · s)

⇔ { (17); drop isomorphism flip · }

9

{
(·0) · for s = ·
(·succ) · for s = for s · s

⇔ { apply all terms to z and simplify }{
for s z · 0 = z
for s z · succ = for s (s z)

⇔ { (6) }{
for s z · 0 = z
for s z · succ = s · for s z

⇔ { cata-universal }

for s z = L [z , s] M

⇔ { (5) }

true

4 Summary

The first part of this note intends to draw attention to the potential of program-
ming with a combinator as elementary as the for-loop. Danvy [1] gives some ex-
amples of its usefulness, to which we had some from our Algebra of Programming
classes and lab assignments. The second part shows how tail-recursion arises in-
trinsically linked to primitive recursion via contravariant exponential adjunction.
That is, Peano-recursion is adjoint to tail-recursion.

The calculation of for-loops from mutually primitive recursion functions has,
in practice, a worker-wrapper flavour: the wrapper is just a projection that discards
the variables that are not of interest to the final result. But the mutually recur-
sive scheme shows that the other variables also “make sense” and calculate useful
functions, which are discarded.

Not discarding them could be a way of making non-injective functions avail-
able inside “reversible envelopes” needed in e.g. quantum computing, since func-
tion pairing can only increase injectivity [4].

References

[1] Olivier Danvy. Folding left and right over peano numbers. J. Funct. Program.,
29:e6, 2019.

[2] M. Erwig and S. Kollmannsberger. Functional pearls: Probabilistic functional
programming in Haskell. J. Funct. Program., 16:21–34, January 2006.

[3] R. Hinze. Adjoint folds and unfolds — an extended study. Science of Computer
Programming, 78(11):2108–2159, 2013.

[4] A. Neri, R.S. Barbosa, and J.N. Oliveira. Compiling quantamorphisms for the
IBM Q-Experience. 2020. Submitted to IEEE Trans. Soft. Eng.

10

[5] J.N. Oliveira. Program Design by Calculation, 2019. Draft of textbook in
preparation, current version: Feb. 2021. Informatics Department, University
of Minho (PDF2).

2URL: http://www.di.uminho.pt/ jno/ps/pdbc.pdf

11

