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Global picture

Concerning software ‘engineering’:

Software


Process —

Product —

Formal methods provide an answer to the question mark
above.
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Global picture

Concerning software ‘engineering’:

Credits: Zhenjiang Hu, NII, Tokyop JP
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Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19
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Have you ever used a FM?

”Al-djabr” rule ? ”al-hatt” rule ?

These rules that you have used so many times were discovered by
Persian mathematicians, notably by Al-Huwarizmi (9c AD).

NB: “algebra” stems from ”al-djabr” and ”algarismo” from
Al-Huwarizmi.
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Software problems

Now, suppose the problem
was

Please write a
program to list the
students of my class
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag = ....

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)
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FM — scientific software design

What

calculate

||

specification (model)

Why

OO

justification

How

analyse

::

OO

implementation (program)



Motivation Relations Background

FM — simplified life-cycle

client ′s problem // Requirements

specify

��

Specification

model check

%%

calculate
��

Model (Alloy)

revise

dd

Implementation

encode
��

designed solution Codeoo
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Notation matters!

Credits: Cliff B. Jones 1980 [2]
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Well-known FM notations / tools / resources

Just a sample, as there are many — follow the links (in alphabetic
order):

Notations:

• Alloy

• B-Method

• JML

• mCRL2

• SPARK-Ada

• TLA+

• VDM

• Z

Tools:

• Alloy 6

• Coq

• Frama-C

• NuSMV

• Overture

Resources:

• Formal Methods Europe

• Formal Methods wiki
(Oxford)

http://alloy.mit.edu/alloy/book.html
http://www.methode-b.com/
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.mcrl2.org/web/user_manual/index.html
http://www.adacore.com/sparkpro
http://lamport.azurewebsites.net/tla/hyperbook.html
https://web-beta.archive.org/web/20080828013815/http://www.vdmportal.org
http://spivey.oriel.ox.ac.uk/mike/zrm/
http://alloy.mit.edu/alloy/download.html
https://coq.inria.fr/
http://frama-c.com/
http://nusmv.fbk.eu/
http://overturetool.org
http://www.fmeurope.org/
http://formalmethods.wikia.com/wiki/VL
http://formalmethods.wikia.com/wiki/VL
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60+ years ago (1958-)

1958

t
IAL

(GAMM/ACM)

1960t
Algol 60

(Naur’s bnf)
(“Amsterdam plot”)

Recursive programming
(Dijkstra)

1962

t

WG2.1 (Poel)

Ginsburg & Rice’s
paper

1964t

Algol X+Y
(Tutzing meeting)

1965

t
Record handling

(Hoare)

Euler
(Wirth)

1966t
Algol 66

(“Kootwijk battle”)

1968

t

Algol 68
(München meeting)

NATO SE Conf.
(Garmisch)

1969t
Poel

steps down
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Hoare Logic — “turning point” (1968)

Floyd-Hoare logic for program correctness dates back to 1968:

(ADB/IFIP/1164;1456)
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Inv/pre/post

Starting where (pure) functions stop:
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Inv/pre/post

Error handling...
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Inv/pre/post
Pre-conditions?

Not everything is a list, a tree or a stream...
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Inv/pre/post

pre...? choice...?

• Non-determinism

• Parallelism

• Abstraction
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Inv/pre/post

pre...? choice...?

• Non-determinism

• Parallelism

• Abstraction
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Functions not enough!

Solution?

Relations (which extend functions)
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Is “everything” a relation?
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How to “dematerialize“ them?

Software is pre-science — formal but not fully calculational

Software is too diverse — many approaches, lack of unity

Software is too wide — from assembly to quantum
programming

Can you think of a unified theory able to express and reason
about software in general?

Put in another way:

Is there a “lingua franca” for the software sciences?



Motivation Relations Background

Check the pictures...
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Check the pictures

(Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)
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Check the pictures

Which graphical device have you found common
to all pictures?
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Arrows everywhere

Arrows! A (graphical) device common to describing (many)
different fields of human activity.

