Investigating and Computing Bipartitions with Algebraic Means

Rudolf Berghammer

Institut für Informatik
Christian-Albrechts-Universität zu Kiel

RAMiCS 2015, Braga

joint work with Insa Stucke and Michael Winter

September 29, 2015

Introduction

Contents:

- We use Dedekind categories as an algebraic structure for set-theoretic relations without complements.
- We present purely algebraic definitions of "to be bipartite" and "to possess no odd cycles".
- We prove that both notions coincide.

This generalises D. Kőnig's well-known theorem (Mathematische Annalen 77, pp. 453-465, 1916)

- from undirected graphs to abstract relations,
- to models such as L-relations that are different from set-theoretic relations.

For set-theoretic relations the proof immediately leads to an algorithm.

Dedekind Categories

Specific categories with typed relations $R: X \leftrightarrow Y$ as morphisms, which generalise relation algebra by using residuals instead of complements.

Axioms:

- Complete distributive lattice for union, intersection, ordering, empty and universal relation.
- Associativity of composition and that identity relations are neutral.
- Monotonicity of transposition.
- $\left(R^{\top}\right)^{\top}=R$ and $(R ; S)^{\top}=S^{\top} ; R^{\top}$.
- Modular law $Q ; R \cap S \subseteq Q ;\left(R \cap Q^{\top} ; S\right)$.
- $Q ; R \subseteq S$ if and only if $Q \subseteq S / R$.

Most of the well-known complement-free relation-algebraic rules already hold in a Dedekind category. R^{*} denotes reflexive-transitive closure and R^{+}denotes transitive closure.

The Main Result

Definition (Bipartition)
Given a (homogeneous) relation R, then (v, w) is a bipartition of R if

- v, w vectors, i.e., $v ; \mathrm{L}=v$ and $w ; \mathrm{L}=w$.
- $v \cap w=\mathrm{O}$,
- $R \subseteq v ; w^{\top} \cup w ; v^{\top}$.

If there exists a bipartition, then R is called bipartite.

If R, v and w are from a relation algebra (i..e., complements exists), then each bipartition (v, w) of R leads to the bipartition (v, \bar{v}) of R.

Theorem (Kőnig's theorem on Dedekind categories)
Let R be a relation. Then we have:

$$
R \text { bipartite } \Longleftrightarrow R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O}
$$

The First Direction

Lemma 1 (Properties of disjoint vectors)
Let v and w be vectors with $v \cap w=0$. Then we have:
(1) $v^{\top} ; w=\mathrm{O}$ and $w^{\top} ; v=\mathrm{O}$.
(2) $v ; v^{\top} \cup w ; w^{\top}$ is transitive.
(3) $\left(v ; w^{\top} \cup w ; v^{\top}\right) ;\left(v ; w^{\top} \cup w ; v^{\top}\right) \subseteq v ; v^{\top} \cup w ; w^{\top}$.

Theorem 2 (Bipartitions consist of stable sets)
Let R be a relation and v, w be vectors with $v \cap w=O$. Then we have:

$$
R \subseteq v ; w^{\top} \cup w ; v^{\top} \Longleftrightarrow\left\{\begin{array}{l}
R ; v \subseteq w \wedge \\
R ; w \subseteq v \wedge \\
R \subseteq(v \cup w) ;(v \cup w)^{\top}
\end{array}\right.
$$

Theorem 3 (Bipartite implies no odd cycles)
Let R be a relation and v, w be vectors. Then we have:

$$
(v, w) \text { bipartition of } R \Longrightarrow R ;(R ; R)^{*} \cap I=0
$$

Proof: Using the modular law in the first step, we obtain

$$
v ; w^{\top} \cap I \subseteq v ;\left(w^{\top} \cap v^{\top} ; I\right)=v ;(v \cap w)^{\top}=0,
$$

and $w ; v^{\top} \cap I=O$ follows similarly. Now, we get the claim as follows:

$$
\begin{align*}
& R ;(R ; R)^{*} \cap I \subseteq R ;\left(\left(v ; w^{\top} \cup w ; v^{\top}\right) ;\left(v ; w^{\top} \cup w ; v^{\top}\right)\right)^{*} \cap I \quad \text { assumption } \\
& \subseteq R ;\left(v ; v^{\top} \cup w ; w^{\top}\right)^{*} \cap I \tag{3}\\
& =R ;\left(\mathrm{I} \cup\left(v ; v^{\top} \cup w ; w^{\top}\right)^{+}\right) \cap \mathrm{I} \\
& =R ;\left(I \cup v ; v^{\top} \cup w ; w^{\top}\right) \cap I \\
& =\left(R \cup R ; v ; v^{\top} \cup R ; w ; w^{\top}\right) \cap I \\
& \subseteq\left(R \cup w ; v^{\top} \cup v ; w^{\top}\right) \cap I \\
& =\left(w ; v^{\top} \cup v ; w^{\top}\right) \cap I \\
& =\left(w ; v^{\top} \cap \mathrm{I}\right) \cup\left(v ; w^{\top} \cap \mathrm{I}\right) \\
& =0
\end{align*}
$$

