Going quantitative in software modeling

TRUST 2nd Workshop

Univ. of Minho, October 23, 2017

J.N. OLIVEIRA

INESC TEC & UNIV. OF MINHO (POCI-01-0145-FEDER-016826)

Software modeling

Simplicity + elegance = effectiveness (Dijkstra)

Alloy — writing less to say more :-)

However: qualitative features simpler to model than quantitative ones

"Quantitative abstraction"?

"Scalable modeling": the *"keep definition, change category"* lemma.

Starting point — what is modeling language, after all?

Software modeling

```
Simplicity + elegance = effectiveness (Dijkstra)
```

Alloy — writing less to say more :-)

However: qualitative features simpler to model than quantitative ones

"Quantitative abstraction"?

"Scalable modeling": the "keep definition, change category" lemma.

Starting point — what is modeling language, after all?

Abstract language made of arrows which (may) compose with each other, and such that

(a) associativity

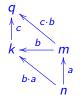
 $c \cdot (b \cdot a) = (c \cdot b) \cdot a$ (1)

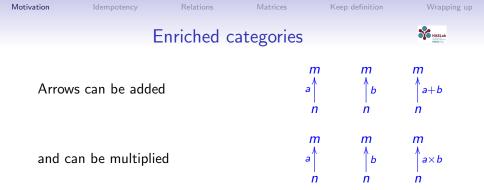
holds.

(b) every **object** *a* has an **identity** such that:

 $1 \cdot a = a \cdot 1 = a \tag{2}$

Thus, arrows form a monoid.





such that, under (\cdot) , \times and +, arrows form two semirings:

 $a + (b + c) = (a + b) + c \qquad a + 0 = a = 0 + a$ $a \times (b \times c) = (a \times b) \times c \qquad a \times \top = a = \top \times a$ a + b = b + a $a \times (b + c) = a \times b + a \times c \qquad a \times 0 = 0 = 0 \times a$ $a \cdot (b + c) = a \cdot b + a \cdot c \qquad a \cdot 0 = 0 = 0 \cdot a$

Further structure — for every arrow $k \xrightarrow{a} q$ there exists an arrow $k \xleftarrow{a^{\circ}} q$, the **converse** of *a*, such that: $(a^{\circ})^{\circ} = a$ $(a \cdot b)^{\circ} = b^{\circ} \cdot a^{\circ}$ $(a + b)^{\circ} = a^{\circ} + b^{\circ}$ $(a \times b)^{\circ} = a^{\circ} \times b^{\circ}$

NB: "dagger" because a° often written as a^{\dagger} .

Famous counter-example: category of sets and functions.

Additive operator + makes a difference.

+-idempotency: wherever a + a = a holds for all a, then

 $a \leqslant b \stackrel{\text{def}}{=} a + b = b \tag{3}$

is a partial order.

Clearly, $0 \le a$ for all a and (+) is the *lub* with respect to \le : $a + b \le c \equiv a \le c \land b \le c$ (4)

NB: c := a + b in (4) means a + b is upper bound; \Leftarrow means it is the **least** upper bound (*lub*).

Relational algebra is an example of such idempotency (next slide).

The algebra of **binary relations** is a well known example of such enriched categories:

Categorial	Binary relations	Description
$x \cdot y$	$R \cdot S$	composition
x + y	$R \cup S$	union
x imes y	$R \cap S$	intersection
0	\perp	empty relation
1	id	identity relation
Т	Т	top relation
x°	R°	converse relation
$x \leqslant y$	$R \subseteq S$	inclusion

 \cup -idempotency brings about the $R \subseteq S$ partial order, thus enabling recursion, iteration etc. — but it hinders implicit expression of **quantities** (cf. numbers in Alloy).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Matrices

In case addition is **not** idempotent — eg. x + x = 2 x — we get a typed **linear algebra** of matrices ("as arrows"):

Categorial	Matrices	Description
$x \cdot y$	$M \cdot N$	MMM
x + y	M + N	pointwise addition
$x \times y$	M imes N	Hadamard product
0	\perp	everywhere-0 matrix
1	id	identity matrix
Т	Т	everywhere- 1 matrix
x°	M°	transpose matrix

 $\{0,1\}$ -valued (Boolean) matrices represent binary relations, where

 $M \cap N = M \times N$ $M \cup N = M + N - M \times N.$

(So the +-semiring must be a ring.) By default, in this talk we assume $\mathbb{Z}\text{-valued}$ matrices.

Functions are Boolean matrices (relations) such that $! \cdot f = !$, where $k \xrightarrow{!} 1 = \top$. (! is itself a function; $1 \xrightarrow{!} 1 = id$.)