For this ingredient to be able to support a generic theory of
systems, mind the remarks:

• We need a generic notation able to cope with very distinct
problem domains, e.g. process theory versus database theory,
for instance.

• Notation is not enough — we need to reason and calculate
about software.

• Semantics-rich diagram representations are welcome.

• System descriptions may have a quantitative side too.
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Going Relational



Motivation Relations Background

Relation algebra

In previous courses you may have used predicate logic, finite
automata, grammars and so on to capture the meaning of
real-life problems.

Question:

Is there a unified formalism for formal modelling?
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Relation algebra

Historically, predicate logic was
not the first one proposed:

• Augustus de Morgan
(1806-71) — recall de
Morgan laws — proposed a
Logic of Relations as early
as 1867.

• Predicate logic appeared
later.

Perhaps de Morgan was right in the first place: in real life,
“everything is a relation”...
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Everything is a relation...

... as diagram

shows. (Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)
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Arrow notation for relations

The picture is a collection of relations — vulg. a semantic
network — elsewhere known as a (binary) relational system.

However, in spite of the use of
arrows in the picture (aside)
not many people would write

mother of : People → People

as the type of relation
mother of .
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Pairs

Consider assertions

0 6 π

Catherine isMotherOf Anne

3 = (1+) 2

They are statements of fact concerning various kinds of object —
real numbers, people, natural numbers, etc

They involve two such objects, that is, pairs

(0, π)

(Catherine, Anne)

(3, 2)

respectively.
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Sets of pairs

So, one might have written instead:

(0, π) ∈ (6)

(Catherine, Anne) ∈ isMotherOf

(3, 2) ∈ (1+)

What are (6), isMotherOf , (1+)?

• They can be regarded as sets of pairs

• Better: they should be regarded as binary relations.

Therefore,

• orders — eg. (6) — are special cases of relations

• functions — eg. succ = (1+) — are special cases of relations.
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Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types.

Writing

B A
Roo

means the same as

A
R // B .
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Notation

Infix notation

The usual infix notation used in natural language — eg.
Catherine isMotherOf Anne — and in maths — eg.

0 6 π — extends to arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R holds.
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Binary relations are matrices

Binary relations can be regarded as Boolean matrices, eg.

Relation R: Matrix M:

In this case A = B = {1..11}. Relations A A
Roo over a single

type A are also referred to as (directed) graphs.
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Alloy: where “everything is a relation”

Declaring binary

relation A
R // B

is Alloy (aside).

Alloy is a tool
designed at MIT
(http://alloy.
mit.edu/alloy)

We shall be using
Alloy [1] in this
course.

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy
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Functions are relations

Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a (1)

Therefore, we generalize

B A
foo

b = f a
to B A

Roo

b R a
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Exercise

Taken from Propositiones ad acuendos iuuenes (“Problems
to Sharpen the Young”), by abbot Alcuin of York († 804):

XVIII. Propositio de homine et capra et lvpo.
Homo quidam debebat ultra fluuium transferre lupum,
capram, et fasciculum cauli. Et non potuit aliam nauem
inuenire, nisi quae duos tantum ex ipsis ferre ualebat.
Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis
illaesis transire potuit?
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Exercise

XVIII. Fox, goose and bag of beans puzzle. A
farmer goes to market and purchases a fox, a goose, and
a bag of beans. On his way home, the farmer comes to a
river bank and hires a boat. But in crossing the river by
boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans.
(If left alone, the fox would eat the goose, and the goose
would eat the beans.) Can the farmer carry himself and
his purchases to the far bank of the river, leaving each
purchase intact?

Identify the main types and relations involved in the puzzle and
draw them in a diagram.



Motivation Relations Background

Home work

• How would you address this problem?

