
Typed linear algebra for weighted (probabilistic)
automata

J.N. Oliveira

High-Assurance-Software Lab (HASLab)
INESC TEC & U.Minho, Portugal

CIAA 2012 — 17th Int. Conf. on
Implementation and Application of Automata

Porto, July 17-20, 2012

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Motivation

Formal methods are “going quantitative” — “may it
happen”? people want to know “how often it will
happen”.

As happened with physics in the past, computer science is
becoming probabilistic.

Probability theory particularly relevant in security analysis of
information flow.

Propagation of software faults — can this be predicted
(calculated) rather than simulated?

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Motivation

Recent work: calculating fault propagation in functional
programs (Oliveira, 2012).

Broadening scope: can this be extended to faulty
components? Does software architecture matter in this
respect?

Starting point: coalgebraic approach to software architecture
— “Components as coalgebras” (Barbosa, 2001).

“Components as coalgebras” qualitative, not quantitative...

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Automata as coalgebras

Generic approach to transition systems, described by functions of
type

Q → FQ

where Q is a set of states and FQ captures the future behaviour of
the system, according to evolution “pattern” F (functor).

Examples:

• Mealy machines — FQ = B(Q × O)I

• Moore machines — FQ = (BQ)I × O

for I , O input / output types, and B a behaviour monad — eg.
powerset (P), distribution (D), etc.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Background

Vast literature:

• Probabilistic program semantics — eg. (Kozen, 1979)

• Weighted automata — eg. (Buchholz, 2008), (Droste and
Gastin, 2009)

• Probabilistic automata — eg. (Larsen and Skou, 1991)

• Coalgebraic approaches — eg. (Sokolova, 2005)
In particular, a recent paper

Bonchi et al. (2012) — A coalgebraic perspective on
linear weighted automata — Information and
Computation, 211:77–105.

combines coalgebraic reasoning with linear algebra.

Why linear algebra?

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

The function-relation-matrix hierarchy

• Relations — are everywhere, eg.

y likes x
y ≤ x

• Functions — deterministic and total relations, eg.

y = ax + b

• Matrices — quantified relations, cf.

y M x = k

further to
y M x = true

eg.

John loves Mary = 100 (very much!)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

The function-relation-matrix hierarchy

• Functions — functional programming, an advanced discipline
strongly rooted on mathematics. Typing f : A→ B well
accepted.

• Relations — ubiquitous (eg. graphs) but still under the
atavistic set of pairs interpretation. Thus R ⊆ A× B

widespread, compared to A
R // B .

• Matrices — key concept in mathematics as a whole, many
tools (eg. Matlab, Mathematica) but still “untyped” —
explicit dimension checking required.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Arrow notation for functions

Used everywhere for declaring functions, eg.

f : IN → R
n 7→ n

π

The first line is the type of the function (syntax) and the second
line is the rule of correspondence (semantics).

Compositionality — functions compose with each other:

B A
foo C

g
oo

f ·g

ii

b = f (g c)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Arrow notation for (binary) relations

Binary relations are typed too: arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as

A
R // B .

Compositionality — relations compose with each other:

B A
Roo C

Soo

R·S

gg

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉

Example: uncle = brother · parent

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Older than you probably think

Relational maths finds its
roots in the pioneering
work

On the syllogism:
IV, and on the
logic of relations

read by the British
mathematician Augustus
de Morgan (1806-71), on
the 23rd April 1860 to the
Cambridge Philosophical
Society.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Augustus de Morgan (1806-71)

Binary relations:

[...] Let X ..LY signify that X is some one of the objects of
thought which stand to Y in the relation L, or is one of the
Ls of Y .

Relational composition:

[...] When the predicate is itself the subject of a relation, there
may be a composition: thus if X ..L(MY), if X be one of the
Ls of one of the M s of Y , we may think of X as an ‘L of M’
of Y , expressed by X ..(LM)Y , or simply by X ..LMY . [...][So]
brother of parent is identical with uncle, by mere definition.