The Remaining Direction: Problem Reduction

Theorem 4 (Reduction to symmetric relations)
Let R be a relation and v, w be vectors. Then we have:

$$
R \subseteq v ; w^{\top} \cup w ; v^{\top} \Longleftrightarrow R \cup R^{\top} \subseteq v ; w^{\top} \cup w ; v^{\top}
$$

Hence, for all relations R it suffices to prove:

$$
R=R^{\top} \wedge R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O} \Longrightarrow R \text { bipartite }
$$

But symmetry of R implies symmetry of its reflexive-transitive closure R^{*}. Hence, for all relations R it suffices to prove:

$$
R^{*}=\left(R^{*}\right)^{\top} \wedge R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O} \Longrightarrow R \text { bipartite }
$$

Theorem 5 (Main theorem for the remaining direction)
Let R be a relation, $R^{*}=\left(R^{*}\right)^{\top}$ and u be a vector such that

$$
\text { (a) } R ;(R ; R)^{*} ; u \cap u=0 \quad \text { (b) } R \subseteq R^{*} ; u ; u^{\top} ; R^{*}
$$

Then (v, w) is a bipartition of R if we define v, w as follows:

$$
v:=(R ; R)^{*} ; u \quad w:=R ; v=R ;(R ; R)^{*} ; u
$$

Graph-theoretic interpretations:

- Condition (a): No vertices of the set modeled by u are connected by an odd path.
- Condition (b): If (x, y) is an arc, then both vertices are reachable from the set modeled by u.
- Definition of v : Models the set of vertices which are reachable from the set modeled by u via an even path.
- Definition of w : Models the set of vertices which are reachable from the set modeled by u via an odd path.

Hence, for all relations R it suffices to prove:

$$
\left.\begin{array}{r}
R^{*}=\left(R^{*}\right)^{\top} \wedge \\
R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O}
\end{array}\right\} \Longrightarrow\left\{\begin{aligned}
& \exists u: u=u ; \mathrm{L} \wedge \\
&: R ;(R ; R)^{*} ; u \cap u= \\
&: R \subseteq R^{*} ; u ; u^{\top} ; R^{*}
\end{aligned}\right.
$$

It is remarkable that also the converse of Theorem 5 is valid such that, in general, we have the following characterisation of bipartite relations:

Theorem 6 (Characterisation)

Let R be a relation and $R^{*}=\left(R^{*}\right)^{\top}$. Then we have:

$$
R \text { bipartite } \Longleftrightarrow\left\{\begin{aligned}
\exists u & : u=u ; \mathrm{L} \wedge \\
& : R ;(R ; R)^{*} ; u \cap u=\mathrm{O} \wedge \\
& : R \subseteq R^{*} ; u ; u^{\top} ; R^{*}
\end{aligned}\right.
$$

The Remaining Direction: Solution

The idea in terms of graphs;

- Let $R: X \leftrightarrow X$ be the symmetric adjacency relation of an undirected graph $G=(X, E)$ without odd cycles. Then:

$$
R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O}
$$

- From $R=R^{\top}$ we get $R^{*}=\left(R^{*}\right)^{\top}$ such that:

R^{*} is an equivalence relation

- Consider X / R^{*}, i.e., the set of connected components of G.
- Select from each connected component a single vertex and combine all these vertices to a subset U of X.
- If u is a vector that models U as subset of X, then it fulfills (a) and (b) of Theorem 5 and we are done.

Means for the selectipn of the vertices from the connected components:

Axiom 7 (Relational axiom of choice)
For all relations R there exists a relation F such that:
(1) $F^{\top} ; F \subseteq I$ (univalent)
(2) $F \subseteq R$
(3) $F ; \mathrm{L}=R ; \mathrm{L}$

Theorem 8 (P. Freyd, A. Scedrov, M. Winter)
For each (partial) equivalence relation P there exists a relation S with
(1) $S ; S^{\top}=P$
(2) $S^{\top} ; S=1$
and all relations with these properties are isomorphic.
S is called a splitting of P and if P is a set-theoretic equivalence relation on X, then the canonical epimorphism $\pi: X \rightarrow X / P$ is a splitting.

Lemma 9

Assume Axiom 7 to be true and let R be a relation such that $R^{*}=\left(R^{*}\right)^{\top}$. Then there exist

- a splitting S of R^{*},
- a relation F with $F^{\top} ; F \subseteq \mathrm{I}, \mathrm{I} \subseteq F ; F^{\top}$ (total) and $F \subseteq S^{\top}$.