• Try an write an Alloy for it (sig’s only)

NB: You can seek help from ChatGPT — but please be critical...
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Propositio de homine et capra et lvpo

Data types:

Being = {Farmer ,Fox ,Goose,Beans} (2)

Bank = {Left,Right} (3)

Relations:

Being
Eats // Being

where
��

Bank
cross // Bank

(4)
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Propositio de homine et capra et lvpo

Specification source written in Alloy:
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Propositio de homine et capra et lvpo

Diagram of specification (model) given by Alloy:



Motivation Relations Background

Propositio de homine et capra et lvpo

Diagram of instance of the model given by Alloy:

Silly instance, why? — specification too loose...
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Composition

Recall function
composition (aside).

We extend f · g to
relational composition
R · S in the obvious way:

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(5)

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉
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Composition

That is:

B A
Roo C

Soo

R·S

gg

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (6)

Example: Uncle = Brother · Parent, that expands to
u Uncle c ≡ 〈∃ p :: u Brother p ∧ p Parent c〉

Note how this rule removes ∃ when applied from right to left.

Notation R · S is said to be point-free (no variables, or points).
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Check generalization

Back to functions, (6) becomes1

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c (1) }

〈∃ a :: a = g c ∧ b f a〉

≡ { ∃-trading (58) ; b f a means b = f a (1) }

〈∃ a : a = g c : b = f a〉

≡ { ∃-one point rule (62) }

b = f (g c)

So, we easily recover what we had before (5).

1Check the appendix on predicate calculus.
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Class 2 — The “Zoo” of
Binary Relations
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Relation inclusion

Relation inclusion generalizes function equality:

Equality on functions

f = g ≡ 〈∀ a :: f a = g a〉 (7)

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a : b R a : b S a〉 (8)

(read R ⊆ S as “R is at most S”).

Inclusion is typed:

For R ⊆ S to hold both R and S need to be of the same type,

say B A
R,Soo .
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Relation inclusion

R ⊆ S is a partial order, that is, it is

reflexive,

R ⊆ R (9)

transitive

R ⊆ S ∧ S ⊆ Q⇒ R ⊆ Q (10)

and antisymmetric:

R ⊆ S ∧ S ⊆ R ≡ R = S (11)

Therefore:

R = S ≡ 〈∀ b, a :: b R a ≡ b S a〉 (12)
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Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
>oo , which is such that, for all b, a,

b>a ≡ True

Every type A Aoo has the

• identity relation A A
idoo which is nothing but function

id a = a (13)

Clearly, for every R,

⊥ ⊆ R ⊆ > (14)
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Relational equality

Both (12) and (11) establish relation equality, resp. in PW/PF
fashion.

Rule (11) is also called “ping-pong” or cyclic inclusion, often
taking the format

R

⊆ { .... }

S

⊆ { .... }

R

:: { “ping-pong” (11) }

R = S
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Diagrams

Assertions of the form X ⊆ Y where X and Y are relation
compositions can be represented graphically by square-shaped
diagrams, see the following exercise.

Exercise 1: Let a S n mean: “student a is assigned number n”. Using
(6) and (8), check that assertion

S · succ ⊆ > · S depicted by diagram

N

S

��

N

S

��

succoo

⊆

A A
>

oo

(onde succ n = n + 1) means that numbers are assigned to students

sequentially. �
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Diagrams (“magic squares”)

Pointfree:

A

S

��

B

Q

��

Roo

⊆

C D
P

oo

S · R ⊆ P · Q

Pointwise:

∃ a d

S · R ⇒ P · Q

∀ c b c b
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Exercises

Exercise 2: Consider sports competitions involving teams which have
atlets (players) and coaches. Follow the rule of the previous slide and
spell out the logical meaning of the following magic square:

Team

the coach of

��

Competition

Involved

��

Involvedoo

⊆

Atlet Team
Player of

oo

Then express this meaning in natural language, avoiding reading

completely through the logic obtained in the previous step. �
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Exercises

Exercise 3: Use (6) and (8) and predicate calculus to show that

R · id = R = id · R (15)

R · ⊥ = ⊥ = ⊥ · R (16)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (17)
�

Exercise 4: Use (7), (8) and predicate calculus to show that

f ⊆ g ≡ f = g

holds (moral: for functions, inclusion and equality coincide). �

(NB: see the appendix for a compact set of rules of the predicate
calculus.)
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Converses