Functions enjoy quite a number of properties, in particular, for f and g functions,

$$y(g^{\circ} \cdot M \cdot f)x = (gy)M(fx)$$
(5)

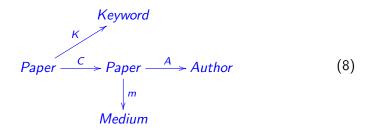
$$y(f \cdot M)x = \langle \sum_{x \in A} z : y = f z : z M x \rangle$$
 (6)

$$y(M \cdot f^{\circ})x = \langle \sum z : x = f z : y M z \rangle$$
(7)

For relations, similar laws hold just by replacing $\sum z$ by $\exists z$.

In the sequel, we shall denote by \mathbb{R} — resp. \mathbb{M} — the category of binary **relations** — resp. \mathbb{Z} -valued **matrices**.

In \mathbb{R} , to begin with:



where

- c' C c means c' is cited by c or c cites c'
- k K p means that paper p has keyword k
- *m p* is the **publication** medium of paper *p* (a function)
- *a A p* means *a* is among the **authors** of paper *p*.

sig Paper {
 C : set Paper,
 K : set Keyword,
 A : set Author,
 m : one Medium
}

Papers cannot cite themselves: $C \subseteq \neg id$, that is

fact { no C & iden }

since $\neg R = R \Rightarrow \bot$ and implication is defined by GC

 $X \cap Y \subseteq Z \Leftrightarrow X \subseteq Y \Rightarrow Z.$

(9)

In category \mathbb{R} :

$$R \xrightarrow{K} Keyword$$

$$K \xrightarrow{K} K \xrightarrow{S} S$$

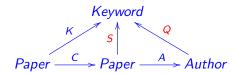
$$Paper \xrightarrow{C} Paper$$

$$\begin{cases} R = K \cap K \cdot C \\ S = K \cap K \cdot C^{\circ} \end{cases}$$

R is not particularly interesting.

But S is so, $k \ S \ p \Leftrightarrow k \ K \ p \land \langle \exists \ q \ : \ p \ C \ q : \ k \ K \ q \rangle$

meaning: paper p is cited by at least another (btw different) paper q "in the same area" (keyword k).



 $\begin{cases} S = K \cap K \cdot C^{\circ} \\ Q = S \cdot A^{\circ} \end{cases}$

イロト 不得 トイヨト イヨト

-

Then

Keyword
$$\leftarrow Q$$
 Author $= S \cdot A^{\circ}$

is such that

 $k Q a = \langle \exists p : a A p : k S p \rangle$

telling which authors have cited papers in particular areas (keywords).

Idempotency

Relations

Matrices

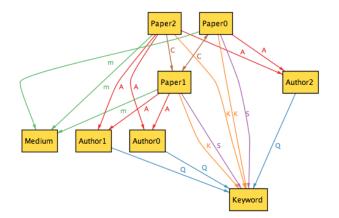
Keep definition

Wrapping up

HASLab

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can do model analysis...



... but no bibliometrics! Why? Idempotency!

Idempotency

Relations

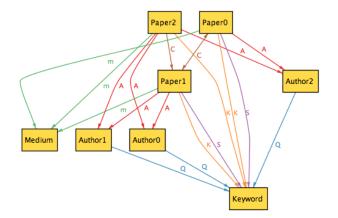
Matrices

Keep definition

Wrapping up

HASLab

We can do model analysis...



... but no bibliometrics! Why? Idempotency!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Keep definition!

Shall we add **quantitative** information to the model?

No! Recall scalable modeling: "keep definition, change category".

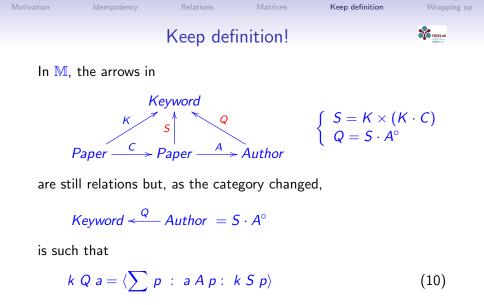
It suffices to interpret the same (abstract) model in category \mathbb{M} — e.g. pattern

Keyword \prec Paper = $K \times (K \cdot C^{\circ})$

will now **count** how many papers cite a given one, all within the same area:

$$k S p =$$

if $(k K p)$ then $\langle \sum q : p C q \wedge k K q : 1 \rangle$ else 0



— it gives, for each author, her/his histogram of citations per keyword, within the same area.

Pushing further, \mathbb{M} can be enriched so that \times forms a **group**, bringing division in:

Keyword
$$\prec Z$$
 Author $= \frac{S \cdot A^{\circ}}{S \cdot \top}$ (11)

This makes such histograms relative to the grand total of citations in each area (keyword) k:

$$k \ Z \ a = \frac{\langle \sum p : a \ A \ p : k \ S \ p \rangle}{\langle \sum q :: k \ S \ q \rangle}$$

That is, k Z a gives the percentile of author a when evaluated (with)in keyword (area) k.

Example: $k Z a = n \ 10^{-5}$ means that *n*-many citations among 10^5 citations in area k are of papers by a.