Relational converse:

[...] The converse relation of L, L−1, is defined as usual: if
X .. L Y , Y .. L−1 X : if X be one of the Ls of Y , Y is one of
the L−1 s of X .

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Later, in the 1940s

Alfred Tarski (1901-83) revives interest
in relation algebra. Quoting Givant
(2006):

In describing this last result in a
postcard to Willard van Orman
Quine, dated March 27, 1942,
Tarski concluded with the
following play on a French saying:
“Isn’t [it] a nice thing ’pour
épater les logiciens-bourgeois’?”

This indicates how amused Tarski was
in finding how effective the core of
relational algebra is in laying
foundations for mathematics as a whole.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

From binary relations to matrices

As binary relations are Boolean matrices, eg.

Relation R: Matrix M:

why not represent matrices as arrows too, cf.

11 11
Moo ?

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Compositionality — matrix-matrix multiplication

Picture (from the Wikipedia):

Given a semiring (S; +,×, 0, 1)
matrix composition A · B obeys
to the typing rule

k n
Aoo m

Boo

A·B

ff

such that

r(A · B)c = 〈
∑

x :: (rAx)× (xBc)〉 (1)

where
∑

is the finite iteration over n of the + operation of S.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Typed linear algebra

Notation:

We write rAc for the (r , c)-th cell of matrix A, rather than
A(r , c), for compatibility with relational notation:

• you prefer 4 ≤ 5 to ≤ (4, 5) or even (4, 5) ∈ ≤, don’t
you?

Type checking:

For matrices A and B of the same type n moo , we can
extend cell level algebra to matrix level, eg. by adding and
multiplying matrices (Hadamard product),

A + B , A× B

and so on.

Expressions such as eg. A + B × C for A, B, C of different types won’t

typecheck.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Typed linear algebra

The underlying type system is polymorphic and type inference
proceeds by unification, as in programming languages.

For instance, the identity matrix

n n
idnoo =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

n×n

is polymorphic on type n.

(This view will help in equipping tools such as Matlab and

Mathematica with a type system saving the burden of always checking

for matrix dimensions.)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Converse

Given matrix n m
Moo , notation m n

M◦oo denotes its
transpose, or converse.

... or the “passive voice”: “John eats the apple”
converses into “The apple is eaten by John” ,
(eats)◦ = (is eaten by)

M◦ is M changed by turning rows into columns and vice-versa.

The following unit, idempotence and contravariance laws hold:

idn ·M = M = M · idm (2)

(M◦)◦ = M (3)

(M · N)◦ = N◦ ·M◦ (4)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Categories of matrices

Equipped with composition (1) and identity (2), matrices form a
category whose

• objects are matrix dimensions and whose

• morphisms (m n
Moo , n k

Noo , etc) are the matrices
themselves.

Strictly speaking, there is one such category per matrix cell-level
algebra.

Notation MatS denotes such a category, parametric on semiring S
or any other (richer) algebraic structure, typically a field (eg. R).

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Categories of matrices

Abelian structure

M + 0 = M = 0 + M (5)

M · 0 = 0 = 0 ·M (6)

Bilinearity — composition is bilinear relative to +:

M · (N + P) = M · N + M · C (7)

(N + P) ·M = N ·M + P ·M (8)

Biproducts — products and coproducts together enabling block
algebra — the whole story in eg. (MacLane, 1971; MacLane and
Birkhoff, 1999) and, more recently, (Macedo, 2012).

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

(Polymorphic) block combinators

Two ways of putting matrices together to build larger ones:

• X = [M|N] — M and N side by side (“‘junc”)

• X =
[
P
Q

]
— P on top of Q (“‘split”).