Every relation B A
Roo has a converse B

R◦
// A which is

such that, for all a, b,

a(R◦)b ≡ b R a (18)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (19)

and with itself:

(R◦)◦ = R (20)

Converse captures the passive voice: Catherine eats the apple —
R = (eats) — is the same as the apple is eaten by Catherine —
R◦ = (is eaten by).
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Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful!) property,

(f b)R(g a) ≡ b(f ◦ · R · g)a (21)

cf. diagram:
C D

Roo

B

f

OO

A

g

OO

f ◦·R·g
oo

Therefore (tell why):

b(f ◦ · g)a ≡ f b = g a (22)

Let us see an example of using these rules.



Motivation Relations Background

PF-transform at work

Transforming a well-known PW-formula into PF notation:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x : (f y) = (f x) : y = x〉

≡ { (22) for f = g }

〈∀ y , x : y(f ◦ · f )x : y = x〉

≡ { (21) for R = f = g = id }

〈∀ y , x : y(f ◦ · f )x : y(id)x〉

≡ { go pointfree (8) i.e. drop y , x }

f ◦ · f ⊆ id
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The other way round

Now check what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (8) }

〈∀ y , x : y(id)x : y(f · f ◦)x〉

≡ { identity relation ; composition (6) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-one point (61) ; converse (18) }

〈∀ x :: 〈∃ z :: x f z ∧ x f z〉〉

≡ { trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective
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Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉 (check as homework);

• Say R is coreflexive (or diagonal) iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

img Roo

ker R
def
= R◦ · R img R

def
= R · R◦



Motivation Relations Background

Alloy: checking for coreflexive relations
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Kernels of functions

Meaning of ker f :

a′(ker f )a

≡ { substitution }

a′(f ◦ · f )a

≡ { rule (22) }

f a′ = f a

In words: a′(ker f )a means a′

and a “have the same
f -image”.

Exercise 5: Let K be a
nonempty data domain, k ∈ K
and k be the “everywhere k”
function:

k : A→ K
k a = k

(23)

Compute which relations are
defined by the following
expressions:

ker k , b · c◦, img k (24)

�
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Binary relation taxonomy

Topmost criteria:

binary relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(25)

Facts:

ker (R◦) = img R (26)

img (R◦) = ker R (27)
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Binary relation taxonomy

The whole picture:

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

(28)

Exercise 6: Resort to (26,27) and (25) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�
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The same in Alloy

(Courtesy of Alcino Cunha.)
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Exercises

Exercise 7: Label the items (uniquely) in these drawings2

and compute, in each case, the kernel and the image of each relation.

Why are all these relations functions? �

2Credits: http://www.matematikaria.com/unit/injective-surjective-bijective.html.

http://www.matematikaria.com/unit/injective-surjective-bijective.html
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Exercises

Exercise 8: Prove the following fact

A function f is a bijection iff its converse f ◦ is a function (29)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker (f ◦) ∧ img (f ◦) ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection
�
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Taxonomy using matrices

Recall that binary relations can be regarded as Boolean matrices,
eg.

Relation R: Matrix M:
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Taxonomy using matrices

• entire — at least one 1 in every column (30)

• surjective — at least one 1 in every row (31)

• simple — at most one 1 in every column (32)

• injective — at most one 1 in every row (33)

• bijective — exactly one 1 in evey column and every row. (34)
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Propositio de homine et capra et lvpo

Exercise 9: Let relation Bank
cross // Bank (4) be defined by:

Left cross Right

Right cross Left

It therefore is a bijection. Why? �

Exercise 10: Check which of the following properties,

simple, entire,
injective,
surjective,
reflexive,
coreflexive

Eats Fox Goose Beans Farmer

Fox 0 1 0 0
Goose 0 0 1 0
Beans 0 0 0 0
Farmer 0 0 0 0

hold for relation Eats (4) above (“food chain” Fox > Goose > Beans).

�
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Propositio de homine et capra et lvpo

Exercise 11: Relation where : Being → Bank should obey the following
constraints:

• everyone is somewhere in a bank

• no one can be in both banks at the same time.

