
L7 Classification and Policing in the pfSense
Platform

André Ribeiro, Helder Pereira
University of Minho, Department of Informatics

4710-057 Braga, Portugal
Email:{agentil,helderp}@di.uminho.pt

Abstract—The typical paradigm of identifying network traffic
resorting to IP packet fields or to a set of well-known ports is
highly limitative. Due to profound ongoing changes on the way
applications try to hide their true nature by, for instance, using
non default communication ports, a new challenge is presented
to the way traffic classification and policing is accomplished.
We argue and demonstrate that application layer inspection
is a possible and convenient approach to derive the correct
application protocol. This detection and classification process is
of paramount importance to allow an efficient control of traffic
entering the network. Taking pfSense as a case study, we extend
its current layer 3 and 4 classification scheme with layer 7
capabilities, providing a powerful solution to control traffic based
on application patterns. The user can easily create a set of rules
for layer 7 inspection, which will drive lower level traffic control.
In addition, we also provide a mechanism to create automatically
useful application inspection scenarios.

I. INTRODUCTION

The advent of services integration in a common network
communication infrastructure as the Internet stresses the need
to perform efficient traffic classification and policing, either
due to resource management, charging or security concerns.
The traditional way to classify traffic entering a network do-
main is usually based on network and transport data fields, e.g.
service class marks, source and/or destination IP addresses and
ports. Although in many cases this type of classification offers
a good compromise between simplicity and efficacy, it fails
to address particular cases where those fields are somehow
inconclusive or unavailable. In fact, classification at layer 3
and 4 is hard to archive in presence of peer-to-peer (P2P)
traffic as the applications use a range of random, non default
ports. The typical cases of a HTTP server running on different
ports from port 80 (port hoping) and encrypted connections
are examples impairing a proper classification. In this context,
performing traffic classification and policing at the application
layer (layer 7 or L7 in short) can be a convenient solution to
overcome these limitations. In L7 classification, user traffic can
be identified based on an application pattern. An application
pattern is a sort of signature used by an application during its
communications. All applications use a specific application
pattern or may share the pattern with other applications, as
Pidgin or Google Talk.

A version of this paper has been submitted to the 21st International
Teletraffic Congress (ITC 21), 2009, Paris, France.

Examples of related work on L7 classification include
IPCop Firewall [1] and Bandwidth Arbitrator [2]. IPCop
Firewall is a firewall platform that can be extended with L7
capabilities, while having other tools such as VPN, IDS, Proxy,
Firewall, QoS and others. IPCop administration can be done
through a simple web browser, with a secure and cryptographic
connection. Although IPCop can support classification by
application protocol, it does not allow the definition of shaping
policies, only accepting blocking policies. This limits greatly
the use of this feature, as one cannot assign different QoS
parameters based on the application protocol.

In the present work, we study and tackle the L7 classifica-
tion paradigm for the pfSense platform [3]. This free and open
source platform is a variant of the FreeBSD operating system,
specifically used as firewall and router. Although pfSense
already includes support for traffic classification at application
layer, it does not expose that capacity to the user. In this
context, we have established the following goals: i) to develop
mechanisms to control the classification component in the
application protocol, integrating them in the platform through
a graphical interface; ii) to define and implement user-friendly
wizards to simplify the configuration of QoS rules; iii) to
plan and develop a test platform which allows testing multiple
patterns of applications simultaneously, and to measure the
performance (e.g. response time) of the classification module
based on the application layer.

The contents of this paper is organized as follows: the
pfSense platform is described in Section II; the design and
implementation issues regarding the classification solution are
explained in Section III; the proof-of-concept and performance
results are included in Section IV; and finally, the main
conclusions are summarized in Section V.