Mind the (polymorphic) types:

m

n

M

>>

n + p

[M|N]

OO

p

N

``

t

P

``
[
P
Q

]OO
Q

>>

(A biproduct)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Blocked linear algebra

Rich set of laws, for instance divide-and-conquer,

[A|B] ·
[

C

D

]
= A · C + B · D (9)

two “fusion”-laws,

C · [A|B] = [C · A|C · B] (10)[
A

B

]
· C =

[
A · C
B · C

]
(11)

structural equality,[
A

B

]
=

[
C

D

]
⇔ A = C ∧ B = D (12)

— all offered for free from biproducts.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Vectors

Vectors are special cases of matrices in which one of the types is
1, for instance

v =

v1
...

vm

 and w =
[
w1 . . . wn

]

Column vector v is of type m 1oo (m rows, one column) and
row vector w is of type 1 noo (one row, n columns).

Our convention is that lowercase letters (eg. v ,w) denote vectors
and uppercase letters (eg. A, M) denote arbitrary matrices.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Special matrices

The following (0, 1)−matrices (Boolean) are relevant:

• The bottom matrix n m
⊥oo — wholly filled with 0s

• The top matrix n m
>oo — wholly filled with 1s

• The identity matrix n n
idoo — diagonal of 1s

• The bang (row) vector 1 m
!oo — wholly filled with 1s

Thus, (typewise) bang matrices are special cases of top matrices:

1 m
>oo = !

Also note that, on type 1 1oo :

> = ! = id

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Type generalization

As is standard is relational mathematics (Schmidt, 2010), matrix
types can be generalized from numeric dimensions (n, m ∈ IN0) to
arbitrary denumerable types (X , Y), taking disjoint union X + Y
for m + n, Cartesian product X × Y for mn, etc.

In this setting, a function B A
foo will be represented in MatS

by a (0,1)-matrix (Boolean) B A
[[f]]oo such that

b[[f]]a 4 (b =S f a)

where, in general, y =S x is 1 if y = x and 0 otherwise. Thus

! · [[f]] = !

As S is always implicit and all diagrams are in MatS, subscript S
and the parentheses [[]] can be safely dropped.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata as MatS arrows

Following Droste and Gastin (2009), a weighted finite
automaton W = (A,Q;λ, µ, γ) consists of

• input alphabet A

• finite set of states Q

• λ, γ : Q → S — weight functions for entering and leaving a
state

• µ : A→ SQ×Q such that µ(a)(p, q) is the cost of transition

p
a // q (0 if no such transition).

Thus µ can be regarded as a A-indexed family of weighted state
transition structures — treated as square matrices by Buchholz
(2008), Bonchi et al. (2012) and others.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata as MatS arrows

Bonchi et al. (2012) instantiate S to a field K and only consider µ
and γ, in a coalgebraic setting, by reshaping µ into the isomorphic

type Q → (KQ)
A

and putting this together with γ into a

coalgebra of functor FX = K× (KX)
A

:

〈γ, µ〉 : Q → K× (KQ
ω)A

This is treated as a coalgebra in Set where the so-called field
valuation (exponential) functor K−ω calls for a vector space.

Inspired by this “hybrid” approach, ours will save ink in handling
everything in MatS.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata as MatS arrows

Functions such as γ : Q → S, which evaluate in S, can be encoded
as MatS vectors of type Q // 1 under the rule

1 γ q 4 γ(q) (13)

Similarly, the matrix encoding of µ : A→ SQ×Q can be regarded
as either of type Q × A // Q or Q // Q × A , as these
types are isomorphic in MatS.

We go for the second (coalgebraic) alternative and put µ and γ
together into a MatS coalgebra using the split (biproduct)
combinator,

Q
W=

[
µ
γ

]
// (Q × A) + 1

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata as MatS arrows
This is a coalgebra of MatS endofunctor FX = (X ⊗ id)⊕ id ,
where ⊗ is Kronecker product and ⊕ is direct sum, two standard
(bi)functors in MatS.