Express such constraints in relational terms. Conclude that where should

be a function. �

Exercise 12: There are only two constant functions (23) in the type

Being // Bank of where. Identify them and explain their role in the

puzzle. �

Exercise 13: Two functions f and g are bijections iff f ◦ = g , recall

(29). Convert f ◦ = g to point-wise notation and check its meaning. �
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Propositio de homine et capra et lvpo

Adding detail to the
previous Alloy
model (aside)

(More about Alloy
syntax and semantics
later.)
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Class 3 — Functions
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Functions in one slide

As seen before, a function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by
lowercase characters (eg. f , g , φ) or identifiers starting with lowercase
characters, and function application will be denoted by juxtaposition, eg.
f a instead of f (a).
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Functions, relationally

(The following properties of any function f are extremely useful.)

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (35)

R · f ◦ ⊆ S ≡ R ⊆ S · f (36)

Equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (37)

Rule (37) follows from (35,36) by “cyclic inclusion” (next slide).
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Proof of functional equality rule (37)

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f ◦ · g
≡ { shunting on g }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f

Then:

f = g

≡ { cyclic inclusion (11) }

f ⊆ g ∧ g ⊆ f

≡ { aside }

f ⊆ g

≡ { aside }

g ⊆ f

�
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Dividing functions

f

g
= g◦ · f cf .

B

g ��

A

f��

f
goo

C

(38)

Exercise 14: Check the properties:

f

id
= f (39)

f · h
g · k

= k◦ · f

g
· h (40)

f

f
= ker f (41)(

f

g

)◦
=

g

f
(42)

�

Exercise 15: Infer id ⊆ ker f (f is total) and img f ⊆ id (f is simple)

from the shunting rules (35) or (36). �



Motivation Relations Background

Dividing functions

By (21) we have:

b
f

g
a ≡ g b = f a (43)

How useful is this? Think of the following sentence:

Mary lives where John was born.

By (43), this can be expressed by a division:

Mary
birthplace

residence
John ≡ residence Mary = birthplace John

In general,

b f
g a means “the g of b is the f of a”.
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Endo-relations

A relation A
R // A whose input and output types coincide is

called an

endo-relation.

This special case of relation is gifted with an extra taxonomy and
many applications.

We have already seen some: ker R and img R are endo-relations.

Graphs, orders, the identity, equivalences and so on are all
endo-relations as well.
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Taxonomy of endo-relations

Besides

reflexive: iff id ⊆ R (44)

coreflexive: iff R ⊆ id (45)

an endo-relation A A
Roo can be

transitive: iff R · R ⊆ R (46)

symmetric: iff R ⊆ R◦(≡ R = R◦) (47)

anti-symmetric: iff R ∩ R◦ ⊆ id (48)

irreflexive: iff R ∩ id = ⊥
connected: iff R ∪ R◦ = > (49)

where, in general, for R, S of the same type:

b (R ∩ S) a ≡ b R a ∧ b S a (50)

b (R ∪ S) a ≡ b R a ∨ b S a (51)
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Taxonomy of endo-relations

Combining these criteria, endo-relations A A
Roo can further be

classified as
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Taxonomy of endo-relations

In summary:

• Preorders are reflexive and transitive orders.
Example: age y 6 age x .

• Partial orders are anti-symmetric preorders
Example: y ⊆ x where x and y are sets.

• Linear orders are connected partial orders
Example: y 6 x in N

• Equivalences are symmetric preorders
Example: age y = age x . 3

• Pers are partial equivalences
Example: y IsBrotherOf x .

3Kernels of functions are always equivalence relations, see exercise ??.
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Exercises

Exercise 16: Consider the relation

b R a ≡ team b is playing against team a at this moment

Is this relation: reflexive? irreflexive? transitive? anti-symmetric?

symmetric? connected? �

Exercise 17: Check which of the following properties,

transitive, symmetric, anti-symmetric, connected

hold for the relation Eats of exercise 10. �
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Exercises

Exercise 18: Let IR IR
Roo be the binary relation that defines the

unit circunference,

y R x
def
= y 2 + x2 = 1 (52)

that is,

R =
(1−) · sq

sq
(53)

where sq : R→ R and (1−) : R→ R are
the functions y = x2 e y = 1− x ,
respectively.