II. THE PFSENSE PLATFORM

A. A brief description

pfSense is a customized FreeBSD distribution, mainly ori-
ented to be used as a firewall and router [3]. It started
as a fork of the m0n0wall project. m0n0wall was mainly
directed towards embedded hardware installations. pfSense,
on the other hand, it is more focused on full PC installations,
despite the fact that pfSense also offers solutions for embedded
hardware. It includes many base features, and can be extended
with the package system, including “one touch” installations.

pfSense is currently a viable replacement for commercial
firewalling/routing packages, including many features found
on commercial products (Cisco Pix, SonicWall, WatchGuard).
The list of features, among others, include the following:
firewall, routing, QoS differentiation, NAT, Redundancy, Load
Balancing, VPN, Report and Monitoring, Real Time infor-
mation, and a Captive Portal. It is fully prepared for high
throughput scenarios (over 500 Mbps), as long as high end
server class hardware is used. Common deployment scenarios
include but are not limited to: Perimeter Firewall, LAN or
WAN router, Wireless Access Point and several special pur-
pose appliances, such as VPN, Sniffer, DHCP server, DNS and
VoIP appliances. Adding to this, pfSense includes a powerful
Web Configuration Interface, which allows the configuration
of all pfSense capabilities.

pfSense uses a single XML file, called config.xml, that
stores the configuration of all services available in the pfSense
machine. This allows pfSense to be easily backed up, since
config.xml is a self-contained configuration file, i.e. a newer
machine can be fully constructed from scratch with a single
file restore. The code responsible for the operation of the
different pfSense services is essentially written in PHP, which
makes easy to extend the current code base, improving existing
features or adding new ones.

Next, we will concentrate on QoS management within
pfSense discussing its main features and limitations.

B. QoS Management

QoS management in pfSense is achieved through the use
of the AltQ framework [4], [5]. AltQ is used to provide
queuing disciplines and other QoS mechanisms in order to
perform resource sharing and QoS control. Traffic schedulers
available in AltQ, including Class Based Queuing (CBQ),
Priority Queuing (PRIQ) and Hierarchical Fair Service Curve
(HFSC), can be configured automatically through the use of
a Traffic Shaper Wizard. In the newest builds (2.0 Alpha),
pfSense includes an additional shaping mechanism, called
Dummynet [6]. Dummynet was originally available to the
ipfw firewall, but recently the pf firewall (which is used in
pfSense) is able to use it. Despite the fact that it was originally
thought as a tool to test network protocols, it is also currently
used to manage bandwidth. It is able to simulate or enforce
“queue and bandwidth limitations, delays, packet losses, and
multipath effects”, and uses Weighted Fair Queuing (WFQ2+)
as scheduler. At present, QoS management in pfSense is
carried out at the layer 3 and layer 4 of the OSI model.
This means that applications and services are only recognized
by IP packet fields or by a set of standard ports. This is a
major limitation as there are many software applications that
do not use well-known ports to communicate, suffer from “port
hoping”, or may change its communications port at any time
in an unpredictable way.

As mentioned before, performing traffic classification at the
application layer may be a prominent answer to address this
problem. In fact, comparing flows from the application layer
with a set of pre-defined pattern files, one can identify what

application protocol is being used. We will address this issue
and study how to integrate L7 inspection capabilities within
pfSense.

III. L7 TRAFFIC CONTROL: DESIGN AND
IMPLEMENTATION

A. Designing the Solution

The initial design goal behind our L7 traffic control solution
was to balance appropriately the granularity and simplicity
of the configuration process. When exposing L7 features to
the end user, it is convenient to provide detailed configuration
facilities in order to allow a fine tuning of control options,
but also to give the opportunity to create a set of pre-defined
parameters in a simple way, based on a set of pre-defined
options. With these two goals in mind, the design options and
components for the proposed solution are discussed next.

L7 classification is performed using an application called
ipfw-classifyd. This application is able to: (i) produce blocking
rules for incoming traffic; or (ii) perform traffic shaping by
assigning IP packets of a specific flow to an AltQ queue
or to a Dummynet pipe or queue. For simplicity, from now
on, the term “Structure” refers either to an action, an AltQ
queue or a Dummynet pipe or queue. The values of the
structures themselves, such as “block”, from now on will be
called “Behaviors”. A more in-depth explanation of how ipfw-
classifyd works will be given in Section III-B.

An important goal is to provide a graphical user interface in
order to allow the user to leverage the potentialities of ipfw-
classifyd. Here, the trade-off between configuration simplicity
and granularity has to be taken into consideration.