Absorption

(C ⊕ D) ·
[

A

B

]
=

[
C · A
D · B

]
(14)

and fusion [
M

N

]
⊗ C =

[
M ⊗ C

N ⊗ C

]
(15)

laws help in calculations. Concerning Kronecker product:

(y , x)(M ⊗ N)(b, a) = (yMb)× (xNa) (16)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata homomorphisms in MatS

Let us now see how our typed LA encoding of WA regains the
simplicity of the original, qualitative starting point.

A homomorphism between weighted automata W and
W ′ is a function h making the following MatS-diagram
commute,

FQ

Fh
��

Q

h
��

Woo

FQ ′ Q ′
W ′
oo

(17)

for Fh = (h ⊗ id)⊕ id.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata homomorphisms in MatS

In cross-checking that this indeed is the usual, quantified definition, we
will resort to two rules of thumb,

y(f · N)x = 〈
∑

z : y = f (z) : zNx〉 (18)

y(g◦ · N · f)x = (g(y))N(f (x)) (19)

where N is an arbitrary matrix and f , g are functional matrices.

These rules generalize similar equalities in relation algebra.

They are expressed in the style of the Eindhoven quantifier calculus
(Backhouse and Michaelis, 2006), as is

〈
∑

x : p(x) : e(x)〉 = 〈
∑

x :: p(x)× e(x)〉 (20)

for Boolean term p(x), that is: p(x) = 1 iff p(x) holds, 0 otherwise.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata homomorphisms in MatS

Let us calculate:

(Fh) ·W = W ′ · h

⇔ { unfold Fh , W and W ′ }

((h ⊗ id)⊕ id) ·
[
µ

γ

]
=

[
µ′

γ′

]
· h

⇔ { absorption (14), identity (2) and fusion (11) }[
(h ⊗ id) · µ

γ

]
=

[
µ′ · h
γ′ · h

]
⇔ { equality (12) }{

(h ⊗ id) · µ = µ′ · h
γ = γ′ · h (21)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata homomorphisms in MatS

Next we unfold (h ⊗ id) · µ = µ′ · h by extensional equality of

matrices of type Q ′ × A Qoo :

(q′, a)((h ⊗ id) · µ)q = (q′, a)(µ′ · h)q

⇔ { (19) on the rhs, since h is a function }

(q′, a)((h ⊗ id) · µ)q = (q′, a)µ′(h(q))

⇔ { (18) on the lhs, since h ⊗ id is a function too }

〈
∑

(p, b) : (q′, a) = (h ⊗ id)(p, b) : (p, b)µq〉 = (q′, a)µ′(h(q))

⇔ { since (h ⊗ id)(p, b) = (h(p), b); “one-point” rule over a = b }

〈
∑

p : q′ = h(p) : (p, a)µq〉 = (q′, a)µ′(h(q))

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata homomorphisms in MatS

Finally, liberally writing p q
aoo for the weight of the

corresponding transition:

〈
∑

p : q′ = h(p) : p q
aoo 〉 = q′ h(q)

aoo

In words:

the weight associated to transition q′ h(q)
aoo in the

target automaton accumulates the weights of all

transitions p q
aoo in the source automaton for all p

which h maps to q′.

Unfolding γ = γ′ · h will yield the expected γ(q) = γ′(h(q)).

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted automata bisimulation in MatS

We now treat WA bisimulation in the same way, illustrated with an
example taken from (Buchholz, 2008):

0
a, 1

3

��
a, 1

3
��

a, 1
3

��
1

b,1
��

2

b,1
��

3

4 5

Matrix µ is type Q × A Qoo , for Q = {0, ..., 5} and A = {a, b}.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Probabilistic automata in MatS

Already an example of a simple,
probabilistic automaton
(Markov chain), instantiating the
general definition:

• S the interval [0, 1] in R
• µ is such that ! · µ is a

(0, 1)-vector

(! ·M adds all columns of M).

Thus ! · µ ≤ !.

Wherever ! · µ = ! the automaton is total and µ is a column
stochastic matrix, or probabilistic function (Oliveira, 2012).

