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Motivation

Software modeling

Simplicity + elegance = effectiveness (Dijkstra)

Alloy — writing less to say more :-)

However: qualitative features simpler to model than quantitative
ones

”Quantitative abstraction”?

”Scalable modeling”: the ”keep definition, change category”
lemma.

Starting point — what is modeling language, after all?
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Category

Abstract language made of arrows which (may) compose with each
other, and such that

(a) associativity

c · (b · a) = (c · b) · a (1)

holds.

(b) every object a has an
identity such that:

1 · a = a · 1 = a (2)
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Thus, arrows form a monoid.



Motivation Idempotency Relations Matrices Keep definition Wrapping up

Enriched categories

Arrows can be added
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such that, under (·), × and +, arrows form two semirings:

a + (b + c) = (a + b) + c a + 0 = a = 0 + a
a× (b × c) = (a× b)× c a×> = a = >× a
a + b = b + a
a× (b + c) = a× b + a× c a× 0 = 0 = 0× a
a · (b + c) = a · b + a · c a · 0 = 0 = 0 · a
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”Dagger” categories

Further structure — for every arrow k
a // q there exists an

arrow k q
a◦oo , the converse of a, such that:

(a◦)◦ = a

(a · b)◦ = b◦ · a◦

(a + b)◦ = a◦ + b◦

(a× b)◦ = a◦ × b◦

NB: ”dagger” because a◦ often written as a†.

Famous counter-example: category of sets and functions.
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Idempotency

Additive operator + makes a difference.

+-idempotency: wherever a + a = a holds for all a, then

a 6 b
def
= a + b = b (3)

is a partial order.

Clearly, 0 6 a for all a and (+) is the lub with respect to 6:

a + b 6 c ≡ a 6 c ∧ b 6 c (4)

NB: c := a + b in (4) means a + b is upper bound; ⇐ means it is
the least upper bound (lub).

Relational algebra is an example of such idempotency (next slide).
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Binary relations

The algebra of binary relations is a well known example of such
enriched categories:

Categorial Binary relations Description
x · y R · S composition
x + y R ∪ S union
x × y R ∩ S intersection

0 ⊥ empty relation
1 id identity relation
> > top relation
x◦ R◦ converse relation

x 6 y R ⊆ S inclusion

∪ -idempotency brings about the R ⊆ S partial order, thus enabling
recursion, iteration etc. — but it hinders implicit expression of
quantities (cf. numbers in Alloy).
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Matrices

In case addition is not idempotent — eg. x + x = 2 x — we get a typed
linear algebra of matrices (“as arrows”):

Categorial Matrices Description
x · y M · N MMM
x + y M + N pointwise addition
x × y M × N Hadamard product

0 ⊥ everywhere-0 matrix
1 id identity matrix
> > everywhere-1 matrix
x◦ M◦ transpose matrix

{0, 1}-valued (Boolean) matrices represent binary relations, where

M ∩ N = M × N
M ∪ N = M + N −M × N.

(So the +-semiring must be a ring.) By default, in this talk we assume
Z-valued matrices.
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Functions

Functions are Boolean matrices (relations) such that ! · f = !,

where k
! // 1 = >. (! is itself a function; 1

! // 1 = id .)

Functions enjoy quite a number of properties, in particular, for f
and g functions,

y (g◦ ·M · f )x = (g y)M (f x) (5)

y (f ·M)x = 〈
∑

z : y = f z : z M x〉 (6)

y (M · f ◦)x = 〈
∑

z : x = f z : y M z〉 (7)

For relations, similar laws hold just by replacing
∑

z by ∃ z .

In the sequel, we shall denote by R — resp. M — the category of
binary relations — resp. Z-valued matrices.
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Abstract model

In R, to begin with:

Keyword

Paper

K
99

C // Paper
A //

m
��

Author

Medium

(8)

where

• c ′ C c means c ′ is cited by c or c cites c ′

• k K p means that paper p has keyword k

• m p is the publication medium of paper p (a function)

• a A p means a is among the authors of paper p.
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Alloy

sig Paper {
C : set Paper ,
K : set Keyword ,
A : set Author ,
m : one Medium
}

Papers cannot cite themselves: C ⊆ ¬id , that is

fact {no C & iden}

since ¬R = R ⇒ ⊥ and implication is defined by GC

X ∩ Y ⊆ Z ⇔ X ⊆ Y ⇒ Z . (9)
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Triangular patterns

In category R:

Keyword

Paper

R
11

K
99

C // Paper

K

OO

S

aa {
R = K ∩ K · C
S = K ∩ K · C ◦

R is not particularly interesting.

But S is so,

k S p ⇔ k K p ∧ 〈∃ q : p C q : k K q〉

meaning: paper p is cited by at least another (btw different) paper
q “in the same area” (keyword k).
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Triangular patterns (composition)

Keyword

Paper

K
99

C // Paper

S

OO

A // Author

Q
ee {

S = K ∩ K · C ◦
Q = S · A◦

Then

Keyword Author
Qoo = S · A◦

is such that

k Q a = 〈∃ p : a A p : k S p〉

telling which authors have cited papers in particular areas
(keywords).
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Alloy

We can do model analysis...