In sake of simplicity, the user does not need to be aware
of the framework names that will be used in the Structures.
Therefore, instead of displaying the structures to the user as
AltQ, Dummynet pipe and Dummynet queue, a simple and
intuitive terminology should be used, hiding the underlying
framework. Thus, the user sees as available Structures: (i)
Action; (ii) Queue (which contains AltQ queues); and (iii)
Limiter (which contains Dummynet pipes and Dummynet
queues). These simplified names were chosen in accordance
with terminology of other pfSense shaping mechanisms.

As regards the Dummynet components in the Limiter struc-
ture, it was decided that the user does not need to know the
difference between a pipe and a queue, being that difference
automatically detected by the back-end code.

Establishing an arbitrary number of protocol definitions is a
relevant option for the user. However, duped definitions, such
as defining the same protocol twice, should not be allowed.
When a dupe definition is found, it must be discarded and the
user should have the opportunity to correct the situation.

When L7 rules definition is created, the user shall have a
way to assign that rule to a pf rule. Due to a current ipfw-
classifyd limitation, only TCP and/or UDP packets can be
analyzed, which means that the user will not be allowed to
apply L7 inspection rules to other traffic than TCP/UDP.

Other important design goal is to provide an easy way to
create a set of pre-defined L7 rules. This means that during
the creation of the rules, the user options are restricted to
the selection of protocols, i.e. the user cannot select which
structures and behaviors should be applied to the protocols.
Those structures and behaviors should be provided automat-
ically in accordance with the classification group to which a
specific protocol belongs to. In this context, the decision of
changing the existing traffic shaper, extending it with L7 rules
was considered the best option.

B. Implementation

The steps toward the implementation of the proposed so-
lution are detailed in this section. To better understand our
proposal, some knowledge is required on how the pfSense
framework exposes its features and how the necessary tools
work.

The implementation phase can be generically divided in four
steps: (i) L7 classification - involves understanding the inner
working components of ipfw-classifyd, how to leverage it,
understanding as well the AltQ framework and the Dummynet
application; (ii) traffic redirection - involves redirect traffic
caught by a pf rule to ipfw-classifyd in order to enforce
the behavior defined by L7 rules; (iii) definition of rules-
involves the creation of a graphical web interface where L7
rule definitions can be built, specifying what to do when there
is a match with a specific application protocol. These rule
definitions, from now on will be known as L7 containers; (iv)
definition of wizards - involves the implementation of a wizard
where a L7 container with a pre-defined set of L7 rules can
be easily created, through few simple steps, in an automated
and transparent way to the end user.

1) ipfw-classifyd: As stated before, ipfw-classifyd is the ap-
plication responsible for L7 classification. Despite the fact that
it includes “ipfw” in the name, it was modified to work with
the pf firewall as well. ipfw-classifyd has a straightforward
configuration. Essentially, it allows there different types of
operations to be applied to an identified application protocol,
namely, defining an action to apply, typically a block action,
or assigning traffic to an AltQ queue, a Dummynet pipe or
a Dummynet queue. This allows some granularity, however,
knowing that AltQ queues and Dummynet pipes and queues
are defined in the pf rules file, it would not be easy to specify
them clearly within the ipfw-classifyd file in a non automatized
way. Furthermore, Dummynet uses numbers to identify pipes
and queues, dynamically assigned every time the pf rules file
is rebuilt by the pfSense framework, while those same pipes
and queues are identified by common names in the pfSense
platform.

A way to expose the ipfw-classifyd features to the user,
while abstracting the QoS mechanisms and their implementa-
tion details, is therefore recommended. This abstraction means
that the user is not required to know the difference between
a Dummynet pipe and a queue, i.e. the difference can be
automatically detected by the back-end code. In order to

expose ipfw-classifyd capabilities, the concept of L7 containers
was introduced and implemented. A L7 container is a structure
that contains multiple definitions for different application
protocols. It allows to specify what to do with each protocol
the user intends to configure. Those protocol patterns (typically
identified by an application protocol name.pat) are stored
in a specific location inside the filesystem, and are used to
dynamically provide the list of available application protocol
patterns to the user. This means that, somehow, the user should
also be allowed to add non default protocols to the ones
already defined.