Without using (52), show that R is symmetric. �
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Exercises

Exercise 19: A relation R is said to be co-transitive or dense iff the
following holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (54)

Write the formula above in PF notation. Find a relation (eg. over

numbers) which is co-transitive and another which is not. �

Exercise 20: Expand criteria (46) to (49) to pointwise notation. �
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Exercises

Exercise 21: The teams (T ) of a football league play games (G ) at
home or away, and every game takes place in some date:

T G
homeoo away //

date
��

T

D

Moreover, (a) No team can play two games on the same date; (b) All
teams play against each other but not against themselves; (c) For each
home game there is another game away involving the same two teams.
Show that

id ⊆ away

home
· away

home
(55)

captures one of the requirements above (which?) and that (55) amounts

to forcing home · away◦ to be symmetric. �
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Formalizing ER diagrams

So-called “Entity-Relationship” (ER) diagrams are commonly
used to capture relational information, e.g.4

ER-diagrams can be formalized in A
R // B notation, see e.g.

the following relational algebra (RA) diagram.

4Credits: https://dba.stackexchange.com/questions.

https://dba.stackexchange.com/questions
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Exercise

Teacher Program

IsPartOf

��
Student

isMentorOf

OO

Course

teaches

ee

Enrols
oo

(56)

Exercise 22: Looking at diagram (56),

• Specify the property mentors of students necessarily are among their
teachers in the relational pointfree style.

• Why is
teaches

isMentorOf ⊆ Enrols

inadequate as answer to the previous question?

�
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Class 4 – Meet and Join
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Background — Eindhoven quantifier calculus

Trading:

〈∀ k : φ ∧ ϕ : γ〉 = 〈∀ k : φ : ϕ⇒ γ〉 (57)

〈∃ k : φ ∧ ϕ : γ〉 = 〈∃ k : φ : ϕ ∧ γ〉 (58)

de Morgan:

¬〈∀ k : φ : γ〉 = 〈∃ k : φ : ¬ γ〉 (59)

¬〈∃ k : φ : γ〉 = 〈∀ k : φ : ¬ γ〉 (60)

One-point:

〈∀ k : k = e : γ〉 = γ[k := e] (61)

〈∃ k : k = e : γ〉 = γ[k := e] (62)
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Background — Eindhoven quantifier calculus
Nesting:

〈∀ a, b : φ ∧ ϕ : γ〉 = 〈∀ a : φ : 〈∀ b : ϕ : γ〉〉 (63)

〈∃ a, b : φ ∧ ϕ : γ〉 = 〈∃ a : φ : 〈∃ b : ϕ : γ〉〉 (64)

Rearranging-∀:

〈∀ k : φ ∨ ϕ : γ〉 = 〈∀ k : φ : γ〉 ∧ 〈∀ k : ϕ : γ〉 (65)

〈∀ k : φ : γ ∧ ϕ〉 = 〈∀ k : φ : γ〉 ∧ 〈∀ k : φ : ϕ〉 (66)

Rearranging-∃:

〈∃ k : φ : γ ∨ ϕ〉 = 〈∃ k : φ : γ〉 ∨ 〈∃ k : φ : ϕ〉 (67)

〈∃ k : φ ∨ ϕ : γ〉 = 〈∃ k : φ : γ〉 ∨ 〈∃ k : ϕ : γ〉 (68)

Splitting:

〈∀ j : φ : 〈∀ k : ϕ : γ〉〉 = 〈∀ k : 〈∃ j : φ : ϕ〉 : γ〉 (69)

〈∃ j : φ : 〈∃ k : ϕ : γ〉〉 = 〈∃ k : 〈∃ j : φ : ϕ〉 : γ〉 (70)
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