Theorem 10 (Existence of u)
Assume Axiom 7 to be true and let R be a relation such that

$$
R^{*}=\left(R^{*}\right)^{\top} \quad R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O}
$$

If S is a splitting of R^{*} and F a mapping such that $F \subseteq S^{\top}$, then we get
(a) $R ;(R ; R)^{*} ; u \cap u=0$
(b) $R \subseteq R^{*} ; u ; u^{\top} ; R^{*}$
if we define the vector u as $u:=F^{\top} ; \mathrm{L}$.

Proof: To prove (a) we start with

$$
\begin{aligned}
F ; R ;(R ; R)^{*} ; F^{\top} & \subseteq F ; R^{*} ; F^{\top} \\
& =F ; S ; S^{\top} ; F^{\top} \\
& \subseteq S^{\top} ; S ; S^{\top} ; S \\
& =I ; I \\
& \subseteq F ; F^{\top}
\end{aligned}
$$

property clos.
S splitting of R^{*}
$F \subseteq S^{\top}$
S splitting
F total

Now, (a) can be shown as follows:

$$
\begin{array}{rlr}
R ;(R ; R)^{*} ; u \cap u & =R ;(R ; R)^{*} ; F^{\top} ; \mathrm{L} \cap F^{\top} ; \mathrm{L} & \text { definition } u \\
& =F^{\top} ; \mathrm{L} \cap R ;(R ; R)^{*} ; F^{\top} ; \mathrm{L} & \\
& \subseteq F^{\top} ;\left(\mathrm{L} \cap F ; R ;(R ; R)^{*} ; F^{\top} ; \mathrm{L}\right) & \text { modular law } \\
& =F^{\top} ; F ; R ;(R ; R)^{*} ; F^{\top} ; \mathrm{L} & \\
& =F^{\top} ;\left(F ; R ;(R ; R)^{*} ; F^{\top} \cap F ; F^{\top}\right) ; \mathrm{L} & \text { aux. result } \\
& =F^{\top} ; F ;\left(R ;(R ; R)^{*} \cap \mathrm{I}\right) ; F^{\top} ; \mathrm{L} & F \text { univalent } \\
& =\mathrm{O} & \text { assumption }
\end{array}
$$

Verification of (b):

$$
\begin{aligned}
R & \subseteq R^{*} \\
& =S ; I ; S^{\top} \\
& \subseteq S ; F ; F^{\top} ; F ; F^{\top} ; S^{\top} \\
& \subseteq S ; S^{\top} ; F^{\top} ; F ; S ; S^{\top} \\
& =R^{*} ; F^{\top} ; F ; R^{*} \\
& \subseteq R^{*} ; F^{\top} ; \mathrm{L} ; F ; R^{*} \\
& =R^{*} ; F^{\top} ; \mathrm{L} ;\left(F^{\top} ; \mathrm{L}\right)^{\top} ; R^{*} \\
& =R^{*} ; u ; u^{\top} ; R^{*}
\end{aligned}
$$

property clos.
S splitting of R^{*}
F total
as $F \subseteq S^{\top}$
S splitting
definition u

Theorem 11 (No odd cycles implies bipartite)
Assume Axiom 7 to be true and let R be a relation. Then we have:

$$
R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O} \Longrightarrow R \text { is bipartite }
$$

Computing Bipartitions

Assumption:

- A set-theoretic relation $R: X \leftrightarrow X$ on a finite set X with symmetric R^{*} and $R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O}$.

Goal:

- A relational program that computes a vector $v: X \leftrightarrow \mathbf{1}$ such that (v, \bar{v}) is a bipartition of R.

Idea, following the proof of the "remaining direction":

- Compute a splitting S of R^{*}.
- Compute a mapping F such that $F \subseteq S^{\top}$.
- Compute $v:=(R ; R)^{*} ; F^{\top} ; \mathrm{L}$.

Relational program for computing a splitting of an equivalence relation:

$$
\begin{aligned}
& \left\{\mathrm{I} \subseteq P \wedge P=P^{\top} \wedge P ; P \subseteq P\right\} \\
& w:=\operatorname{point}(P ; \mathrm{L}) ; \\
& \text { while } P ; w \neq P ; \mathrm{L} \text { do } \\
& \quad w:=w \cup \operatorname{point}(\overline{P ; w} \cap P ; \mathrm{L}) \text { od } \\
& \left\{w=w ; \mathrm{L} \wedge P \cap w ; w^{\top} \subseteq \mathrm{I} \wedge w ; \mathrm{L} \subseteq P ; \mathrm{L} \wedge P ; w=P ; \mathrm{L}\right\} \\
& S:=P ; \operatorname{inj}(w)^{\top} \\
& \left\{S ; S^{\top}=P \wedge S^{\top} ; S=\mathrm{I}\right\}
\end{aligned}
$$