As mentioned before, there are three different types of
operations that can be applied to an identified protocol. These
type of operations are a miscellaneous of Structures and
Behaviors. A Structure can be an “Action”, a “Limiter” or a
“Queue”. A “Limiter” corresponds to a Dummynet Structure
and a “Queue” to an AltQ queue. A Behavior is related to a
structure. In the case of the Structure Action, the only available
behavior is “block”; for the Limiter, it is a set of Dummynet
pipes and queues; and for the Structure Queue, the behavior
is a set of AltQ queues. The behaviors for Queue and Limiter
must be present in the system (this means they should have
been already created in the right places). After the user defines
a L7 container, all data is already there to produce a ipfw-
classifyd configuration file successfully. However a way to
send the traffic to ipfw-classifyd is still needed. In this context,
pf recently acquired one more option, called divert sockets.

2) Divert sockets: Divert sockets are, essentially, a way
for the kernel to send network traffic to the user context. As
regards ipfw-classifyd, diverting actually interrupts the normal
flow of packets and sends them to a listening socket (in this
case, ipfw-classifyd), or sends data directly to the IP processing
routine. This is a context switch, in which packets abandon
kernel land and go to userland. Clearly, this context switch
has an overhead attached to it. To keep it small and controlled
to minimize the impact on performance, ipfw-classifyd takes
some actions. First, if pf is taught previously about the actions
to take, when ipfw-classifyd daemon decides that something
should change from its normal workflow, the effects of context
switching can be minimized. The overhead can also be reduced
with the definition of a pf rule option to limit the number
of packets that are diverted from the kernel to the userland
software application. That option is called “max-packets” and
can be defined inside the “keep state” option. In a first
approach, and for test purposes, a maximum of five packets are
diverted (max-packets=5). This is purely an experimental value
and might be subject to change. In the future, this parameter
is planed to be offered as a user option to allow a fine tuning,
whenever packets are not correctly identified. This may occur
when ipfw-classifyd has insufficient packets to analyze the
application protocol conveniently.

The need to tell pf in advance what actions to take, also
requires that pf knows the corresponding structures (action,
AltQ, Dummynet) to overload. This indication is given through
the “keep state” option of a pf rule, and written as “over-

Fig. 1. IP Traffic entering and exiting ipfw-classifyd

load structure diverttag”. After knowing what structures to
overload, the set of parameters to successfully produce a pf
rule to divert the traffic to ipfw-classifyd is almost complete.
However, a key component is still missing, which is the divert
port. Again, for test purposes, ports in the 40000-60000 range
were considered for ipfw-classifyd. This decision is not critical
as divert sockets exist in their own domain, and do do not
correlate to non divert-aware applications.

In order to easily assign a divert port to a L7 container,
a random unused port is created every time the rules are
reloaded. Once the port is defined and validated, the L7
container is ready. In practice, a L7 container is ready when
ipfw-classifyd is running in the specified divert port, the set of
rules is loaded and there is a pf rule that diverts the traffic to
ipfw-classifyd.

The typical pf<=>ipfw-classifyd flow sequence is illus-
trated in Figure 1.

3) L7 container interface: This section describes the pro-
posed graphical interface which allows the user to create and
change L7 containers in a simple and intuitive way, allowing to
control the operation of ipfw-classifyd. A view of the graphical
web interface for creating the rule containers is depicted in
Figure 2.

As regards the interface design and implementation, several
relevant decisions are highlighted.

Each container may have more than one application protocol
specified, however, application protocols cannot have dupe
specifications. In each rule that is created, the “protocol”,
“structure” and “behavior” must be specified. The “protocol”
field allows the user to choose the protocol application to
create a rule for; the “structure” and “behavior” are an ag-
gregate pair conditioning what to do with the detected traffic.
If an “action” is chosen, the behavior will be “block”, i.e.
the traffic will be blocked. If “queue” is the option, the
behavior is defined by selecting one of the AltQ queues
configured in the system. On the other hand, if “limiter”,
is chosen the behavior is defined by selecting one of the

Dummynet queues or pipes available to the user. As explained,
the difference between is transparent to the user, being assured
by the back-end code. The “structure” field is also dynamically
filled only with structures having, at least, one queue or pipe
defined. For example, if the definition just includes AltQ
queues and none Dummynet limiters, the available options are
restricted to “action” and “queue” on the structure field, and
“limiter” is hidden. The inclusion of “behaviors” is determined
accordingly to the selected “structure”.