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted bisimulations in MatS

Is equivalence relation

a bisimulation? It has four classes which can be represented by a
quotient automaton using a suitable homomorphism h.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted bisimulations in MatS

Candidate
surjective
homomorphism

Q ′ Q
hoo :

Its kernel

K = Q Q
h◦·hoo is

the given
equivalence (kernels
of functions are
always equivalence
relations):

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted bisimulations in MatS

Building W ′ = W /K (below we focus on µ, µ′ only).

First attempt:

W ′ = W /K =
(Fh) ·W · h◦

that is

µ′ = µ/K =
(h ⊗ id) · µ · h◦

Uups!

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted bisimulations in MatS

It doesn’t work because, in
MatS, h◦ is not a “true”
converse of h: the image
h · h◦ 6= id is a diagonal
counting “how much
non-injective” h is, cf.

However, surjective
function h has inverses
such as, eg.
h• = h◦ · (h · h◦)−1,
obtained by
straightforward inversion
of diagonal h · h◦:

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Building W ′ = W /K

Second attempt:

W ′ = W /K =
(Fh) ·W · h•

that is (aside)

µ′ = µ/K =
(h ⊗ id) · µ · h•

which leads to automaton

0
a, 2

3

yy

a, 1
3

$$
I

b,1 ��

II

III

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Weighted bisimulations in MatS

Definition. Equivalence relation K is a bisimulation for W iff any

surjection h such that K = h◦ · h is a homomorphism W /K W
hoo .

That is, any of

Fh ·W = (W /K) · h

⇔ { definition of W /K }

Fh ·W = Fh ·W · h• · h

hold. (h• · h = K for injective h.) Composing both terms with Fh◦ we
get

FK ·W = FK ·W · K•

where K• = h• · h; that is, FK ·W is invariant wrt the “weighted

equivalence” K•.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Back to Larsen and Skou (1991)

Noting that FK is an equivalence relation (as K is so and F is a
functor) and unfolding the invariant FK ·W , for µ:

(q, a)((K ⊗ id) · µ)p

= { composition rule (1) }

〈
∑

q′, a′ :: (q, a)(K ⊗ id)(q′, a′)× ((q′, a′)µ(p)〉

= { Kronecker (1) ; term K ⊗ id is Boolean }

〈
∑

q′, a′ :: (qKq′)× (a = a′)× ((q′, a′)µ(p)〉

= { let [q]K denote the equivalence class of q }

〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Back to Larsen and Skou (1991)

In words:

〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉

is the accumulated cost (probability) of transitions within the same
equivalence class, which is invariant for equivalent initial states (Larsen
and Skou, 1991).

Equivalence of initial states is captured by “weighting” equivalence K ,

K• = h◦ · (h · h◦)−1 · h

that is,

p1 K• p2 = (h(p1))(h · h◦)−1(h(p2))

Diagonal (h · h◦)−1 represents the weight vector [which] is well known in

stochastic modeling (Buchholz, 2008).

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Last but not least: behaviour

We finally consider the semantics of WA expressed in terms of
weighted languages.

A weighted language over A is a function σ : A? → S
assigning a weight to each word in A?.

The function LW : Q → SA? which associates to each state in Q of
W its recognized weighted language (Bonchi et al., 2012) can, as
before, be encoded into a MatS matrix of type Q // A? , ie.
the F-homomorphism (in MatS)

Q × A + 1

(LW ⊗ id)⊕ id
��

Q
Woo

LW
��

A? × A + 1 A?
out
oo

where
out = [rcons|nil]◦

nil = ε
rcons(x , a) = a : x

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Last but not least: behaviour
What does this homomorphism,

out · LW = ((LW ⊗ id) ⊕ id) ·W

mean? We calculate:

out · LW = ((LW ⊗ id) ⊕ id) ·W

⇔ { converses }[
rcons◦

nil◦

]
· LW = ((LW ⊗ id) ⊕ id) ·

[
µ

γ

]
⇔ { fusion (11) and absorption (14) }[

rcons◦ · LW

nil◦ · LW

]
=

[
(LW ⊗ id) · µ

γ

]
⇔ { equality (12) }

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Last but not least: behaviour