Z metric better than h-index because it takes into accout the cardinality of eack community (cf. keywords).

h-index harder to encode (is there a "ranking" semiring?)

(Thinking about this — too many frustrating committees!)

and

Idempotency

Relations

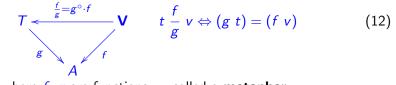
Matrices

Keep definition

HASLab

More triangular patterns (metaphors)

In \mathbb{R} , another triangular pattern is

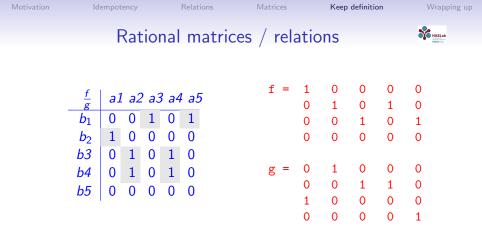


— where f, g are functions — called a **metaphor**.

By (5), this has the same meaning in category \mathbb{M} .

Nice properties, recalling rational numbers, e.g.

$$\frac{f}{id} = f$$
(13)
$$\left(\frac{f}{g}\right)^{\circ} = \frac{g}{f}$$
(14)
so on.



Most specifications are rational relations / matrices, eg.

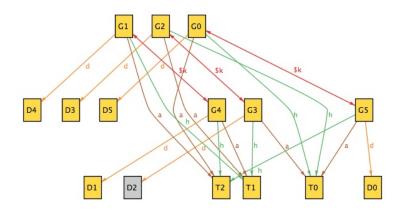
 $Sort = \frac{bag}{bag} \times \frac{true}{ordered} \quad (= \frac{bag \ ^{\vee} \ true}{bag \ ^{\vee} \ ordered})$ where $(f \ ^{\vee} g) \ a = (f \ a, g \ a).$

The teams (T) of a football league play games (G) at home (h) or away (a), and every game takes place in some date (d):

$$T \stackrel{h}{\leftarrow} G \stackrel{a}{\longrightarrow} T$$

Invariantly,

- All teams play against each other exactly once but never against themselves.
- No team can play two games on the same date.



Clearly, $k = \frac{a^{\nabla} h}{h^{\nabla} a}$ should be a bijection (cf. team swapping).

・ロト・日本・モート モー うへぐ

Idempotency

/

Matrice

Quantitative invariants

All teams play again each other exactly once but never against themselves, in \mathbb{R} :

 $h \cdot a^{\circ} = \top - id \tag{15}$

meaning, for all teams t, t'

 $\langle \exists x :: t = h x \land t' = a x \rangle \Leftrightarrow t \not\equiv t'$

Exactly once? In \mathbb{M} we write exactly the same as above,

 $h \cdot a^{\circ} = \top - id$

capturing everything:

For all teams t, t',

 $\langle \sum x : t = h x \wedge t' = a x : 1 \rangle =$ if t = t' then 0 else 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idempotency

Relations

Matrice

Keep definition

Wrapping up

Quantitative invariants

No team can play two games on the same date, in \mathbb{R} :

 $d^{\circ} \cdot d \subseteq id \cup \neg (I^{\circ} \cdot I)$

where $I = a \cup h$, $t \mid x$ meaning "team t is involved in game x".

That is, for all $x \not\equiv x'$,

 $\langle \exists t :: t \mid x \land t \mid x' \rangle \Rightarrow (d x) \not\equiv (d x')$

Interestingly, in \mathbb{M} this invariant is rendered much simpler,

 $d \cdot (a+h)^{\circ} \leqslant \top$

cf.

$$\langle \forall y, t :: \langle \sum x : y = dx : t a x + t h x \rangle \rangle \leqslant 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Idempotency

Relations

Matrice

Keep definition

Wrapping up

Quantitative invariants

Recall that $k = \frac{a^{\nabla} h}{b^{\nabla} a}$ should be a bijection.

Bijection = function (= deterministic + total) + injective + surjective

In **M**:

$$! \cdot \frac{a \lor h}{h \lor a} = !$$
$$! \cdot \frac{h \lor a}{a \lor h} = !$$

It all has to do with **totals** — **counting** how many 1s the (Boolean) matrices have per column /row !

Main idea:

"Scalable modeling": the "keep definition, change category" lemma.

In the previous TRUST workshop I played the same game with another category, that of **Markov chains**.

Questions:

- What is the best path towards quantitative abstraction?
- Some pointfree statements simpler if idempotency is removed
- What would it mean for Alloy to drop +-idempotency? (cf. SMT backend)

Annex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pointwise details of (10):

$$k Q a = \langle \sum p : a A p : k S p \rangle$$

= $\langle \sum p : a A p \land k K p : \langle \sum q : p C q \land k K q : 1 \rangle \rangle$
= $\langle \sum p, q : a A p \land k K p \land p C q \land k K q : 1 \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?