The level of control implemented, using javascript code,
also has the objective of minimizing user configuration errors.

4) Assigning a L7 container to a traffic flow: For each
container that is built, the user may decide to assign it to a
firewall rule. To cover this facility, a specific field was inserted
into the Firewall Rules Edit page so that the user may take
that option. As shown in Figure 3, if a L7 container is chosen
to be applied, all traffic from matching rule will be analyzed
by ipfw-classifyd.

Due to a current limitation of ipfw-classifyd, only UDP
and/or TCP streams can be diverted to ipfw-classifyd. Im-
provements to ipfw-classifyd are underway as it is currently
a work-in-progress. In addition, for each firewall rule only
one L7 container can be assigned. This is a pf limitation since
only one divert can be done per pf rule.

5) Creating L7 aware wizards: At this point, a straightfor-
ward way allowing a user to create a standard set of rules
was still missing. As pfSense platform had already wizards
to configure the shaper, our first thought was to create an
explicit L7 configuration wizard. After intense discussion
within pfSense developers forum, the resulting decision was
that this could not be the best route. Instead, the preferable
option was to use the current wizards, extending them to
include L7 capabilities, in a completely transparent way to
the user.

All the AltQ queues created by the wizard are used in the L7
configuration file in order to mimic non L7 shaper behaviors

Fig. 2. Graphical interface for creating rule containers

Fig. 3. Redirecting all traffic in the rule to ipfw-classifyd daemon instance

in ipfw-classifyd. The problem with this was that, not every
protocol had a direct correspondence with an application
protocol pattern. As a consequence, not all selections included
in the wizard are translated into application protocol shaping.

As regards VoIP services and applications, it was decided
that the most common application protocols related to VoIP
would be assigned to a VoIP queue, without showing this to
the end user. This is also completely transparent to the user, to
whom the only concern is selecting what application protocols
to shape.

The wizard creation for relevant L7 traffic, such as Peer-to-
Peer and Network Games, is illustrated in Figures 4 and 5. If
the traffic to shape is integrated in Peer-to-Peer applications,
the select box on top of the page can be enabled and the related
protocols or applications can be selected (blocked) one by one.
By default , the wizards already comprise a comprehensive
set of application protocols, however, new patterns can be
uploaded to upgrade the interface.

Although the application protocol verification is currently
performed by port and pattern, the purpose is to become
only pattern-based. Using the application protocol inspection

Fig. 4. Wizard creation - Peer-to-Peer step

Fig. 5. Wizard creation - Network Games step

turns the port verification unnecessary and not so granular
as application protocol inspection. This improvement will be
done in the near future.

6) Upgrading or adding new L7 pattern files: A relevant
feature to improve the support for L7 inspection is the possi-
bility of allowing the user to upgrade the platform with new
application protocol patterns.

Figure 6 illustrates how the user can upload new application
patterns to the system. This feature is important when the user
wants to block an application that uses a protocol pattern that
is not defined in the system. If a new pattern is uploaded
to the system, it only appears in the list of protocols when
a container is created or modified. This does not affects the
wizard, which remains unchanged. If a pattern that already
exists is uploaded, it will be replaced. Therefore, the user
must be very careful when uploading new application protocol
patterns as previous definitions are overwritten. This flexibility
is crucial since L7 inspection can have a wider use than
simple application protocols’ inspection. As example is the
detection of specific URLs for HTTP traffic (providing the

Fig. 6. Adding new application patterns

right pattern file), which is not directly connected to the
detection of application protocol patterns.

IV. RESULTS

In this section, the process of L7 classification and policing
is discussed from a practical perspective, highlighting repre-
sentative configuration steps and obtained results.

First, we will show the result of creating a simple L7
container with a strict block policy (block p2p) and how it
is stored in config.xml. Figure 2 illustrates a L7 container and
Figure 7 exemplifies how that container is stored in config.xml.