{
rcons◦ · LW = (LW ⊗ id) · µ
nil◦ · LW = γ

⇔ { matrix extensional equality }{
(w , a)(rcons◦ · LW)q = (w , a)((LW ⊗ id) · µ)q
1(nil◦ · LW)q = 1γq

⇔ { thumb rule (19) }{
(a : w) LW q = (a,w)((LW ⊗ id) · µ)q
ε LW q = γ(q)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Last but not least: behaviour

Finally, as before:{
(a : w) LW q = 〈

∑
a′, q′ :: (a,w)(LW ⊗ id)(a′, q′)× (a′, q′)µ q〉

ε LW q = γ(q)

⇔ { simplification }{
(a : w) LW q = 〈

∑
q′ :: (w LW q′)× (q′ q

aoo)〉
ε LW q = γ(q)

In words:

every state q recognizes the empty language ε with weight
γ(q); and it recognizes sentence a : w for all states which a
leads to and which recognize w, accumulating the weights.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Last but not least: behaviour

Another way to look at matrix LW :

out · LW = ((LW ⊗ id) ⊕ id) ·W

⇔ { out is an isomorphism }

LW = [rcons|nil] ·
[

(LW ⊗ id) · µ
γ

]
⇔ { divide and conquer (9) }

LW = rcons · (LW ⊗ id) · µ+ nil · γ

This shows how LW is (recursively) filled up, adding to nil · γ (the
matrix with γ as first row, 0s everywhere else) successive rows as
dictated by rcons.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Last but not least: behaviour

Using this definition in MatLab, for the given example automata,
we obtain,

for LW :

for LW /K :

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Summing up

Much still to be done! — but time already to wrap up with the
main points:

• Shift from qualitative to quantitative methods in CS

• Two approaches:

• Reinvent (extend) original definitions in the same category
or

• Stay with original definitions but change category (better!)

• MatS appears to be a suitable choice for (simple) weighted
(probabilistic) automata.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Related work

A lot of related work, the following deserving special reference:

• Trcka (2009) expresses transition systems in matrix terms of
the form Q × Q → PA.
(Square) matrices of type Q → Q but not really
“quantitative”, as the additive operation of PA is idempotent.

• Bloom et al. (1996) offer the only matrix-categorial
approach to transition systems I know of.

Not coalgebraic, however — rather based on iteration
theories.

Currently comparing both approaches.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Future work

As in (Oliveira, 2012), rich interplay offered by adjunctions which
offer a double perspective — one category is “for calculating”,
the other “for programming” (with the monad offered by both):

• Monadic inspiration for more elaborate models coping with
both measurable and unmeasurable non-determinism.

• Both the powerset functor P(−) and the distribution functor
D(−) are monads.

• Characterize the adjoint categories required by the various
forms in which both appear combined in the literature — see
eg. the taxonomy given by Sokolova (2005).

• Asking for too much?

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Linear algebra for software verification

Could not agree more on...

“(...) our key idea is to adopt linear algebra as the lingua
franca of software verification”

quoted from

LAP: Linear Algebra of bounded resources Programs

— a project of SQIG at the Telecommunications Institute (IT) in
Lisbon (http://sqig.math.ist.utl.pt/work/LAP).

http://sqig.math.ist.utl.pt/work/LAP

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Last slide

(...) “De manera, que
quien sabe por Algebra,
sabe scientificamente”.

(...) In this way, who knows by
Algebra knows scientifically

[Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fol. 270.]

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Annex

Index-wise definition of (weighted) bisimulation — recall that, from
definition

FK ·W = FK ·W · K•

we’ve already expanded, for F(X) = X ⊗ id

(q, a)(FK · µ)p = 〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉

In this annex we turn our attention to

(q, a)(FK · µ · K•)p = 〈
∑

p′ :: (q, a)(FK · µ)p′ × p′K• p〉

The weighted equivalence term is such that

p′K• p =
1

|p|K
p′K p

where |p|K is the cardinal of equivalence class [p]K .