... but no bibliometrics! Why? Idempotency!
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Keep definition!

Shall we add quantitative information to the model?

No! Recall scalable modeling: ”keep definition, change
category”.

It suffices to interpret the same (abstract) model in category M —
e.g. pattern

Keyword Paper
Soo = K × (K · C ◦)

will now count how many papers cite a given one, all within the
same area:

k S p =
if (k K p) then 〈

∑
q : p C q ∧ k K q : 1〉 else 0
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Keep definition!

In M, the arrows in

Keyword

Paper

K
99

C // Paper

S

OO

A // Author

Q
ee {

S = K × (K · C )
Q = S · A◦

are still relations but, as the category changed,

Keyword Author
Qoo = S · A◦

is such that

k Q a = 〈
∑

p : a A p : k S p〉 (10)

— it gives, for each author, her/his histogram of citations per
keyword, within the same area.
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Percentiles

Pushing further, M can be enriched so that × forms a group,
bringing division in:

Keyword Author
Zoo =

S · A◦

S · >
(11)

This makes such histograms relative to the grand total of
citations in each area (keyword) k :

k Z a =
〈
∑

p : a A p : k S p〉
〈
∑

q :: k S q〉

That is, k Z a gives the percentile of author a when evaluated
(with)in keyword (area) k.

Example: k Z a = n 10−5 means that n-many citations among 105

citations in area k are of papers by a.
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h-index?

Z metric better than h-index because it takes into accout the
cardinality of eack community (cf. keywords).

h-index harder to encode (is there a ”ranking” semiring?)

(Thinking about this — too many frustrating committees!)
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More triangular patterns (metaphors)

In R, another triangular pattern is

T

g
��

V

f��

f
g

=g◦·f
oo

A

t
f

g
v ⇔ (g t) = (f v) (12)

— where f , g are functions — called a metaphor.

By (5), this has the same meaning in category M.

Nice properties, recalling rational numbers, e.g.

f

id
= f (13)(

f

g

)◦
=

g

f
(14)

and so on.



Motivation Idempotency Relations Matrices Keep definition Wrapping up

Rational matrices / relations

f
g a1 a2 a3 a4 a5

b1 0 0 1 0 1
b2 1 0 0 0 0
b3 0 1 0 1 0
b4 0 1 0 1 0
b5 0 0 0 0 0

f = 1 0 0 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 0 0

g = 0 1 0 0 0

0 0 1 1 0

1 0 0 0 0

0 0 0 0 1

Most specifications are rational relations / matrices, eg.

Sort =
bag

bag
× true

ordered
(=

bag O true

bag O ordered
)

where (f O g) a = (f a, g a).
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Quantitative invariants

The teams (T ) of a football league play games (G ) at home (h) or
away (a), and every game takes place in some date (d):

T G
hoo a //

d
��

T

D

Invariantly,

• All teams play against each other exactlty once but never
against themselves.

• No team can play two games on the same date.
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Three teams playing

Clearly, k = aOh
hOa should be a bijection (cf. team swapping).
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Quantitative invariants

All teams play again each other exactlty once but never against
themselves, in R:

h · a◦ = >− id (15)

meaning, for all teams t, t ′

〈∃ x :: t = h x ∧ t ′ = a x〉 ⇔ t 6≡ t ′

Exactly once? In M we write exactly the same as above,

h · a◦ = >− id

capturing everything:

For all teams t, t ′,

〈
∑

x : t = h x ∧ t ′ = a x : 1〉 = if t = t ′ then 0 else 1
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Quantitative invariants

No team can play two games on the same date, in R:

d◦ · d ⊆ id ∪ ¬(I ◦ · I )

where I = a ∪ h, t I x meaning “team t is involved in game x”.

That is, for all x 6≡ x ′,

〈∃ t :: t I x ∧ t I x ′〉 ⇒ (d x) 6≡ (d x ′)

Interestingly, in M this invariant is rendered much simpler,

d · (a + h)◦ 6 >

cf.

〈∀ y , t :: 〈
∑

x : y = d x : t a x + t h x〉〉 6 1
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Quantitative invariants

Recall that k = aOh
hOa should be a bijection.

Bijection = function (= deterministic + total) +
injective + surjective

In M:

! · a O h

h O a
= !

! · h O a

a O h
= !

It all has to do with totals — counting how many 1s the
(Boolean) matrices have per column /row !
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Wrapping up

Main idea:

”Scalable modeling”: the ”keep definition, change
category” lemma.

In the previous TRUST workshop I played the same game with
another category, that of Markov chains.

Questions:

• What is the best path towards quantitative abstraction?

• Some pointfree statements simpler if idempotency is removed

• What would it mean for Alloy to drop +-idempotency? (cf.
SMT backend)
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Annex
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Annex

Pointwise details of (10):

k Q a = 〈
∑

p : a A p : k S p〉

= 〈
∑

p : a A p ∧ k K p : 〈
∑

q : p C q ∧ k K q : 1〉〉

= 〈
∑

p, q : a A p ∧ k K p ∧ p C q ∧ k K q : 1〉
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