Fig. 7. Piece of block p2p container in XML

As shown, the definitions from the L7 container GUI are
easily stored in config.xml. As there is only a block policy, the
translation from the config.xml definition to the ipfw-classifyd
configuration file1 is somewhat strict, as illustrated in the
following ipfw-classifyd configuration file extract:

bittorrent = action block
gnutella = action block
edonkey = action block
fasttrack = action block

Next, this container is assigned to a specific Firewall Rule,
as shown in Figure 3. As there is only a single block policy,
the resulting pf rule is also simple:

pass in quick on $LAN proto
{ tcp udp } from { 192.168.160.2 }
to 192.168.87.2 divert 47244 keep
state (max-packets 5,
overload action diverttag)
label "USER_RULE: Layer7 block P2P"

It is clear that the overload option is correctly created, since
only one action needs to be overloaded.

Now, we will show how containers with Dummynet struc-
tures are handled. As explained before, Dummynet structures
are exposed to the user with current names, but when defining
them in pf configuration file they only have numbers. Thus,
a translation mechanism is required in order to allow the end
user to still be able to choose the Dummynet structures by
their names. In addition, an automatic detection mechanism

1As ipfw-classifyd is currently work-in-progress and is evolving at a good
pace, some of the files or configurations included in this paper may suffer
minor changes.

was created in order to differentiate Dummynet pipes and
Dummynet queues in a totally transparent way. Figure 8
exemplifies a container with several Dummynet structures.
“Web” and “Others” are Dummynet queues and “Lim 2mb”
is a Dummynet pipe. The ipfw-classifyd configuration file for
this L7 container is as follows:

http = dnpipe 2
pop3 = dnqueue 2
smtp = dnqueue 2
cvs = dnqueue 1

To understand this configuration file, one also needs the
configuration section that defines the Dummynet structures in
the pf configuration file:

dnpipe 1 bandwidth 1Mb
dnqueue 1 dnpipe 1 weight 1
dnqueue 2 dnpipe 1 weight 3

dnpipe 2 bandwidth 2Mb

In this configuration, it is clear that “Lim 2mb” is dnpipe
2, “Web” is dnqueue 2 and “Others” is dnqueue 1. These
queues belong to dnpipe 1, which has “Lim 1mb” as internal.
Looking at the resulting ipfw-classifyd configuration file and to
the L7 container definition, one can easily conclude that the
name translation is successfully accomplished, and dnpipes
and dnqueues are correctly identified. The corresponding
Dummynet structures are also correctly identified as dnpipes
and dnqueues, without the user indicating it explicitly. As for
the pf rule, it is also correctly created, overloading uniquely
the Dummynet structure:

pass in quick on $LAN proto
{ tcp udp } from { 192.168.160.1 }
to 192.168.87.2 divert 51391 keep
state (max-packets 5,
overload dummynet diverttag)
label "USER_RULE: Layer7 webLim"

Now, we illustrate how this solution handles a container
with the three possible structures configured (see Figure 9).
The resulting ipfw-classifyd configuration file is:

sip = queue qVoIP
bittorrent = action block
http = dnpipe 2

Fig. 8. Web Lim container creation

and the corresponding pf rule:

pass in quick on $LAN proto
{ tcp udp } from { 192.168.160.10 }
to 192.168.87.2 divert 53363 keep
state (max-packets 5,
overload action diverttag
overload dummynet diverttag
overload altq diverttag)
label "USER_RULE: Layer7 Miscellaneous"

The important part in this rule is showing that the structures
to be overloaded were correctly identified. Three different type
of structures were created in the ipfw-classifyd configuration
file and were also correctly identified. As for the Dummynet
translation, it was already concluded that it is being correctly
applied. For AltQ queues, no special attention has to be taken,
since the names defined in the L7 container are already the
final names, unlike Dummynet pipes and queues.

Next, it will be shown how the shaper wizard was imple-
mented. As stated before, the rules produced by the wizard
are completely transparent to the final user. The user only
selects the applications where shaping is due to be applied, and
the wizard is smart enough to understand which application
protocol is related with to each particular application. A part of
the wizard L7 container is represented in Figure 10, showing
the configured protocols.