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Annex

Thus

(q, a)(FK · µ · K•)p =
1

|p|K
〈
∑

p′ : p′ ∈ [p]K : (q, a)(FK · µ)p′〉

whose RHS unfolds into:

1

|p|K
〈
∑

p′ : p′ ∈ [p]K : 〈
∑

q′′ : q′′ ∈ [q]K : q′′ p′
aoo 〉〉

In summary:

〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉 =

1

|p|K
〈
∑

p′, q′′ : p′ ∈ [p]K ∧ q′′ ∈ [q]K : q′′ p′
aoo 〉

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

Annex

The following notation abbreviation will help: for R, S subsets of
Q,

S R
aoo = 〈

∑
p, q : p ∈ R ∧ q ∈ S : q p

aoo 〉

Then equivalence K is a bisimulation iff

[q]K p
aoo =

1

|p|K
× ([q]K [p]K

aoo)

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

References

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

R. Backhouse and D. Michaelis. Exercises in quantifier
manipulation. In T. Uustalu, editor, MPC’06, volume 4014 of
LNCS, pages 70–81. Springer, 2006.

L.S. Barbosa. Components as Coalgebras. University of Minho,
December 2001. Ph. D. thesis.

S.L. Bloom, N. Sabadini, and R.F.C. Walters. Matrices, machines
and behaviors. Applied Categorical Structures, 4(4):343–360,
1996.

F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A
coalgebraic perspective on linear weighted automata.
Information and Computation, 211:77–105, 2012.

P. Buchholz. Bisimulation relations for weighted automata.
Theoretical Computer Science, 393(1-3):109–123, 2008. ISSN
0304-3975. doi: 10.1016/j.tcs.2007.11.018.

M. Droste and P. Gastin. Weighted automata and weighted logics.
In W. Kuich, H. Vogler, and M. Droste, editors, Handbook of
Weighted Automata, EATCS Monographs in Theoretical
Computer Science, chapter 5, pages 175–211. Springer, 2009.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

S. Givant. The calculus of relations as a foundation for
mathematics. J. Autom. Reasoning, 37(4):277–322, 2006. ISSN
0168-7433. doi:
http://dx.doi.org/10.1007/s10817-006-9062-x.

Dexter Kozen. Semantics of probabilistic programs. In FOCS,
pages 101–114, 1979.

K.G. Larsen and A. Skou. Bisimulation through probabilistic
testing. Inf. Comput., 94(1):1–28, 1991.

H. Macedo. Matrices as Arrows — Why Categories of Matrices
Matter. PhD thesis, University of Minho, 2012. (Submitted
Jan. 2012).

S. MacLane. Categories for the Working Mathematician.
Springer-Verlag, New-York, 1971.

S. MacLane and G. Birkhoff. Algebra. AMS Chelsea, 1999.

José N. Oliveira. Towards a linear algebra of programming. Formal
Asp. Comput., 24(4-6):433–458, 2012.

G. Schmidt. Relational Mathematics. Number 132 in Encyclopedia
of Mathematics and its Applications. Cambridge University
Press, November 2010. ISBN 9780521762687.

Motivation Why LA? Functions Relations Matrices WA WA homomorphisms Closing References

A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. Ph.D.
dissertation, Tech. Univ. Eindhoven, Eindhoven, The
Netherlands, 2005.

N. Trcka. Strong, weak and branching bisimulation for transition
systems and Markov reward chains: A unifying matrix approach.
In S. Andova and et al, editors, Proceedings First Workshop on
Quantitative Formal Methods: Theory and Applications,
volume 13 of EPTCS, pages 55–65, 2009.

	Motivation
	Why LA?
	Functions
	Relations
	Matrices
	WA
	WA homomorphisms
	Closing