Formal assertion-based verification by R.B. and M. Winter (Acta Informatica 47, pp. 77-110, 2010) using that point(v) selects a point from a nonempty vector, axiomatised by,

$$
\operatorname{point}(w) ; \mathrm{L}=\operatorname{point}(w) \quad \operatorname{point}(w) \neq 0 \quad \operatorname{point}(w) ; \operatorname{point}(w)^{\top} \subseteq 1,
$$

and $\operatorname{inj}(w)$ is the embedding mapping generated by w, axiomatised by

$$
\operatorname{inj}(w)^{\top} ; \operatorname{inj}(w) \subseteq \mathrm{I} \quad \operatorname{inj}(w) ; \operatorname{inj}(w)^{\top}=\mathrm{I} \quad \operatorname{inj}(w)^{\top} ; \mathrm{L}=w .
$$

The proof outline remains also correct if its relational program and the assertions are modified as follows:

$$
\begin{aligned}
& \left\{\mathrm{I} \subseteq P \wedge P=P^{\top} \wedge P ; P \subseteq P\right\} \\
& w:=\operatorname{point}(P ; \mathrm{L}) ;
\end{aligned}
$$

$$
\text { while } P ; w \neq P ; \mathrm{L} \text { do }
$$

$$
w:=w \cup \operatorname{point}(\overline{P ; w} \cap P ; \mathrm{L}) \text { od }
$$

$$
\left\{\mathrm{I} \subseteq P \wedge w=w ; \mathrm{L} \wedge P \cap w ; w^{\top} \subseteq \mathrm{I} \wedge w ; \mathrm{L} \subseteq P ; \mathrm{L} \wedge P ; w=P ; \mathrm{L}\right\}
$$

$$
\left\{I \subseteq P \wedge \exists S: S=P ; \operatorname{inj}(w)^{\top} \wedge S ; S^{\top}=P \wedge S^{\top} ; S=\mathrm{I}\right\}
$$

The new post-condition implies that there exists a splitting S of P with

$$
i n j(w)=\operatorname{inj}(w) ; \mathrm{I} \subseteq \operatorname{inj}(w) ; P^{\top}=\left(P ; i n j(w)^{\top}\right)^{\top}=S^{\top} .
$$

The axioms of $\operatorname{inj}(w)$ say that $i n j(w)$ is a mapping. So, we can take $i n j(w)$ as F and get that F becomes superfluous by an axiom of $\operatorname{inj}(w)$:

$$
v:=(R ; R)^{*} ; i n j(w)^{\top} ; \mathrm{L}=(R ; R)^{*} ; w
$$

Final program:

$$
\begin{aligned}
& \left\{R^{*}=\left(R^{*}\right)^{\top} \wedge R ;(R ; R)^{*} \cap \mathrm{I}=\mathrm{O}\right\} \\
& P:=R^{*} ; \\
& w:=\operatorname{point}(P ; \mathrm{L}) ; \\
& \text { while } P ; w \neq P ; \mathrm{L} \text { do } \\
& \quad w:=w \cup \operatorname{point}(\overline{P ; w} \cap P ; \mathrm{L}) \text { od } \\
& v:=(R ; R)^{*} ; w \\
& \{(v, \bar{v}) \text { bipartion of } R\}
\end{aligned}
$$

RELVIEW-function for testing a set-theoretic relation R to be bipartite:

```
isbipartite(R) =
    empty(R*refl(trans(R*R)) & I(R)).
```

RELVIEW-program for computing for a set-theoretic bipartite relation R a vector v such that (v, \bar{v}) is a bipartition of R :

```
bipartition(R)
    DECL P, v, W
    BEG P = refl(trans(R));
            W = point(dom(P));
            WHILE -eq(P*W,dom(P)) DO
            W = W | point (- (P*W) & dom(P)) OD;
            v = refl(trans(R*R)) * w
            RETURN v
    END.
```


Concluding Remarks

- The formality of algebraic proofs and their primary use of rewriting is a vantage point for the use of tools for theorem proving.
- Concerning this work, we startet with the automated theorem prover Prover9.
- Prover9 was not able to verify the more complex results without any user interaction.
- These restrictions became so serious that the change to a proof assistant was virtual essential.
- With the proof assistant Coq and the library "Relation algebra and KAT in Coq" from
http://perso.ens-lyon.fr/damien.pous/ra/
(author: D. Pous) we have verified all proofs of the paper.
- The proof scripts for all Coq proofs can be found in the web. http://media.informatik.uni-kiel.de/Ramics2015/