As illustrated, since this is a shaping policy, only AltQ
queues are assigned. Several different queues with specific
QoS parameters adapted to the type of traffic they are going
to receive can be observed. The QoS parameters for these
queues are automatically derived from the link bandwidth and
the type of traffic they are going to receive. Part of the wizard
ipfw-classifyd configuration file is shown below:

sip = queue qVoIP
rtp = queue qVoIP
...
bittorrent = queue qP2P
edonkey = queue qP2P
...
doom3 = queue qGames
xboxlive = queue qGames
...
rdp = queue qOthersHigh
vnc = queue qDefault
msnmessenger = queue qOthersLow
...

Fig. 9. Miscellaneous container creation

Fig. 10. Extract of wizard container creation

The pf rule responsible for diverting traffic to ipfw-classifyd
is slightly different from the other ones. This is a directionless
rule, that is automatically created by the wizard, and known in
the pfSense terminology as a “Floating Rule”. As the wizard
only assigns AltQ queues to the different application protocols,
only AltQ needs to be overloaded in the pf rule. The resulting
pf rule for this L7 container is the following:

pass out proto { tcp udp }
from any to any divert 50476
keep state (max-packets 5,
overload altq diverttag)
label "USER_RULE: Layer7 wizard"

Once again, the results are consistent with the envisioned
system design, where this rule will try to enforce traffic
shaping going through that particular pfSense box.

V. CONCLUSIONS

We consider our work to be a success! pfSense has now
another shaping mechanism, that puts it on par with a great
amount of commercial solutions, and it also has now a fully
integrated GUI that allows the end user to easily leverage the
layer 7 capabilities that ipfw-classifyd provides to the pfSense
platform. This means that pfSense users are no longer limited
to traffic shaping and classification only by IP packet fields
of by a set of standard ports and is fully prepared to address
the challenges that lie ahead, as the port hoping issue. The
only current drawback in that ipfw-classifyd is not currently
fully operational due to ongoing improvements. As soon as it
is fully operational, all the necessary structure for it to work
seamlessly in the pfSense platform is already built.

As future work, we think there is still some room for
improvement. In particular, performing L7 inspection directly
in kernel land would be very important and should be faced as
a top goal. This would avoid the overhead introduced by the
context switch between kernel and user land, that is necessary

to divert IP packets from the kernel to ipfw-classifyd or to
other application for that purpose. We also would like to
point out that QoS auto-configuration could be an important
improvement to the platform. Through auto-configuration, the
platform could receive a set of input parameters (for example,
the available bandwidth and the expected number of VoIP
phones), and then could generate the required QoS parameters
and provide feedback to the user about expected behavior
for the service. In addition, self-configuration features could
also be added in order the self-adapt the platform when
new equipment is added to the infrastructure. As regards
L7 protocol pattern files, a way to auto-detect application
patterns [7], and automatically create application signatures
would be an welcome add on.

ACKNOWLEDGMENTS

The authors would like to thank to Ermal Luçi all the
precious help he gave during the course of this work, specially,
regarding ipfw-classifyd and pf. The authors also would like
to thank Scott Ulrich and Chris Buechler, founders of pfSense,
for their feedback and guidance during the course of the
project, as well as, the active pfSense developers for their ideas
and opinions.

REFERENCES

[1] IPCop Firewall. URL: http://www.ipcop.org, 2003.
[2] Bandwidth Arbitrator. URL: http://www.bandwidtharbitrator.com/, 2002.
[3] pfSense Project. URL: http://www.pfsense.com/, 2004.
[4] K. Cho. Managing Traffic with ALTQ. In USENIX 1999 Annual Technical

Conference: FREENIX Track, pages 121–128, Monterey, California, USA,
June 1999.

[5] G. Quadros, A. Alves, E. Monteiro, and F. Boavida. How Unfair can
Weighted Fair Queuing be? IEEE Network, 17, 2000.

[6] A. Seddik-Ghaleb, Y. Ghamri-Doudane, and S.-M. Senouci. Emulating
End-to-End Losses and Delays for Ad Hoc Networks. Communications,
2007. ICC apos; 07. IEEE International Conference, 24-28:3224–3231,
June 2007.

[7] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: Automated
Construction of Application Signatures. SIGCOMM’05, August 2005.

